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The paper presents a hierarchical object recognition system for document processing. It is based on a 
spatial tree structure representation and Bayesian framework. The image components are built up from 
lower level image components stored in a library. The tree representations of the objects are assembled 
from these components. A probabilistic framework is used in order to get robust behaviour. The method 
is able to convert general circuit diagrams to their components and store them in a hierarchical data-
structure. The paper presents simulation for extracting the components of sample circuit diagrams. 
Povzetek: Predstavljen je sistem za prepoznavanje objektov pri obdelavi dokumentov. 

1   Introduction 
 
Optical technology has gone through significant 
development during the past few years. Still enormous 
quantities of documents are in printed form, making them 
difficult to store and access. Automatic document 
processing should be able to provide a solution. The 
documents should be digitalized, their information 
extracted and stored in a format that retains this 
structured information. Several good solutions exist for 
document processing and analysis, but their efforts are 
mainly focused on character registration tasks. This 
paper tries to find a solution for a special document 
processing application, interpreting circuit diagrams. 
Many old blue-prints of electrical equipment are sitting 
on shelves. Converting them to a meaningful digital 
representation would make it possible to search and 
retrieve them by content.  
 In this paper we present a method to convert general 
circuit diagrams to their components and store them in a 
hierarchical data-structure. The task of an object 
recognition system is to represent images by a set of 
image bases.  In this research a hierarchical structure of 
bases is selected in order to be able to represent the 
complexities of the circuits.  
 Circuit reconstruction has to be performed at several 
levels. At the lowest level the image pixels are processed 
and low level image objects, edges, lines and arcs are 
extracted. At the middle level the basic circuit 
components are constructed from these elements. At the 
highest level the electrical connections of the 
components are interpreted. This paper deals mainly with 
the middle part. Many papers investigate low level image 
processing algorithms; for example Heath [19] provides a 
good comparison of the most frequently used edge 
detecting methods. Rosin [21] investigates ellipsis fitting 

and also compares some of the methods. Arc extraction 
is also well treated in the literature [24]. At the high end 
the electrical interpretation is highly application 
dependent and it is not treated here.   
 In image processing the selection of data structure is 
important and open question. Generally the structural 
relationships of the object components can be captured 
by graphs [7].  In many vision applications, however, 
simpler data structure is sufficient to represent the image 
components. In this research tree structure is used. Tree 
structures are widely applied for image processing tasks. 
In many cases the object recognition is treated as a tree 
isomorphism problem [13], [14]. In tree isomorphism the 
tree of the object is created and compared against a 
library tree. In our research a different approach is used: 
the tree is identified by an adaptive process and only 
those image components are processed that are necessary 
for growing the tree.  
 For robust image and document processing systems a 
probabilistic approach is desirable. Since the appearance 
of objects varies on different images, a probabilistic 
model is capable of representing this variation. Another 
reason for using probabilistic description is to quantify 
the knowledge that is collected about an object during the 
object recognition. This is the belief interpretation of 
probability. Bayesian network provides a solution for 
these problems and it is used for the implementation 
because it provides a probabilistic representation, a data 
structure to store the extracted information and also an 
inference algorithm. The other significant advantage of 
the network representation is that the operating code and 
the data are completely separated. Many methods are 
based on probabilistic trees. Perl presented a tree based 
belief network inference with linear complexity [11]. 
Dynamic tree structures are gaining popularity, because 
of their better object representation capabilities [1], [16]. 
Markov random field models present good solutions for 
low level image processing applications [12], but they 
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lack the hierarchical object representation capabilities. In 
the next section the related literature is overviewed in 
more detail. The extracted information consists of two 
components the library that contains the image bases and 
the coding of the input circuit diagram. In order to be 
able to encode images the system has to go through a two 
phase learning process. First the image bases of the 
library and then the network parameters are learned. In 
section 3 a few issues related to image coding are 
investigated. Section 4 treats the theoretical background 
that is used for creating the document processing system. 
Bayesian network, network parameter learning and the 
visual vocabulary creation is investigated here. Section 5 
shows how network inference can be implemented for 
circuit diagram extraction. It also presents a simulation 
for extracting the components of sample circuit 
diagrams. Section 6 explores the possibility of using the 
presented method for integrated document processing. 
Finally the last section concludes the paper by raising 
some issues to extend the method for other applications. 

