
https://doi.org/10.31449/inf.v46i8.4305 Informatica 46 (2022) 91–104 91

Ensuring Privacy and Confidentiality of Data on the Cloud Using an

Enhanced Homomorphism Scheme

John Kwao Dawson1, Frimpong Twum2, James Hayfron Acquah3, Yaw Marfo Missah3

1Sunyani Technical University, 2,3Kwame Nkrumah University of Science and Technology, Ghana

E-mails: 1kwaodawson1@yahoo.com, 1kwaodawson@stu.edu.gh, 2twumf@yahoo.co.uk, 3jbha@yahoo.com,
3ymissah@gmail.com

Keywords: Good Prime Number, Linear Congruential Generator, Homomorphism, Ciphertext, Encryption, Deciphering

Received: July 18, 2022

Abstract: Cloud computing is one of the widest phenomena embraced in information technology. This result from

numerous advantages associated with it making many organizations and individuals offload their data to the cloud.

Encryption schemes restrict access to data from unauthorized clients, helping attain confidentiality and privacy. The

modification of the ciphertext of clients’ data on the cloud demand downloading, deciphering, editing, and finally

uploading back to the cloud by sharing their private key with the cloud service provider making it tedious. The

application of homomorphism, allows computation to be performed on ciphertext with no decipher activity which helps

to avoid the surfacing of sensitive client data stored on the cloud. In this paper, an Enhanced Homomorphism Scheme

(EHS) is proposed based on Good Prime Numbers (GPN), Linear Congruential Generator (LCG), Fixed Sliding

Window Algorithm (FSWA), and Gentry’s homomorphism scheme. A dataset from the Kaggle database was used to test

the proposed algorithm. A variety of tests were conducted using the proposed algorithm such as the Uniqueness of

ciphertext, addition and multiplication property of full homomorphism, and the execution times using 2𝑛(𝑛 ∈ 2,3,4,5)

data sizes. A comparison of the execution time of the proposed EHS was conducted with the New Fully Homomorphism

Scheme (NFHS), and the Enhanced Homomorphism Encryption Scheme (EHES). From the comparison, the proposed

EHS algorithm had the lowest encryption time when a data size of 24kb was executed but with a higher decryption time

of 567.6667 ± 96.38911when a data size of 8kb was used. On the other hand, with a data size of 32kb, EHES had the

highest decryption time of 1274ms with the proposed EHS having the lowest decryption time of 551.2222 ± 82.68746

indicating a decryption percentage decrease of 56.73%. This confirms that execution times are dependent on the size of

the encryption key but not on data size.

Povzetek: Nov kriptografski algoritem z imenom EHS se je izkazal z izboljšanimi časi izvajanja na nekaj standardnih

testnih domenah.

1 Introduction
The use of cloud services has risen due to the

convenience associated with their usage. Cloud

computing is considered one of the emerging internet-

based technologies in the Information Technology

industry [1]. Cloud computing is an internet-based

system that provides multi-tenancy, scalability,

elasticity, pay-as-you-go, and self-provision of resources

to the cloud client by the cloud service provider such as

Amazon S3, and Google Cloud as shown in figure 1 [2].

This helps cloud clients to be able to distantly distribute

the huge amount of information and workloads to the

cloud and take advantage of unlimited computing

resources and applications in the on-request high-quality

services [3].

Cloud computing helps ease the burden of storage

management, having access to information independent

of regions, and decreases capital use on equipment,

programs, and staff. Regardless of these, privacy and

confidentiality of data issue is the basic factor that

obstructs the far and wide reception of cloud computing

[4].

Figure 1: Cloud computing model [39]

There have been numerous attempts by researchers

to propose the most robust cryptographic scheme to

https://doi.org/10.31449/inf.v46i8.4305
mailto:kwaodawson1@yahoo.com
mailto:twumf@yahoo.co.uk
mailto:jbha@yahoo.com

secure data at rest and in transit, but there exist many

hindrances in achieving this aim, such as security threats

and third parties securing data on behalf of organizations

[5]. Another consideration that comes into mind is data

modification by unauthorized entities and the hacking

into systems by hackers when valuable data is

outsourced to a third party for storage [6].

To address these security concerns most

appropriately, homomorphism encryption schemes are

proposed. Homomorphism has the capability that allows

the evaluation of ciphertext, which results in encrypted

data, and the result can be decrypted when the same

function is applied to the plaintext [7]. Privacy and

confidentiality become paramount if computations can

be performed on ciphertext without knowledge of the

plaintext, which is the advantage of homomorphism [8].

1.1 Homomorphism

Homomorphism is a cryptographic scheme that performs

computations on ciphertext resulting in an encrypted

output with no knowledge of the data upon which

computations are performed [13], and [14].

Homomorphism helps in analyzing stored data in the

cloud without deciphering it. This is because the

resultant computation on the encrypted data after

deciphering is similar to the corresponding message from

the sender [32].

Gentry in 2009, proposed the maiden Fully

Homomorphism scheme which supported additive and

multiplicative characteristics which were lattice-based

[8], [9], [10], and [11]. This opened the door for variants

of fully homomorphism encryption schemes such as

Homomorphism Authenticators (HA), and

Homomorphism Authenticated Encryption (HAE) to be

proposed and has been proven to be one of the security

schemes that support the confidentiality and privacy of

data on the cloud [12].

Dijk et al. [17] proposed revised fully

homomorphism encryption algorithms ((Van Dijk,

Gentry, Halevi, and Vaikuntanathan) (DGHV scheme))

using prime numbers in 2012. Their algorithm was

based on the computation of integers to achieve full

homomorphism. A re-encryption property in their work

increased the noise level in their algorithm, resulting in

higher complexity time.

There are four (4) stages of homomorphism [15].

These are;

Stage 1: Key Generation

Two keys are selected by the cloud client as

indicated in equation 1. The public key 𝑃𝑘 and security

key 𝑆𝑘. Such that;

 (𝑃𝑘 , 𝑆𝑘) = 𝐾𝑒𝑦𝑠 … … … … … … … ….(1)

Stage 2: Encryption

The plaintext (𝑀) is accepted by the encryption

algorithm to produce a ciphertext (𝐶) by applying

equation 2 using the private key.

