
Informatica 37 (2013) 55–60 55

Orange: Data Mining Fruitful and Fun - A Historical Perspective

Janez Demšar and Blaž Zupan
University of Ljubljana, Faculty of Computer and Information Science, Tržaška 25, Ljubljana, Slovenia
E-mail: {janez.demsar|blaz.zupan}@fri.uni-lj.si

Keywords: data mining, machine learning, applications

Received: November 15, 2012

Orange (http://orange.biolab.si) is a general-purpose machine learning and data mining tool. Its multi-
layer architecture is suitable for different kinds of users, from data mining beginners to programmers who
prefer a scripting interface. In this paper we outline the history of Orange’s development and present its
achievements, current status, and future challenges.

Povzetek: Orange kot splošno orodje za stojno učenje in odkrivanje znanj iz podatkov, zgodovina, trenutna
podoba in prihodnji izzivi.

1 Introduction
General-purpose machine learning software tools have had
a short but eventful history. It began with utilities that im-
plemented a specific induction method and reported on an
inferred model in a textual form, to be then scrutinized and
admired by the user. Such were implementations of tree
and rule inducers C4.5 [5] and CN2 [3] in the 1980s. A
contender to C4.5 was Assistant Professional [2]. Assis-
tant Professional was expensive compared to C4.5, which
came free with a book. As a result, C4.5 went on to be-
come the most popular machine learning program of the
last century and, in the spirit of free software, a precursor
of open-source toolboxes.

In the 1990s the machine learning community grew sub-
stantially and so did the number of different approaches.
Many researchers preferred a single toolbox to implement,
apply, and test their methods on a standard collection of
data sets. Packages like IND and MLC++1 emerged, each
with a set of command-line utilities that also implemented
testing schemes and could report on evaluation scores.

To illustrate the challenges of those times, consider med-
ical data modeled with a classification tree, and a medical
doctor who wants to know which particular patients belong
to a branch of the tree and what their average blood pres-
sure is. With only a command-line utility at our disposal,
this simple endeavor could (and did) prove rather impossi-
ble. Command-line data analytics is no fun. Systems with
graphical user interfaces emerged as alternatives. The ba-
sic ones offered only data plotting capabilities such as R.2

In those that were more advanced, the user could interact
with the graphics, for instance by clicking on a graphical
element to get the information about the data it represents.
SGI’s MineSet [1], for one, was a commercial product that
was built on top of MLC++ and that implemented what
was for the 1990s an advanced exploratory graphical inter-

1http://www.sgi.com/tech/mlc
2http://www.r-project.org

face. There was one problem, however. The data analysis
pipeline was fixed: read the data, visualize the model, ex-
plore it, and interpret the results.

Data analysts are, by definition, inquisitive. When given
data, we like to dissect it, build models, observe their parts,
consider specific data subsets, and dissect it further. We
like to construct data analysis pipelines, not just use them.
The idea of visual programming, an interface in which
pipelines are created by linking predefined or even user-
designed components, was explored in the early 1990s by
Sun, IBM, and SGI in packages for data visualization such
as Data Explorer.3 A similar idea took off in data min-
ing with Clementine (later bought by SPSS and in 2009
renamed to SPSS Modeler). Open-source toolboxes fol-
lowed: Weka4, Knime5, Yale (which is now a much re-
designed RapidMiner6), and Orange7, each built on their
own favorite programming language, assembling a differ-
ent set of core components and offering their own interface
for explorative data analysis.

2 History of Orange
The development of Orange began in 1997 by the authors
of this paper. Its development continued at the Artificial
Intelligence Laboratory and is currently taking place at the
Laboratory of Bioinformatics, both at the University of
Ljubljana.