2   Related Work  
Document image processing generally is performed at 
several levels. The first step is separating the input image 
into coherent areas of image types. The typical image 
types are text, drawing and picture. The second step is 
extracting the low level image elements. For drawing 
interpretation that means vectorization of the image to 
lines, circles, curves, and bars. At the third step the 
image components are interpreted and grouped together 
to form higher level objects.  
 Page layout segmentation is well treated in the 
literature. Haralick [33] provides a survey of the early 
page segmentation methods. These works are mainly 
bottom-up or top-down algorithms. O'Gorman [3]   
presents page layout analysis based on bottom-up, 
nearest-neighbour clustering of page components. Nagy 
et al. [35] use a top-down approach that combines 
structural segmentation and functional labelling. 
Horizontal and vertical projection profiles are used to 
split the document into successively smaller rectangular 
blocks. Neural networks [36] can also be used for 
separating the different areas of an image.  
 Several methods were suggested for extracting the 
basic drawing elements. The thinning-based methods 
[37] use some iterative erosion approach to peel off 
boundary pixels until a one-pixel wide skeleton is left. 
The skeleton pixels are then connected by line segments 
to form point chains. The disadvantage of the method is 
that line thickness information is lost. Pixel tracking 
methods [32] track line area by adding new pixels. For 
vectorization any low level image processing algorithm 
can be used [19], [21], however they do not provide a 
general framework for processing all kinds of drawing 
elements. Deformable models are also frequently used 
tools for line detection. Song [31] suggests an integrated 
system for segmentation and modelling in his OOPSV 
(Object-Oriented Progressive - Simplification - Based 
Vectorization System) system. General curves can be 
detected also by optimization. Genetic optimization is 

used in [40]. This work also provides an overview of the 
different curve detecting methods. 
 Part based structural description has a long history. 
Several systems have been created for general object 
recognition that used structural information to represent 
objects: VISION (Hanson, Riseman, 1978), SIGMA 
(Hwang at al., 1986) , SPAM (McKeon at al., 1985), 
ACRONYM (Brooks, Binford, 1981), SCHEMA (Draper 
et al., 1989). These systems, their successes and failures 
are investigated by Draper [34]. He writes, "knowledge-
directed vision systems typically failed for two reasons. 
The first is that the low- and mid-level vision procedures 
that were relied upon to perform the basic tasks of vision 
were too immature at the time to support the ambitious 
interpretation goals of these systems. The other 
impediment was that the control problem for vision 
procedures was never properly addressed as an 
independent problem ".   
 Okazaki at al. proposes a method for processing 
VLSI-CAD data input [38]. It is implemented for digital 
circuitry where the components are mainly loop-
structured symbols. Symbol identification is achieved by 
a hybrid method, which uses heuristics to mediate 
between template matching and feature extraction. The 
entire symbol recognition process is carried out under a 
decision-tree control strategy. Siddiqi at al. present a 
Bayesian inference for part based representation [40]. 
The object subcomponents are represented by fourth 
order polynomials. The recognition is based on 
geometric invariants, but it does not provide a data-
structure for representing the components. A similar 
approach to our research was taken by Cho and Kim 
[41].  They modelled strokes and their relationships for 
on-line handwriting recognition. Their system also used 
Bayesian networks for inference, but only for fixed 
models. They also assumed Gaussian distributions which 
can not be applied for circuit diagram analysis. 