𝐶 = 𝐸𝑛𝑐𝑝𝑘(𝑀) … … … … … … … … ….(2)

Stage 3: Evaluation

The evaluation function 𝑓 is performed on the ciphertext

𝐶 using the generated security key 𝑆𝑘 using equation 3.

𝐸 = 𝐸𝑣𝑎𝑙𝑠𝑘(𝑓, 𝐶) … … … … … … … … ..(3)

Stage 4: Decryption

The reversal of the ciphertext 𝐶 using the private key 𝑝𝑘 to

obtain the plaintext 𝑀 by applying equation 4.

𝑀 = 𝐷𝑒𝑐𝑆𝑘(𝑪) … … … … … … … … ….(4)

Based on the four stages of homomorphism operations,

homomorphism can be grouped into full homomorphism

and partial homomorphism encryption schemes. Partial

homomorphism encryption algorithms can perform either

addition or multiplicative properties only while fully

homomorphism encryption supports both additive and

multiplicative properties. A somewhat (SWHE)

homomorphism encryption algorithm is also proposed

which is a sub-category of a full homomorphism algorithm

and can perform addition and or multiplication properties.

1.2 Fully homomorphic encryption

algorithm

An encryption algorithm is fully homomorphism if it

supports both multiplication and addition properties [16].

Assuming there are five (5) variables (M, F, R, Q, L) such

that M is the plaintext, F the ciphertext, R and Q the

encryption and decryption algorithms respectively, and L

the secret key. It can be deduced that, for every value

of 𝑅 ∈ 𝑅, using an encryption algorithm rule 𝑒𝑘 ∈ 𝑄

with a corresponding decryption rule 𝑑𝑘 ∈ 𝐿. Hence, if

the plaintext 𝑀 and ciphertext 𝐹, then 𝑒𝑘 links from 𝑀 𝑡𝑜

𝐹 and 𝑑𝑘 links from ciphertext 𝐹 to plaintext 𝑀.

This implies

 𝑒𝑘 ⇒ 𝑀 → 𝐹 and 𝑑𝑘 ⇒ 𝐹 → 𝑀

From this, it can be deduced that considering all characters

of plaintext 𝑀, the ciphertext will be obtained using

equations 5, 6, 7, and 8;

𝒆𝒌(𝒂 + 𝒑𝒃) = 𝒆𝒌𝒂 + 𝒑𝒃𝑒𝑘 … … … …(5)

𝒆𝒌(𝒂 ∗ 𝒑𝒃) = 𝒆𝒌𝒂 ∗ 𝒑𝒃𝑒𝑘 … … … ….(6)

𝒅𝒌(𝒄𝒂 ∗ 𝒄𝒃) = 𝒅𝒌𝒄𝒂 ∗ 𝒅𝒌𝑐𝑏 … … ….(7)

𝒅𝒌(𝒄𝒂 + 𝒄𝒃) = 𝒅𝒌𝑐𝑎 + 𝒅𝒌 … … . ..(8)

The encryption algorithm is considered fully

homomorphism from equations 5, 6, 7, and 8.

Shihab and Makki, [12], and Dijk et al. [17] proposed a

variant of the homomorphism scheme. Their proposed

algorithm, Fully Homomorphism Encryption by Prime

Modular Operation (SAM Scheme), pined its security

strength on the random selection of big prime integers and

92 Informatica 46 (2022) 91–104 J. K. Dawson

constant random big integers. Again, their algorithm

encrypted the plaintext, character by character.

Even though their algorithm was promising the

selection of big numbers used as seeds for the encryption

and decryption process makes the execution times of

their proposed algorithm linear and high. This makes the

execution times to be proportional to data size [7], [10],

and [12]. Again, the selection of big integers and big

prime numbers generates high values which require high

Central Processing Unit (CPU) capabilities to execute

any data.

This, therefore, raises the need for a full

homomorphism scheme that is non-deterministic, with

low execution time, and non-linear. A full

homomorphism encryption scheme is proposed in this

work by integrating Good Prime Numbers (GPN), Linear

Congruential Generator (LCG), Sliding Window

Algorithm (SWA), and Gentry’s algorithm.

1.3 Our contribution

Homomorphism is considered the solution to the security

challenges of cloud computing which is hindering

organizations and individuals from fully outsourcing to

the cloud. There are variants of homomorphism schemes

that are proposed, but their execution times are always

linear (O (n)), making execution time predictable, and

high. A robust high-security full homomorphism

algorithm is proposed, which helps to attain privacy and

confidentiality of data on the cloud with lower execution

(O (log n)), non-linear and non-deterministic execution

time. This is achieved through the application of the

Fixed Sliding Window Algorithm on the selected

numbers from the Linear Congruential Generator which

breaks down the secret keys to smaller values to reduce

the number of iterations performed by the processor to

attain a lower execution time. The uniqueness of

ciphertext is computed, the addition and multiplication

property of homomorphism are tested, and the

generation time for the four (4) arrays for the encryption

and decryption of data using (
𝒏(𝒂[𝒊])

𝟑
) and the execution

time of data sizes of 2𝑛𝑘𝑏 (𝑛 ∈ 2, 3, 4) was conducted

using the smaller encryption key aiding in lower

execution time.

The paper is organized into five sections supported

by sub-sections to give much clarity to the work. Section

one discusses the introduction with its sub-sections,

section two literature review, section three methodology,

section four results and discussion, and section five

conclusion.

2 Related work
 This discusses the works of other authors that are

linked to ensuring data confidentiality and privacy on the

cloud by employing homomorphism. The works of Ren et

al.

(2014) and Lakhan et al. [21] and [39] respectively are

good examples. In the work of Ren et al, they proposed an

exclusive – or (XOR) homomorphism encryption scheme.

Their scheme encrypts data by randomizing it by

performing an XOR operation based on a randomized

string of bits. This scheme can protect data against the

analysis of ciphertext by randomizing the data in transit

thereby ensuring data confidentiality and privacy. Even

though the algorithm is fast, its execution time is linear.