Orange as a library of C++ components and command-
line utilities. Orange was first conceived as a C++ li-
brary of machine learning algorithms and related proce-
dures, such as preprocessing, sampling, and other data ma-

3http://www.research.ibm.com/dx
4http://www.cs.waikato.ac.nz/ml/weka
5http://www.knime.org
6http://rapid-i.com
7http://oranga.biolab.si



56 Informatica 37 (2013) 55–60 J. Demšar et al.

Figure 1: An Orange schema that explores misclassified data instances with a naive Bayesian classifier, support vector
machines and random forest.

nipulation. We aimed at constructing a platform where ad-
vanced users would write their own components in C++.
This turned out not to be the case. Instead, Orange was
mostly used for data exploration in which different combi-
nations of provided preprocessing and learning algorithms
were tested and scored using cross-validation. The com-
ponents were packed into programs with command line in-
terfaces. As this was too limiting, we decided to provide a
scripting interface to these components by exposing them
to Python.

Orange as a Python module. Python, a modern script-
ing language, was chosen for a variety of reasons.

– It has a very clean and simple syntax that is easy to
learn, not only for a programmer but also for a begin-
ner. (Python is becoming the language of choice for
teaching programming at many leading universities,
including CMU, MIT, Berkeley, Rice and Caltech.)

– Despite its simplicity, Python is an industry-strength
language. For instance, Python is behind many of
Google’s technologies, which is also why Google is
one of the major sponsors of Python’s development.

– Since programming in Python is fast, it is very suitable
for prototyping of new methods.

– It is relatively easy to extend Python with modules
written in C or C++. Python was even dubbed a glue
language due to its use for gluing libraries in C or For-
tran. Today, one seldom needs to implement special-

ized routines in low-level languages due to the avail-
ability of high quality libraries such as NumPy and
SciPy.

Since 1999 Orange has been used almost exclusively as
a Python module. Although the C++ core eventually rose
to around 140,000 lines, most developers have been adding
to its Python modules and rather than implementing their
own classes in C++.

The transition to Python has enabled several important
developments. More and more of Orange’s functionality is
implemented in pure Python or by combining the fast func-
tions provided by the C++ Orange core using the glue code
written in Python. Since the programs in Python are so
readable, they enable collaboration of larger teams with-
out the need to coordinate the development and establish
a set of coding standards. The size of the group that de-
velops the system has increased to 10-15 members, mostly
from the Laboratory of Bioinformatics. Most importantly,
migration to Python has simplified the development of the
graphical user interface.

Orange Visual Programming. Our group has a tradition
of collaborating with partners from other scientific and in-
dustrial areas, biomedicine in particular. We wished to pro-
vide them with a data exploration tool in which they could
design their own data analysis pipelines without any script-
ing or Python programming [4]. Among a number of differ-
ent Python libraries for implementing graphical user inter-
faces, we chose Qt, a strong cross-platform library which
is available under both GPL and commercial licenses, and



Orange: Data Mining Fruitful and Fun Informatica 37 (2013) 55–60 57

Figure 2: A schema where the user can observe data be-
longing to selected nodes of the decision tree. The selected
examples are shown in a table and marked in a scatter plot
(see Figure 3).

which is behind products as different as Skype and KDE
desktop.

The majority of current users now use Orange only
through its graphical interface (Figure 1). It consists of a
canvas onto which users place pipeline components called
widgets. Each widget offers some basic functionality, such
as reading the data, showing a data table, selecting data
features, either manually or based on some feature scor-
ing, training predictors, cross-validating them, and so forth.
The user connects the widgets by communication channels.
The basic strength and flexibility of Orange is in the differ-
ent ways in which the widgets can be combined into new
schemata.

Special emphasis in the development and design of wid-
gets was placed on data visualization and interactivity. For
instance, a classification tree viewer allows the user to click
on a node of the tree, which transmits the data samples that
belong to the node to any widgets connected to the tree
viewer widget (Figure 2). The user can thus construct a
tree and then explore its content by observing, say, a data
table with the data instances from interesting nodes, or, for
example, by drawing scatter plots from the entire data set
and marking the data points from different nodes of the tree
(Figure 3).