3   Image Representation  
An image is modelled by a set of iξ  image bases  

( )( ) ( )i i
i

I x h xξ= ∑  .                        (1) 

The selection of ih  functions determines the model type. 
In case of scalar values, for example, a linear model is 
resulted. That is the case of many wavelet or filter type 
implementations. In this research the function represents 
a spatial transformation, i.e. scaling, rotation and 
displacement. The image bases are called by alternative 
names in the literature: features, image components and 
visual vocabulary. In this article we use several of them 
in different settings, but we mean the same thing. A 
critical issue is how many of these image bases are 
necessary to represent the image. The examination of the 
redundancy in the human visual system helps to answer 
this question. In the retina and LGN significant 
redundancy reduction occurs (approximately 100:1). On 
the other hand neurobiological investigation showed that 
the human visual cortex at some point increases the 
redundancy of the image representation [20]. Olshausen 
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argues that this increase can be explained and modelled 
by an overcomplete basis set and sparse coding [26],[27]. 
In a sparse coding representation only a few bases are 
used to represent a given image, the contribution of the 
others are set to zero. In computerized image processing 
systems at the lowest level the image is represented by 
pixel bases. This representation is highly redundant. 
Some redundancy is needed to achieve robust 
representation in case where the image is corrupted with 
noise. In this work we try to select an overcomplete basis 
set. Olshausen's work considers only a flat structure; the 
image bases are localized wavelet type structures. In this 
research hierarchical structures of bases are used, thus 
sparsness and overcompleteness has slightly different 
interpretation. Not only the horizontal but the vertical 
distributions of the bases are important. We investigate 
this in a little more detail in section 5.  

4   Network Representation 
 
Bayesian networks are well suited for image processing 
applications because they can handle incomplete 
knowledge. Bayes network is used for our research 
because of the following advantages: 

- provides probabilistic representation 
- provides a hierarchical data structure 
- provides an inference algorithm 
- separates the operating code from the data 

representation 
- it is capable of processing both predictive ad 

diagnostic evidence 
- provides and inhibiting mechanism that decreases 

the probabilities of the not used image bases 
Bayesian network representation definition includes the 
following steps: 

1. Selecting the data representation for the nodes. 
The data representation can be continuous or 
discrete. In the latter case the definition of the 
number of possible states is necessary.  

2. Encoding the dependences with the conditional 
probabilities ( | )p y x . This applies a x y→  
network connection, where ,x y  are two nodes 
of the network. This dependency quantifies the 
casual relationships of the nodes and also defines 
the network connections.   

3. Constructing a prior probability distribution, 
( )p x . This distribution describes the 

background knowledge.   
Based on the network definition various inference 
problems can be solved. The main advantage of the 
Bayesian framework is that both predictive and 
diagnostic evidence can be included. The predictive 
evidence +e  provides high level hypothesis support and 
it propagates downward in the network. The diagnostic 
evidence −e  is the actually observed event and it 
provides an upward information flow. This message 
propagation can be applied to casual polytrees or singly 
connected networks that is networks with no loops. This 

bidirectional flow provides the inference of the network. 
It can be calculated by the Pearl's message passing 
algorithm [8].  The predictive and diagnostic evidence is 
separated and the propagation of their effect is described 
by two variables, the λ  and π  messages, 

( ) ( | )

( ) ( | )

x p x

x p x

λ

π

=

=

-

+

e

e
 .                              (2) 

The probability of the node given the evidence is 
calculated from these messages based on the Bayes rule. 

( | , ) ( | , ) ( | )

( | ) ( | ) ( ) ( )

p x p x p x

p x p x x x

α

α αλ π

=

= =

+ - - + +

- +

e e e e e

e e
 ,          (3) 

where α is a normalizing constant. The propagation from 
one node to the other is controlled by the conditional 
probability ( | )p y x . In case of trees the messages are 
calculated by the following propagation rules: 

 ( ) ( )
jY

j
x xλ λ=∏                                  (4) 

( ) ( | ) ( )X
u

x p x u uπ π= ∑  

( ) ( ) ( | )X
x

u x p x uλ λ= ∑ .                               

 
( ) ( ) ( )

j kY Y
k j

x x xπ απ λ
≠

= ∏  

A node receives messages from all of its child nodes and 
sends a message to its parent (Figure 1).  
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( )Z xπ( )Y xλ

( )Y xπ

 
Figure 1:  Message passing 

 
This local updating can be performed recursively. Every 
node has a probability value that quantifies the belief of 
the corresponding object. The objects with high belief 
values are identified as the real objects of the image.  