Lakhan et, al. (2022), also proposed a secured vehicular

fog cloud computing (FCN) that uses a Mobility-Aware

Multi-Scenario Offloading Phase (MAMSOP) to attain

mobility as well as offloading execution in their system.

They employed full homomorphism encryption to attain

the confidentiality of personal data on the cloud. Their

scheme allowed for computation to be performed on

locally stored data without decryption but is also linear.

The works of Agwa et.al, [22] and Chang and Li [23]

proposed an encryption algorithm based on

homomorphism and secret sharing aimed at ensuring cloud

data confidentiality and privacy. Their approach was

flexible and could add and remove shareholders as well as

add them. The integration of the algorithms aimed to

reduce the time complexity of Lagrange computations

which was achieved by leveraging their data to the cloud.

Despite the security strength of their proposed algorithm,

the execution time is linear making it predictable. Again,

the works of Loyka et, al. (2018), [26] proposed an affine-

based homomorphism encryption scheme based on ASCII

values of alphabets of plaintext to ensure privacy and

confidentiality. Their scheme was the first to use an affine

security scheme and its operations considered only strings

and integers. Their approach considered the lookup and

concatenation of encrypted text which uses the addition

and subtraction of ciphertext operations. Their algorithm

had linear encryption time with non-linear decryption

time.

Torres et al. (2015) [24], proposed a privacy scheme using

a protocol, based on iris authentication by employing a

lattice-based full homomorphism encryption scheme.

Because they adopted homomorphism encryption, their

scheme provided an unlimited computation of the

ciphertext and also prevented the transfer of private keys

to any third party. Their approach is very promising but is

still prone to several attacks as indicated in [24] and also

linear.

Ensuring Privacy and Confidentiality of Data on the Cloud… Informatica 46 (2022) 91–104 93

Yang et, al. [29], proposed an optimized re-linearization

scheme of CDKS19 to ensure cloud data privacy. Their

proposed scheme reduces the linearization complexity

thereby decreasing the homomorphism evaluation

process through the reorganization of the evaluation key

in the key generation process. The security of the

proposed security

algorithm is promising but linear which makes it

predictable.

The work of Hong et al. [25], ensured the

confidentiality of data by employing model inference

processes using a secure multi-labeled classifier utilizing

an approximate homomorphism encryption algorithm.

Their approach allowed for efficient data encryption

which reduced the execution time but the data encryption

is linear making it predictable.

Aono et al. [27] proposed integrating a key rotatable

and security updating homomorphism algorithm (KR-

SU-HE) which is a public-key scheme. Their scheme

rotated the key for the encryption and rotated the

ciphertext and updated it as well still maintaining its

privacy and confidentiality. Their approach seemed good

but was also linear.

In 2018 Gazizullina, [28] proposed a probabilistic

algorithm using third-degree polynomial time to ensure

data privacy. The proposed scheme has a reduced

execution time due to reduced calculation times. The

security of the algorithm is based on employing product

tables which allowed the usage of rational values. There

was no comparison with existing algorithms and was not

used to encrypt genomic data but is also linear.

A summary of the related works is shown in Table

1, indicating their methodology, weaknesses, and

strength associated with the proposed algorithms.

Considering the above works, we propose a full

homomorphism scheme to ensure the privacy and

confidentiality of data on the cloud using Good Prime

Numbers (GPN), Linear Congruential Generator (LCG),

Fixed Sliding Window Algorithm (FSW), and Gentry’s

algorithm with lower execution, non-deterministic times

and non-linear time.

3 Methodology
A privacy and confidentiality enhancement scheme

dubbed Enhanced Homomorphism Scheme (EHS) for

cloud data is proposed. EHS is an integration of Good

Prime Numbers (GPN), Linear Congruential Generator

(LCG), Fixed Sliding Window Algorithm (FSWA), and

Gentry’s Algorithm. The algorithm is made up of two

stages, Key Generation and the homomorphism scheme.

The flow and the architectural diagram of EHS are shown

in Figures 2 and 3.

The key generation in EHS is computed using three

procedural stages. The first stage involves the generation

of two Good Prime Numbers. The product of the two

selected numbers are considered the seed for the Linear

Congruential Generator to generate twelve integers. The

twelve integers are then subjected to the Fixed Sliding

Window Algorithm to obtain four numbers using a sub-

array of three (
𝒏(𝒂[𝒊])

𝟑
). The initial value generated serves

as 𝒔𝒊, the second computed value 𝒔𝒋, the third value 𝒔𝒌, the

fourth value is 𝒔𝒍, and M is the plaintext. The encryption

of plaintext is achieved through the application of equation

9 and the decryption of the ciphertext is computed using

equation 10.

𝐶 = 𝑀 + 𝑠𝑖 ∗ 𝑠𝑗 + 𝑠𝑘 ∗ 𝑠𝑙 … . … … … …(9)

𝑀 = 𝐶 𝑚𝑜𝑑 𝑠𝑘 … … … … … … . . … … … (10)

In the architectural diagram of the proposed EHS diagram

shown in Figure 3, the cloud client secures data 𝑴𝟏 and

𝑴𝟐 using Full Homomorphism encryption and offloads

data to the cloud service provider. A common secret key is

generated by the cloud client and cloud service provider to

allow for synchronization. Upon synchronization, the

cloud client requests modification of any data which is

delivered as a function of 𝑓(𝑀1,𝑀2) without decryption

as 𝒇(𝑬(𝑴𝟏), 𝑬(𝑴𝟐)).

94 Informatica 46 (2022) 91–104 J. K. Dawson

T
ab

le
 1

:
C

o
m

p
ar

is
o

n
 o

f
h
o

m
o

m
o

rp
h
is

m
 a

lg
o

ri
th

m
s

to
 a

tt
ai

n
 c

o
n
fi

d
en

ti
al

it
y
 a

n
d

 p
ri

v
ac

y
 o

n
 c

lo
u
d

Ensuring Privacy and Confidentiality of Data on the Cloud… Informatica 46 (2022) 91–104 95

Figure 2: Flow diagram of proposed Fully Homomorphism Encryption (FHE) schema

Figure 3: Architectural Framework of proposed EHS

algorithm

3.1 Generation of keys

3.1.1 Good prime numbers (GPN)

A number whose square is greater than the product of two

prime numbers positioned before and after in the sequence

of the prime is considered a good prime [18]. Good Prime

Numbers are computed using equation 11.