Figure 1 shows a more complex schema. After loading
some data, the user selects a subset of instances and induces
a naive Bayesian classifier, support vector machine, and
random forest. Results are compared using ROC curves
and confusion matrices. The confusion matrix is connected
to a data table widget with which the user can observe par-
ticular kinds of misclassifications.

While the general philosophy of Orange is that widgets
should be simple and the power of the tool should stem
from the different ways of connecting them, several wid-
gets are rather powerful by themselves. For instance, in
the widget for discretization of continuous attributes (Fig-
ure 4), we can set a general discretization method (equal
interval width, equal frequency of data points, and entropy-
based discretization), override it for individual attributes, or
manually discretize an attribute by entering expert-defined
thresholds or finding suitable ones from a graph that shows
distributions and gains at different threshold values.

3 Orange in 2012

Orange, together with Knime, is among the easiest-to-use
data mining tools available. It runs on OS X, Windows, and
Linux. The default installation includes a number of ma-
chine learning, preprocessing, and data visualization algo-
rithms. Unlike Weka, for instance, which offers everything
there is in machine learning, the goal of Orange was to im-
plement the most useful and commonly used techniques in
a way that is flexible and user-friendly. The emphasis of
the tool is data exploration.

The machine learning algorithms in the default instal-
lation are limited to a naive Bayesian classifier, k-nearest
neighbors, induction of rules and trees, support vector ma-
chines, neural networks, linear and logistic regression, and
ensemble methods. Most methods are, however, coupled
with a visual representation that allows for exploration of
the resulting model; the user can select a node in a clas-
sification tree or rule, and explore the training instances
covered by them. A naive Bayesian classifier, logistic re-
gression, and linear SVM can be explored through nomo-
grams that offer insight into the importance of features and
their individual values. Nomograms can also be used for
explaining the model’s predictions. This also applies to
unsupervised methods, such as association rules, multidi-
mensional scaling, self-organizing maps, and various types
of clustering.

In contrast with the intentionally limited assortment of
machine learning methods, Orange has a rich collection
of visualization methods. Besides the common visualiza-
tions, such as box plots, histograms, and scatter plots, it
contains a number of multivariate visualizations, including
parallel coordinates, mosaic display, sieve diagram, survey
plots, and a number of data projection techniques, such as
multi-dimensional scaling, principal component analysis,
RadViz, FreeViz, and others. The user can interactively
explore the visualizations or connect them to other widgets
that send or receive data from the visualization. Orange
can also help the user in finding insightful visualizations
by automatically ranking them by interestingness or by or-
ganizing them into a network of visualizations.

Orange can be extended with additional modules. We
currently provide an extensive collection of methods for
bioinformatics, as well as modules for text mining and
multi-target learning and a set of powerful widgets for vi-
sualization and exploration of networks.

Orange has been used in science, industry, and teach-
ing. Scientifically, it is used as a testing platform for new
machine learning algorithms, as well as for implement-
ing new computational approaches in molecular biology
and bioinformatics. The most notable industrial partner is
Astra-Zeneca, a pharmaceutical giant, which uses Orange
in drug development and sponsors the development of sev-
eral related parts of Orange [6]. At Jožef Stefan Institute,
the visual programming interface has been upgraded in Or-
ange4WS to support service-oriented architectures. Orange
is also being used for teaching courses in machine learning



58 Informatica 37 (2013) 55–60 J. Demšar et al.

Figure 3: Widgets from schema in Figure 2 showing the classification tree with selected node of six instances. These are
displayed in the table and highlighted in the scatterplot. The user can change the selection, instructing Orange to propagate
it through the schema and update table and scatterplot widget. By combining interaction and signal propagation, the
collection of widgets thus becomes a tool for explorative data analysis.

and data mining in countries around the world, including
the US, Italy, France, Japan, Turkey, Cuba, and Peru.