4.1   Node Description 
How to assign the physical meaning to the nodes is a 
crucial issue. Here, we define the node value to identify 
the image bases. If the library contains L bases or image 
features, then the nodes can take the value of 1,2,..,L. The 
model also introduces a belief or probability value at 
each node. This value determines the probability that the 
given image feature describes the image based on the 
evidence or knowledge. The value of the node has 
multinomial probability distribution with L-1 possible 
states  

1 2 1( , ,..., | )Kp l l l − e , 
where il  is the library reference or index to the iξ image 
base. As more evidence enters the network the node 
probabilities are recalculated. The features with high 
belief values are identified as the real components of the 
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image. This provides a robust description, since it is not 
necessary to achieve exact match for the identification.  
 Since objects are position dependent, their description 
should be position dependent also. That means that to 
describe an object by image bases they have to be 
transferred to the position of the object. In this work the 
image base transformation includes displacement, 
rotation and scaling.  The objects have hierarchical 
structure. Every feature or image element is described by 
the combination of other transferred image elements. In 
other words, an image feature is represented by lower 
level image bases 

 
1

( ( ), )
n

j i i i
i

Tξ ξ
=

= ∑ a r ,                          (5) 

T is an operator that performs an orthogonal linear 
transformation on the image bases. The parameters of the 
transformation are stored in the ir parameter vector. The 
image bases may be parameterized by an ia attribute 
vector. Since features belong to parameterized feature 
classes the ia  vector is necessary to identify their 
parameters. This description defines a tree structure. The 
tree is constructed from its nodes and a library. The 
library is a list of common, frequently used image bases. 
Figure 2 illustrates the object tree and the library.   
 

3122421

Library trees

Object tree

2

4

3211

3

1 1 2

 
Figure 2:  Example tree representation  

 
Visual information is inherently spatially ordered, so the 
tree is defined to represent these spatial relationships. 
This transformation has three components, displacement, 
rotation and scaling. The four parameters of the 
transformation of node i are placed in a reference vector  

r r r
i i i is ϕ⎡ ⎤= ⎣ ⎦r x ,      (6) 

where r r r
i i ix y⎡ ⎤= ⎣ ⎦x  is the position of the image 

element in the coordinate system of its parent node, r
is is 

the scaling parameter and r
iϕ  is the rotation angle. With 

the object tree, the object library and the image 
coordinate system the object can be reconstructed. A 
picture element or a feature is represented in its own 
local coordinate system. Since only two-dimensional 
objects are used therefore the scale factor is the same for 
both axes. Each image base is defined in a unit 
coordinate system and stored in the library. When the 
image of an object is reconstructed the image base is 
transformed from the library to a new coordinate system, 
which can be described by the vector; [ ]i i i is ϕ=i x . 
This coordinate system is calculated from the ir  
reference vector of the node and the image coordinate 

system of the parent node, 1i−i . This is a recursive 
reconstruction that iterates through the tree.  
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−
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=
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x x x

            (7) 

With this reconstruction algorithm the tree representation 
of an object can be compared against the image.  

4.2   Network Parameters 
 
The network structure is determined by the ( | )p y x  
conditional probabilities, where ,x y  are nodes of the 
network. Conditionally independent nodes are not 
connected by edge. In order to define the network the 

( | )p y x  parameters have to be calculated. These 
parameters can be assessed based on experimental 
training data. In our case of document processing the 
network is trained on circuit diagrams. Here, it is 
assumed that the image bases of an object description are 
independent. The probability parameters ,i jθ  are learned 
as relative frequencies. It can be shown that the 
distribution of the ,i jθ parameters is a Dirichlet 
distribution [22], [4]. The conditional probabilities of the 
network can be described by 

1 21 1 1
1 2 1 1 2

1

( )( , ,..., ) ...
( )

LN N N
L KL

k
k

np
n

θ θ θ θ θ θ− − −
−

=

Γ
= =

Γ∏
 

1 2 1 1 2( , ,..., ; , ,..., )L LDir n n nθ θ θ −=               (8) 
where kn  is the number of time node k occurs in the 

sample data and 
1

L

k
k

n n
=

= ∑  is the sample size. The ( )xΓ  

function for integer values is the factorial function, 
( ) ( 1)!x xΓ = − . The parameters of the Dirichlet 

distribution correspond to the physical probabilities and 
the relative frequencies, 