𝑷𝒏
𝟐 > 𝑷(𝒏 − 𝒊) ∗ 𝑷(𝒏 + 𝒊) … … … … .. (11)

The 𝑛 value indicates the prime numbers, 𝑃(𝑛 − 𝑖)

represents the initial prime number resulting from the

chosen primes while 𝑃(𝑛 + 𝑖) suggests the subsequent

prime fulfilling the condition 1 ≤ 𝑖 ≤ 𝑛 − 1. For

example, first ten (10) prime numbers are: 2, 3, 5, 7, 11,

13, 17, 19, 23, and 29. Using the formula in equation 11,

the first good prime can be computed as;

 52 > 3 ∗ 7, 52 > 2 ∗ 11. From this, the first ten

good prime numbers are 5, 11, 17, 29, 37, 41, 53, 59, 67,

and 71. Based on equation (11), select any two good prime

numbers as P and Q, where 𝑃 ∗ 𝑄 = 𝐻, 𝑃 ≠ 𝑄,𝑃 ∈ 𝑍𝑘,

and 𝑄 ∈ 𝑍𝑘. The product of 𝑷 and 𝑸 results in 𝑯 which

serves as the seed value for the Linear Congruential

Generator in the next stage of the key generation.

3.1.2 Apply linear congruential generator

(LCG)

LCG is used to generate random numbers which are

computed using a sporadic equation [12]. The formula in

equation (12) is used to generate the sequence of numbers

between 𝑉1, 𝑉2, … . . 𝑎𝑛𝑑 0, 𝑚 − 1 based on the condition

that;

 𝒎 > 𝟎,𝒂 < 𝒎,𝒄 < 𝒎, 𝑿𝒊 < 𝒎

𝑿𝒊+𝟏 = (𝒂 𝑿𝒊 + 𝑪)𝒎𝒐𝒅 𝒎 … … … … …(12)

In equation (12), 𝒂 is a multiplier, 𝒄 is an increment,

m is the modulus and 𝑋𝑖 is the seed value (𝑯). The

resultant of 𝑷 and 𝑸 is the seed value in equation (12)

which is used to generate a hundred thousand random

numbers. Twelve numbers are selected at random which

serve as the seed numbers for the Fixed Sliding Window

Algorithm (FSWA) to generate four numbers as 𝒔𝒊, 𝒔𝒋,

𝒔𝒌, and 𝒔𝒍 for the encryption of the plaintext in equation

21.

3.1.3 Apply fixed sliding window algorithm

(FSWA)

In identifying the range of numbers in an array the Fixed

Sliding Window is applied. This helps to reduce the

number of loops in a nested loop aiming at reducing time

complexity from 𝑂 (𝑛2) to 𝑂 (𝑛). The main objective of

the Fixed Sliding Window algorithm is to generate the

96 Informatica 46 (2022) 91–104 J. K. Dawson et al.

greatest and minor numbers resulting from a continued

range based on any given array [20].

Figure 4. Sliding window with 12 array length

Figure 5. Sliding window with 3 sub-array length

The Fixed Sliding Window algorithm is applied to the

array using equations 13, 14, 15, and 16. This is used to

generate four numbers (𝑎𝑦 , 𝑎𝑦1, 𝑎𝑦2, 𝑎𝑦3,) using

(𝑛(𝑎[𝑖]))/3 based on the twelve arrays depicted in

Figures 4 and, 5.

𝑎𝑦 = 𝑎𝑖 + 𝑎𝑖+1 + 𝑎𝑖+2 … … … …(13)

𝑎𝑦1 = 𝑎𝑖+3 + 𝑎𝑖+4 + 𝑎𝑖+5 … … …(14)

𝑎𝑦2 = 𝑎𝑖+6 + 𝑎𝑖+7 + 𝑎𝑖+8 … … ….(15)

𝑎𝑦3 = 𝑎𝑖+9 + 𝑎𝑖+10 + 𝑎𝑖+11 … … … ..(16)

The four arrays are computed using equations 17, 18,

19, and 20. Where 𝒔𝒊, 𝒔𝒋, 𝒔𝒌, and 𝒔𝒍 are the list of arrays

after applying the Fixed Sliding Window Algorithm on

the 12 arrays generated.

𝒔𝒊 = ∑ 𝒂𝒚𝒏

𝟐

𝒏=𝟎

… … … … … … … … (17)

𝒔𝒋 = ∑ 𝒂𝒚𝒏

𝟓

𝒏=𝟑

… … … … … … … … . (18)

𝒔𝒌 = ∑ 𝒂𝒚𝒏

𝟖

𝒏=𝟔

… … … … … … … … . (19)

𝒔𝒍 = ∑ 𝒂𝒚𝒏

𝟏𝟏

𝒏=𝟗

… … … … … … … … . . (20)

3.1.4 Encryption

This is the conversion of plaintext into ciphertext. To

encrypt a message 𝑴, the ciphertext is computed using

equation 21.

𝐶𝐼 = 𝑀𝑡 + 𝑠𝑖 ∗ 𝑠𝑗 + 𝑠𝑘 ∗ 𝑠𝑙 … … … (21)

Such that 𝑝𝑘,𝑚 ∈ [0, 𝑝 − 1). Where 𝑠𝒊 is the noise

(initial value from the fixed sliding window), 𝒔𝒋 second

value, 𝒔𝒌 the third value, 𝒔𝒍 fourth value, and, 𝑴 is the

message.

3.1.5 Addition homomorphism

This operation is performed on the ciphertext to

authenticate its similarity with the plaintext. This allows

for the modification of documents without an idea of the

plaintext by applying equation 22 where Cn the storage

location and CI is the subsequent addition of ciphertext

values.