4 Future developments

The landscape of Python’s libraries has been strongly af-
fected by reorganizing the obsolete libraries Numeric and
numarray into NumPy8, which has become a standard li-
brary for scientific computation in Python. It provides ar-
rays of arbitrary dimensions and linear algebra routines
from BLAS and ATLAS. Another library, SciPy, adds
many other common scientific routines, from statistical
functions to fast Fourier transforms. The scikit-learn9 li-
brary utilizes NumPy’s fast vectorized operations to pro-
vide fast and high-quality implementations of most ma-
chine learning algorithms and is widely used by the com-
munity.

The power of Orange is not as much in its machine
learning algorithms, but rather in the way in which they

8http://NumPy.SciPy.org
9http://scikit-learn.org

are packed and exposed to Python scripting in a simpler
form. Beyond that, an even stronger feature of Orange is
its graphical user interface and visual programming envi-
ronment. We are intensely working on a new version of
Orange in which we will replace the entire C++ core with
routines in NumPy, SciPy, scikit-learn, and similar third-
party open source libraries for Python. This should encour-
age contribution from outside the group and allow us to
concentrate on the development of just those parts where
Orange is unique. For early 2013, we plan a revamped
user interface (Figure 5) and, in collaboration with com-
pany Ainda, we are designing MyFlow10, a platform with a
web-based interface to Orange.

Acknowledgements
Development of Orange is a team effort of many develop-
ers, and we thank them all for their enthusiasm and support.
Major contributions to the package have been made by Aleš
Erjavec, Gregor Leban, Tomaž Curk, Marko Toplak, Miha

10http://myflow.io



Orange: Data Mining Fruitful and Fun Informatica 37 (2013) 55–60 59

Figure 4: Discretization widget; the left part of the widget defines the general settings for all attributes and the right part
allows for individual attribute customization.

Štajdohar, Anže Starič, Matija Polajnar, Lan Žagar, Jure
Žbontar, Mitar Milutinović, Lan Umek, Črt Gorup, Mar-
tin Možina, Gregor Rot, Aleks Jakulin, and designers Peter
Čuhalev and Roman Ražman. We thank the Slovenian Re-
search Agency (P2-0209, J2-9699, L2-1112), National In-
stitutes of Health (European Commission (FP7 CARE-MI
242038, FP7 AXLE 318633), Astra Zeneca, and Google
through its Summer of Code program, for providing finan-
cial support.

References
[1] Clifford Brunk, James Kelly, and Ron Kohavi. Mine-

Set: An Integrated System for Data Mining. In KDD,
pages 135–138, 1997.

[2] Bojan Cestnik, Igor Kononenko, and Ivan Bratko. AS-
SISTANT 86: A Knowledge-Elicitation Tool for So-
phisticated Users. In EWSL, pages 31–45, 1987.

[3] Peter Clark and Tim Niblett. The CN2 Induction Al-
gorithm. Machine Learning, 3(4):261–283, 1989.

[4] Tomaz Curk, Janez Demsar, Qikai Xu, Gregor Leban,
Uros Petrovic, Ivan Bratko, Gad Shaulsky, and Blaz

Zupan. Microarray data mining with visual program-
ming. Bioinformatics, 21(3):396–398, 2005.

[5] J R Quinlan. C4.5: Programs for Machine Learn-
ing, volume 1 of Morgan Kaufmann series in Machine
Learning. Morgan Kaufmann, 1993.

[6] Jonna C Stålring, Lars A Carlsson, Pedro Almeida
and Scott Boyer. AZOrange - High performance
open source machine learning for QSAR modeling in
a graphical programming environment. Journal of
Cheminformatics, 3:28, 2011.



60 Informatica 37 (2013) 55–60 J. Demšar et al.

Figure 5: The design of a graphical interface for the upcoming version of Orange (by Peter Čuhalev).