( | )i i ip x l θ θ= =                           (9) 

( ) i
i

n
p x l

n
= =  

The other important feature of the Dirichlet distribution 
is that it can be easily updated in case of new data, 

1 2 1

1 2 1 1 1 2 2

( , ,..., | )
( , ,..., ; , ,..., )

K

L L L

Dir
Dir n m n m n m
θ θ θ
θ θ θ

−

−

=
= + + +

d
 

and the probability of the data is 

1

( )( )( )
( ) ( )

L
k k

k k

n mnp
n m n=

Γ +Γ
=
Γ + Γ∏d                (10) 

where m is the sample size of the new data. With this 
updating the Bayesian network encodes the relationships 
contained in the data. This calculation assumes the 
statistical independence of the data. This is a valid 
assumption only if there are no missing data values. If 
data is missing the measurements become correlated and 
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the calculation is much more complicated. In that case 
the application of approximating methods is necessary 
[5]. The ( )p x   prior probability is estimated also from 
the data. 

4.3   Creating Visual Vocabulary  
 
The image or document is described by the visual 
vocabulary. The visual vocabulary consists of a 
hierarchical structure of image bases. The creation of the 
image bases is a fundamental part of the image 
processing system. The image base library can be created 
several ways: created by human input, learned by a 
supervised method and created by an automatic process. 
We have researched all of the methods.  

4.3.1   Manual Coding   
With a good user interface manual object definition can 
be a helpful tool, especially in the early stages of the 
library development process. In this research low level 
image processing is not performed, therefore the most 
basic building blocks such as lines, circles, arcs are 
programmed directly into the code. In a general object 
recognition system these features should be the results of 
a lower level image processing algorithms. 

4.3.2   Supervised Learning 
The image bases can be acquired by human supervision 
by the following way. The image of a base is created. 
The object recognition algorithm identifies those 
components of the image, which are already in the 
library. The spatial relationships of these components are 
calculated and the object tree is created. This tree with 
additional user supplied information can be placed into 
the library. By performing this process sequentially more 
and more complex objects can be taught. If a square, for 
example, is learned as a tree of four lines, then it can be 
used as a new image base for further processing. This 
way the library can be created by a sequence of images. 
Similar approach is used by Agarwal, Awan and Roth for 
creating vocabulary of parts for general object 
recognition task [28].  

4.3.3   Unsupervised Learning 
The library objects can be also learned by an automatic 
process. In this method the objects are identified as the 
repetitive patterns of the image. During the learning 
process a histogram of random groups of image 
components is created. The most frequently occurring 
configurations are identified as objects and placed in the 
library. These library objects can be used as image bases 
in a new recognition step.  
 The image base selection can be improved by the 
application of Gestalt theory, which says that the main 
process of our visual perception is grouping [15]. Objects 
with similar characteristics get grouped and form a new 
higher level object, a Gestalt. Such characteristics are 
proximity, alignment, parallelism and connectedness. 

The Helmholtz principle quantifies this theory [29]. It 
states that objects are grouped if the number of 
occurrences is higher than it would be in a random 
arrangement. As we investigated in section 3 the number 
and the overcompleteness of the basis set is also 
important.  
 The calculation of the structural complexity of the 
different representations helps control the basis set 
selection process. If the number of bases is increased, the 
representation is simpler, but the complexity representing 
the object library will be higher. The structural 
complexity quantifies how complex the objects are. It is 
an important quantity, because during the object 
recognition from the complex pixel representation a 
simplified object representation is gained.  Generally the 
representation of an object by image elements is not 
unique. In order to evaluate the many different 
representations a distance measure definition is necessary 
which quantifies the internal complexity of the objects. 
The structural complexity of an object is the shortest 
possible description of the structural relationships of the 
object. The complexity of a tree representation is defined 
as    