 Cn+= CI … … … … … … … … … … … … (22)

3.1.6 Decryption

The encrypted data is converted to plaintext by

applying equation 23 to the ciphertext. Where 𝑴 is the

plaintext, 𝑪 is the ciphertext, and 𝒔𝒌 is the third value

generated from the application of the Sliding Window

Algorithm in equation 23.

𝑀 = 𝐶𝑛 𝑚𝑜𝑑 𝑠𝑘 … … … … … … … … …. (23)

3.1.7 Multiplication homomorphism

An additional computation can be performed on the

ciphertext using multiplication operators to confirm its

similarity with the plaintext by the application of equation

24.

Ct ∗= Ci … … … … … … . … … … … … … (24)

The framework for the proposed algorithm is shown in

figure 2 and presented in algorithm1.

4 Experimental analysis, results,

and discussion

4.1 Experimental analysis

The implementation of the proposed algorithm to

ensure privacy, and confidentiality of cloud data dubbed

Enhanced Homomorphism Scheme (EHS) is presented in

this section. In this proposed algorithm, a Fixed Sliding

 Ensuring Privacy and Confidentiality of Data on the Cloud… Informatica 46 (2022) 91–104 97

Window Algorithm (FSWA) is applied to the twelve

arrayed numbers generated using the seed value from the

Good Prime numbers on Linear Congruential Generator

(LCG) to obtain four sequential numbers 𝑆𝑖 , 𝑆𝑗 , 𝑆𝑘 , and

𝑆𝑙 as indicated in figure 2 and algorithm 1. The random

generation of the resultant values from equations 17, 18,

19, and 20 makes the proposed algorithm unpredictable

and again serves as the security basis of this algorithm.

The plaintext is encoded by computing the product of the

first value 𝑆𝑖 by the third 𝑆𝑘 value and added to the ASCII

value of the alphabet in the message. The snippet of the

codes for the encryption, decryption, addition and

multiplication properties in the homomorphism algorithm

is shown in Figures 6 and 7. This is then added to the

product of the second value 𝑆𝑘 and the fourth value 𝑆𝑙 to

obtain the ciphertext using equation 21. An addition

homomorphism operation is performed on the ciphertext

to confirm their similarity with the plaintext by using

equation 22. A multiplication homomorphism is again

performed on the ciphertext to confirm its similarity with

the plaintext by using equation 24. The snippet for the

generation of the keys for the proposed EHS algorithm by

the integration of Good Prime numbers (GPN), Linear

Congruential Generator, and Fixed Sliding Window

Algorithm (FSWA) are shown in Figures 6 and 7.

Figure 6: Snippet for the generation of the keys for the

proposed EHS algorithm.

Figure 7: Snippet of the codes for the encryption,

decryption, addition, and multiplication properties in the

homomorphism algorithm.

4.2 Environment and data for the

experiment

The simulation of the proposed EHS algorithm was

conducted on an i7 Lenovo computer with a processor

speed of 2.10GHz using a C# language. Predesigned Data

sizes of 2𝑛(𝑛 ∈ 2,3,5) using the Kaggle dataset [30] to

evaluate the average execution times for EHS. A

simulation interface is depicted in Figures 8 and 9. A

dataset size of 2kb was taken from the Kaggle database

and a simulation was performed using the Enhanced

Homomorphism Scheme (EHS). The encryption time

was 12ms and 61ms for the decryption time. The data to

be transmitted is encrypted from the client’s computer to

the cloud service provider. The cloud service provider

has no idea of the content of the data. The decryption of

the content happens only when the cloud client request

for retrieval of data as depicted in figure 10.

Figure 8: A 2kb dataset from Kaggle for simulation.

98 Informatica 46 (2022) 91–104 J. K. Dawson

Figure 9: Encryption and Decryption times for a 2kb

Kaggle dataset for proposed EHS.

4.3 Results and discussion

The proposed algorithm was tested for the uniqueness of

ciphertext, Homomorphism test property, and the

encryption and decryption time for data sizes of

2𝑛(𝑛 ∈ 2,3,5).

4.3.1 Uniqueness of ciphertext test

The uniqueness of ciphertext is the encoded message

produced by an algorithm. A different encoded message

is produced anytime the same message is encoded using

different secret keys. To prove the accuracy of the

algorithm the same plaintext should produce different

ciphertext anytime the algorithm is executed. As a result,

in attempting to control the security challenge in the

cloud, anytime data is encrypted, a different encoded text

should be produced anytime the algorithm is run. The aim

of ensuring data confidentiality and privacy is attained.

Compared with all encryption schemes, EHS generates

exclusive encoded text for each string of plaintext as

shown in Table 2.

Table 2: Uniqueness of ciphertext test

NO MESSAGE ENCODED TEXT DECRYPTED

TEXT

EVALUATION

1 CD 10893459098602660107 CD YES

2 CD 196048421532347120159743969974510 CD YES

3 GH 2857582766089353527 GH YES

4 55 12306163028248793884 55 YES

4.3.2 Homomorphic algorithm testing

property

Full homomorphism algorithms are distinguished from

somewhat and partial homomorphism algorithms

because of their ability to perform addition and

multiplication operations on ciphertext to obtain another

ciphertext without an idea of the plaintext. EHS

algorithm supports addition and multiplication

operations. Assuming there are 𝑀𝑛, 𝑎𝑛𝑑 𝑀𝑘 plaintext.

When the messages 𝑀𝑛, 𝑎𝑛𝑑 𝑀𝑘 are encrypted using

the formula;

 CI = Mt + si ∗ sj + sk ∗ sl,

results in a ciphertext. An addition operation of 𝑀𝑛,

𝑎𝑛𝑑 𝑀𝑘 using the equation 𝐶𝑛+= 𝐶𝐼 should result in

another ciphertext. Decrypting the ciphertext using the

equation Mn = Cn mod sk results in another ciphertext

which is equivalent to adding 𝑀𝑛, 𝑎𝑛𝑑 𝑀𝑘 as shown in

table 3. In multiplicative homomorphism, 𝑀𝑛 , 𝑎𝑛𝑑 𝑀𝑘

are encrypted to get ciphertext by applying the formula;

 𝐶𝐼 = 𝑀𝑡 + 𝑠𝑖 ∗ 𝑠𝑗 + 𝑠𝑘 ∗ 𝑠𝑙 .

If the ciphertext is decrypted using the

equation Mn = Cn mod sk, the plaintext is produced

Ensuring Privacy and Confidentiality of Data on the Cloud… Informatica 46 (2022) 91–104 99

Figure 10: Pictorial view of simulated data

representation in cloud using

homomorphism.

which is equivalent to the product of the plaintext using

the equation 𝑪𝒕 ∗= 𝑪𝒊 as indicated in Table 3.

4.3.3 Encryption and decryption times for

data sizes of 𝟐𝒏(𝒏 ∈ 𝟐, 𝟑, 𝟓).

Encryption and decryption time explain the conversion of

plaintext into ciphertext and the reversal of ciphertext to

plaintext. An algorithm with the fastest encryption and

decryption time is considered an efficient algorithm [32],

and [33]. A comparison of the execution time was

conducted with New Fully Homomorphism Scheme

(NFHS) [37], Enhanced Homomorphism Encryption

Scheme (EHES) [7], Loyka, et al. 2018 [26], and the

proposed Enhance Homomorphism Scheme (EHS). The

algorithm is executed thirty times using different data

sizes and their respective averages and standard errors

computed. The comparison analysis of the runtime for

encryption and decryption was performed based on data

sizes of 2𝑛(𝑛 ∈ 2,3,4,5) using a dataset from Kaggle [30]

and the output is indicated in Tables 4 and 5.

From Table 4, with 4kb data, NFHE had the lowest

encryption time compared with EHES and the proposed

algorithm Enhance Homomorphism Scheme (EHS). On

the other hand, when the data size was increased to 24kb,

the proposed algorithm had the lowest encryption time of

376.7778 ± 77.37333 followed by NFHE and EHES

having the highest encryption time indicating a 52.55%

decrease in execution time. From table 5, EHES had the

highest decryption time of 653ms, followed by NFHE of

594ms with the proposed EHS algorithm having the

lowest decryption time of 503.2222 ± 83.59256 when a

data size of 4kb was used. On the other hand, with a data

size of 32kb, EHES had the highest decryption time of

1274ms with the proposed EHS having the lowest

decryption time of 551.2222 ± 82.68746 indicating a

decryption percentage decrease of 56.73%.

From Table 1, it can be observed that authors [21],

[22], [23], [24], [25], [27], [28], [29], and [38] have their

algorithms producing predictable, high execution and

linear execution time, contrarily, Loyka et al. 2018 [26],

proposed an algorithm, using homomorphism scheme

based on an affine cipher, which produced similar non-

linear results as the proposed Enhanced Homomorphism

Scheme when text only was executed as shown in table 6,

but the encryption and decryption time for numbers only

was linear as shown in Table 7, whiles that of EHS is non-

linear which makes the work of Loyka et al. (2018) to be

defeated by the works of [34], [35], and [36] that

execution time depends on the size of security key used

for the execution process. From, this it can be concluded

that the proposed Enhanced Homomorphism scheme’s

execution time is not dependent on data size but on the

secret key used for the encryption as proposed by authors

[34], [35], and [36].

Table 3: Test property for homomorphism algorithm

Plaintext Mn + Mk Mn * Mk Ciphertext Decryption Evaluation

55 106 2809 23024260351412088 55 YES

CD 135 4556 85034133229062951 CD YES

gh 207 10712 23244261176668167 gh YES

Table 4: Encryption of plaintext based on different data sizes

Plaintext (kb) EHES [37] (ms) NFHE[7] (ms) Proposed EHS (ms)

4 582 493 558.4444 ± 67.30881

8 634 562 501.7778 ± 93.74089

16 720 693 630.8889 ± 109.938

24 794 754 376.7778 ± 77.37333

32 825 797 540.2222 ± 82.48851

Table 5: Decryption of Ciphertext base of different data sizes

The ciphertext

(kb)

EHES [37] (ms) NFHE (7)ms Proposed EHS (ms)

4 653 594 503.2222 ± 83.59256

8 864 782 567.6667 ± 96.38911

16 961 842 433.4444 ± 114.3691

24 1049 985 389.3333 ± 77.40047

32 1274 1167 551.2222 ± 82.68746

100 Informatica 46 (2022) 91–104 J. K. Dawson

Table 6. Encryption and decryption time with text only (Loyka et al 2018) [26]

Data Size Encryption Time Decryption Time

28 3567.829 5117.220

216 3545.013 5121.104

232 3635.781 5069.406

264 3534.376 5084.582

2128 3437.900 5144.918

Table 7. Encryption and decryption time with numbers only (Loyka et al 2018) [26]

No of Digits Encryption Time Decryption Time

1 0.017 0.033

2 0.031 0.037

3 0.036 0.046

4 0.038 0.048

5 Conclusion
The benefits of cloud computing are enormous; hence

much effort should be applied to ensure its utmost

security and sustainability. The most outstanding security

challenge in the cloud due to its wide usage is

confidentiality and privacy. The homomorphic scheme is

considered the best among all the encryption algorithms

used to secure data in the cloud. Somewhat, partial or full

homomorphism allows varying levels of computation to

be performed on encrypted data which is the advantage

of homomorphism. This paper proposes a

homomorphism algorithm dubbed Enhanced Homomo-

rphic Scheme (EHS) with lower execution, non-

deterministic execution time, and non-linear execution

time. The proposed algorithm was tested using a dataset

from Kaggle [30] and a comparison of its execution time

was performed against New Fully Homomorphism

Scheme (NFHS), Loyka et al 2018), and Enhance

Homomorphism Encryption Scheme (EHES). Other

analyses were also conducted such as the ciphertext

uniqueness test, and the homomorphism property test

(addition and multiplication property) were also

conducted. The experiment proved that the proposed

algorithm EHS supports the addition and multiplication

properties applied in a homomorphism scheme. The

proposed algorithm EHS had the lowest encryption time

when a data size of 24kb was executed but with a higher

decryption time of 567.6667 ± 96.38911with a data size

of 8kb. Future work should be conducted on throughput,

CPU, and memory usage.