( ) ( )
1

( )
n

T o l l
l

c o c c I
=

= +∑T T                    (11)                    

where ( )oc T  represents the complexity of the object tree 
and lI  is an indicator function. The complexity of an 
object consists of the complexity of the object tree and 
the complexity of the library that is used for the 
representation. The complexity of a tree is defined as the 
number of nodes in the tree:  

( )c n= =T T  
The structural complexity of the object can be defined as 
the minimum of the object tree complexity, 

( )( ) ( )Tc o c o=
T

min                         (12) 

The minimum is calculated on every possible T tree that 
represents the object. This is similar to the MDL 
approach of Rissanen [42]. Generally simpler object 
description should be preferred against more complex 
ones.  For example a rectangle can be described by 
several different ways. It can be described by four lines 
or by two parallel line pair. Figure 3 shows these 
arrangements 

line

1

2

1 1
parallel

lines

111

33

2 2 1
rectangle-1 rectangle-2

Library bases Image objects  
Figure 3:  Different tree representations  

 
The complexity is 7 for rectangle-1 and 6 for rectangle-
2. There is, however, another requirement for the object 
base selection. Because of the complexity of the 
algorithm the number of identical children per node 
should be minimized. All of these criteria should be 
considered when the object library is created.  
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5. Circuit Diagram Processing  
 
The circuit diagram extraction is carried out for computer 
generated circuit diagrams. A sample diagram is shown 
on figure 4. The identification of the image components 
is performed by calculating the probabilities or beliefs of 
the corresponding nodes.  
 

 
Figure 4: A sample circuit drawing 

 
First, the image library is created. The library is created 
from the circuit diagrams to store the frequently 
occurring image components. The image library contains 
the image bases in tree representation along with the 
conditional probabilities and the jr  transformation 
parameter vector. A few components from the library 
which are created from the computer generated circuit 
diagrams are shown on figure 5.  
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1 2 3

4
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line circle arc plus triangle rectangle

9

gnd

4511

11

1 1

opamp

1 111 1111

8

capacitor  
 

Figure 5: Library tree example 
 

The conditional parameters are calculated from the 
sample circuit diagrams. The θ  parameters of the 
Dirichlet distribution are the relative frequencies. In a 
typical Bayesian network the direction of the edge shows 
the casual relationships. In image processing applications 
we can not say whether the object is causing the feature 
or the feature is causing the object; the edges of the tree 
may go in either direction. The direction depends on 
whether we are using a generative or descriptive model 
[25]. Sarkar and Boyer [30] for example in a similar 
work defined the edges in a reverse (upward) direction.  
The effect of edge reverser can be calculated by the 
Bayes rule.  
 In this research the conditional probabilities are 
calculated for both directions. Since the algorithm uses 
upward and downward processing this simplifies the 
calculations. The upward ( x y← ) conditional 
probability can be calculated from the relative 
frequencies. Based on the definition the conditional 
probability is 

/( )( | )
( ) /

x y x y

y y

n n np x yp x y
p y n n n

∩ ∩∩
= = =    (13) 

where yn is the number of times y occurs and x yn ∩  is the 
joint occurrence of x and y. For example for the 
operational amplifier, 

8( | ) 0.0755
106

opamp line

line

n
p opamp line

n
∩= = =  

For the downward ( x y→ ) conditional probability 
calculation the library object definitions are used. Unity 
distribution is assumed on each downward edge of the 
nodes. For example on Figure 5 the edges of the 
operational amplifier (l=11) have equally 1/6 probability. 
In order to perform proper network propagation, the 
Bayes rule should be satisfied. The validity of this unity 
distribution assumption can be demonstrated by the 
following calculations. The Bayes rule is 

( | ) ( )( | )
( )

p x y p yp y x
p x

=     (14) 

The denominator can be calculated by the law of total 
probability 

 
1 1

( ) ( | ) ( )
x x

i i

i

k k
x y y

i i
i i y

n n
p x p x y p y

n n
∩

= =

= =∑ ∑    (15) 

where xk  is the number of children of node x and iy  are 
the child nodes of x.  