Acknowledgement
We would like to acknowledge the efforts of the staff of

the Computer Science Department of Kwame Nkrumah

University of Science and Technology and Sunyani

Technical University in making this article fruitful.

References
[1] L. Nguyen-Vu, J. Park, M. Park, and S. Jung

(2016). Privacy enhancement using selective encryption

scheme in data outsourcing, International Journal of

Distributed Sensor Networks, vol. 12, no. 7, p.

155014771665725, DOI: 10.1177/1550147716657255.

[2] T. Wang, H. Ma, Y. Zhou, R. Zhang, and Z. Song

(2021). Fully Accountable Data Sharing for Pay-as-You-Go

Cloud Scenes, IEEE Transactions on Dependable and

Secure Computing, vol. 18, no. 4, pp. 2005-2016, 1 DOI:

10.1109/TDSC.2019.2947579.

[3] M. Xu, A. N. Toosi, and R. Buyya (2021). A Self-

Adaptive Approach for Managing Applications and

Harnessing Renewable Energy for Sustainable Cloud

Computing. IEEE Transactions on Sustainable Computing,

pp. 544-558, DOI: 10.1109/TSUSC.2020.3014943.

[4] H. Zhang, Z. Guo, S. Zhao, and Q. Wen (2021).

Privacy-Preserving Linear Region Search Service. IEEE

Transactions on Services Computing, pp. 207-221, DOI:

10.1109/TSC.2017.2777970.

[5] O. Akinrolabu, S. New and A. Martin (2019).

Assessing the Security Risks of Multicloud SaaS

Applications: A Real-World Case Study. 6th IEEE

International Conference on Cyber Security and Cloud

Computing (CSCloud)/ 2019 5th IEEE International

Conference on Edge Computing and Scalable Cloud

(EdgeCom), pp. 81-88, DOI:

10.1109/CSCloud/EdgeCom.2019.00-14.

[6] G. S. Gaba, G. Kumar, H. Monga, T. -H. Kim, M.

Liyanage, and P. Kumar (2020). Robust and Lightweight

Key Exchange (LKE) Protocol for Industry 4.0. IEEE

Access, pp. 132808-132824, DOI:

10.1109/ACCESS.2020.3010302.

[7] Z. H. Mahmood and M. K. Ibrahem (2018). New

Fully Homomorphic Encryption Scheme Based on

Multistage Partial Homomorphic Encryption Applied in

Cloud Computing. 2018 1st Annual International

Ensuring Privacy and Confidentiality of Data on the Cloud… Informatica 46 (2022) 91–104 101

Conference on Information and Sciences (AiCIS), pp.182-

186, DOI: 10.1109/AiCIS.2018.00043.

[8] P. Chaudhary, R. Gupta, A. Singh, and P.

Majumder (2019). Analysis and Comparison of Various

Fully Homomorphic Encryption Techniques. 2019

International Conference on Computing, Power and

Communication Technologies (GUCON), pp. 58-62.

[9] T. Shen, F. Wang, K. Chen, K. Wang, and B. Li

(2019). Efficient Leveled (Multi) Identity-Based Fully

Homomorphic Encryption Schemes, IEEE Access, pp.

79299-79310, DOI: 10.1109/ACCESS.2019.2922685.

[10] P. Zhang, X. Sun, T. Wang, S. Gu, J. Yu, and W.

Xie (2016). An accelerated fully homomorphic encryption

scheme over the integers, 2016 4th International Conference

on Cloud Computing and Intelligence Systems (CCIS), pp.

419-423, DOI: 10.1109/CCIS.2016.7790295.

[11] J. Kim and A. Yun (2021). Secure Fully

Homomorphic Authenticated Encryption, IEEE Access, pp.

107279-107297, DOI: 10.1109/ACCESS.2021.3100852.

[12] H. Shihab and S. Makki (2018). Design of fully

homomorphic encryption by prime modular operation.

Telfor Journal, vol. 10, pp. 118–122, DOI:

10.5937/telfor1802118s.

[13] A. M. Abukari, E. K. Bankas, and M. M. Iddrisu

(2021). A Hybrid of two Homomorphic Encryption Schemes

for Cloud Enterprise Resource Planning (ERP) Data.

International Journal of Computer Applications, pp. 1–7,

DOI: 10.5120/ijca2021921789.

[14] D. Gaidhani (2017). A Survey Report On

Techniques for Data Confidentiality In Cloud Computing

Using Homomorphic Encryption. International Journal of

Advanced Research in Computer Science, pp. 389–394, DOI:

10.26483/jars. v8i8.4746.

[15] J. Lin, J. Niu, H. Li, and M. Atiquzzaman (2019). A

Secure and Efficient Location-based Service Scheme for

Smart Transportation. Future Generation Computer Systems,

pp. 694–704, DOI: 10.1016/j.future.2017.11.030.

[16] Y. Lu and M. Zhu (2018). Privacy preserving

distributed optimization using homomorphic encryption.

Automatica, pp. 314–325, DOI:

10.1016/j.automatica.2018.07.005.

[17] K. M. M. Aung, H. T. Lee, B. H. M. Tan, and H.

Wang (2019). Fully homomorphic encryption over the

integers for non-binary plaintexts without the sparse subset

sum problem, Theoretical Computer Science, pp. 49–70,

DOI: 10.1016/j.tcs.2018.11.014.

[18] M. Patel, A. M. Patel, and R. B. Gandhi (2020).

Prime numbers and their analysis, Journal of Emerging

Technologies and Innovative Research, pp. 1–5, DOI: ISSN-

2349-5162.

[19] Ankur, Divyanjali and T. Bhardwaj (2015). A

dissection of pseudorandom number generators, 2015 2nd

International Conference on Signal Processing and

Integrated Networks (SPIN), pp. 318-323, DOI:

10.1109/SPIN.2015.7095369.

[20] Y. Li, H.-L. Wei, Stephen. A. Billings, and P. G.

Sarrigiannis (2015). Identification of nonlinear time-varying

systems using an online sliding-window and common model

structure selection (CMSS) approach with applications to

EEG, International Journal of Systems Science, pp.2671–

2681, DOI: 10.1080/00207721.2015.1014448.

[21] S. Q. Ren, B. H. M. Tan, S. Sundaram, T. Wang

and K. M. M. Aung (2014). Homomorphic exclusive-or

operation enhances secure searching on cloud storage, 2014

IEEE 6th International Conference on Cloud Computing

Technology and Science, pp. 989-994, DOI:

10.1109/CloudCom.2014.86.

[22] N. A. Agwa, T. Kobayashi, C. Sugimoto and R.

Kohno (2020). Security of Patient’s Privacy in E-Health

using Secret Sharing and Homomorphism Encryption

Scheme, 2020 35th International Technical Conference on

Circuits/Systems, Computers and Communications (ITC-

CSCC), pp. 155-160.

[23] C.-C. Chang and C.-T. Li (2019). Algebraic secret

sharing using privacy home-based health care IoT-based

health care systems, Mathematical Biosciences and

Engineering, pp. 3367–3381, 2019, DOI:

10.3934/mbe.2019168.

[24] W. A. Alberto Torres, N. Bhattacharjee, and B.

Srinivasan (2015). Privacy-preserving biometrics

authentication systems using fully homomorphic

encryption, International Journal of Pervasive Computing

and Communications, pp. 151–168, DOI: 10.1108/ijpcc-02-

2015-0012.

[25] S. Hong, J. H. Park, W. Cho, H. Choe, and J. H.

Cheon (2022). Secure tumor classification by shallow neural

network using homomorphic encryption, BMC Genomics,

DOI: 10.1186/s12864-022-08469-w.

[26] K. Loyka, H. Zhou, and S. P. Khatri (2018). A

Homomorphic Encryption Scheme Based on Affine

Transforms, Proceedings of 2018 on Great Lakes

Symposium on VLSI, DOI: 10.1145/3194554.3194585.

[27] Y. Aono, T. Hayashi, L. Trieu Phong, and L. Wang

(2017). Efficient Key-Rotatable and Security-Updatable

Homomorphic Encryption, Proceedings of the Fifth ACM

International Workshop on Security in Cloud Computing,

DOI: 10.1145/3055259.3055260.

[28] A. Gazizullina (2018). Fully homomorphic

encryption scheme for secure computation, Conference

Companion of the 2nd International Conference on Art,

Science, and Engineering of Programming, DOI:

10.1145/3191697.3213794.

[29] X. Yang, S. Zheng, T. Zhou, Y. Liu and X. Che

(2022). Optimized re-linearization algorithm of the multikey

homomorphic encryption scheme," in Tsinghua Science and

Technology, pp. 642-652, DOI:

10.26599/TST.2021.9010047.

[30] English to French translations,

https://www.kaggle.com/datasets/digvijayyadav/frenchengli

sh/metadata.

102 Informatica 46 (2022) 91–104 J. K. Dawson

[31] H. Shihab and S. Makki (2018). Design of fully

homomorphic encryption by prime modular operation, Telfor

Journal, pp. 118–122, 2018, DOI: 10.5937/telfor1802118s.

[32] M. U. Sana, Z. Li, F. Javaid, H. B. Liaqat and M. U.

Ali (2021). Enhanced Security in Cloud Computing Using

Neural Network and Encryption, IEEE Access, pp. 145785-

145799, DOI: 10.1109/ACCESS.2021.3122938.

[33] M. Hong, P. Wang, and W. Zhao (2016).

Homomorphic Encryption Scheme Based on Elliptic Curve

Cryptography for Privacy Protection of Cloud Computing,

2016 IEEE 2nd International Conference on Big Data

Security on Cloud (BigDataSecurity), IEEE International

Conference on High Performance and Smart Computing

(HPSC), and IEEE International Conference on Intelligent

Data and Security (IDS), pp. 152-157, DOI:

10.1109/BigDataSecurity-HPSC-IDS.2016.51.

[34] M. A. Mohamed, A. Y. Tuama, M. Makhtar, M. K.

Awang, and M. Mamat (2016). The Effect of RSA

Exponential Key Growth on the Multi-Core Computational

Resource, American Journal of Engineering and Applied

Sciences, pp. 1054–1061, DOI:

10.3844/ajeassp.2016.1054.1061.

[35] S. S. Hamad and A. M. Sagheer (2018). Fully

Homomorphic Encryption based on Euler’s Theorem,

Journal of Information Security Research, p. 83, DOI:

10.6025/jisr/2018/9/3/83-95.

[36] O. C. Abikoye, A. D. Haruna, A. Abubakar, N. O.

Akande, and E. O. Asani (2019). Modified Advanced

Encryption Standard Algorithm for Information Security,

Symmetry, pp. 1484, DOI: 10.3390/sym11121484.

[37] K. El Makkaoui, A. Ezzati, and A. B. Hssane

(2015). Challenges of using homomorphic encryption to

secure cloud computing, 2015 International Conference on

Cloud Technologies and Applications (CloudTech), pp. 1-7,

DOI: 10.1109/CloudTech.2015.7337011.

 [38] Mohammed, M. A., Garcia-Zapirain, B., Nedoma,

J., Martinek, R., Tiwari, P., and Kumar, N. (2022). Fully

Homomorphic Enabled Secure Task Offloading and

Scheduling System for Transport Applications. IEEE

Transactions on Vehicular Technology.

 10.1109/tvt.2022.3190490.

[39] M. Chai (2022). Design of Rural Human Resource

Management Platform Integrating IoT and Cloud

Computing, Computational Intelligence and Neuroscience,

vol. pp. 1-9, DOI: 10.1155/2022/4133048.

Ensuring Privacy and Confidentiality of Data on the Cloud… Informatica 46 (2022) 91–104 103

104 Informatica 46 (2022) 91–104 J. K. Dawson