1 1

( | )
x x i

i
i

x y y
y y

y x y x y x x x
k k y

x y x x xx x
x y

i i

n n
n n n n n k k

p y x
n n k kn kn

n

∩

∩ ∩

∩
∩

= =

= = = = =
∑∑ ∑

. 

iy
xk  is the number of children of node x with identical 

library index, for which iy
x xk k=∑ . The summation is 

for different library index child nodes. For example 
1triangle

opampk = , 1plus
opampk = , 4line

opampk =  and the conditional 
probabilities ( | ) 1/ 6p plus opamp = , 

( | ) 1/ 6p plus opamp = , ( | ) 4 / 6p line opamp = , which is a 
unity distribution over the edges because there are four 
lines.  
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Figure 6: Upward direction edges with the conditional 

probabilities 
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The downward probabilities can be calculated based on 
the library definition. The upward probabilities are 
calculated from the sample circuit diagram in the 
following steps. At the start of the algorithm no 
probabilities can be calculated, because the joint 
occurrences of the image bases are unknown. First, an 
initial distribution is calculated for the library and the 
circuit diagram is processed. Based on the processed 
circuit, the correct probabilities are calculated. The 
algorithm with the initial probabilities does not perform 
as well as with the correct probabilities, but it is 
sufficient to train the tree. The resulted structure and 
probabilities that are calculated from the sample circuit 
diagram are shown on figure 6. This diagram is slightly 
misleading since there are no loops in the tree, the 
multiple connected nodes are different instantiations of 
an image base. The small circles mark the root nodes. 
They indicate that the image component is not a 
subcomponent of a higher level object. 

5.1 The Algorithm 
The recognition process starts by selecting a new image 
component. This single node tree is expanded by adding 
a structure shown on figure 7. By adding more and more 
nodes the whole image tree is created.  

a c
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Figure 7: The steps of the algorithm 

 
This node expansion is performed in the following steps: 
Step 1: A new image component (a) is selected randomly 
based on the node probability distribution. The selection 
is performed by the roulette-wheel algorithm. In case of 
new node the prior probability is used. 
Step 2: This new evidence starts the belief propagation of 
the network. Based on the conditional probabilities 
several object hypotheses are created (b, upward 
hypothesis). These object hypotheses are described by 
library index and coordinate system of a node. The 
coordinate system of the object hypothesis 

pi pi pi pis ϕ⎡ ⎤= ⎣ ⎦i x  can be calculated by the following 
coordinate transformation: 

cos sin
sin cos

i
pi r

k
r

pi i k

pi pir
pi i k pi

pi pi

s
s

s

s

ϕ ϕ ϕ

ϕ ϕ
ϕ ϕ

=

= −

⎡ ⎤
= − ⎢ ⎥−⎣ ⎦

x x x

   ,        (16) 

where [ ]i i i is ϕ=i x  is the coordinate system of the 

image component and r r r
k k k ks ϕ⎡ ⎤= ⎣ ⎦r x  is the 

reference vector of child node of the library tree.  

Step 3: The object hypothesis with the transformation 
vector can be projected back to the image based on (7). 
This projection creates child hypotheses not only for 
node c, but all of the child nodes of b (for example d). 
Step 4: A search is performed to match this projected 
child node hypotheses. If this object hypothesis matches 
one of the already identified subtrees then they are 
combined.  If no match has been found then a new 
hypothesys are created (downward hypothesis) for the 
child node. If the child hypothesis is one of the lowest 
level image components then it is compared against the 
image, based on a distance measure. This distance 
measure can be, for example, the Euclidean distance. It 
should be defined for every basic image element 
independently; in our case for lines, circles and arcs. The 
results of the child node comparisons are converted to 
probability by an arbitrarily chosen function. 
Step 5: The probability of the child modes propagates 
upward as new evidence. The upward probabilities are 
combined to calculate the probability of root b. 
Step 6: Only the high probability nodes are processed, 
the others are neglected. This is true for both the upward 
and downward object hypotheses. This process creates a 
structure with several root nodes. These root nodes can 
be an input to a next level of recognition step. The root 
nodes are either subcomponents that the algorithm will 
grow further or they are the final solutions.  
 These root nodes are the final solution only for our 
processing. They can be the input to a higher level 
processing in which the electrical connections of the 
circuit diagram are interpreted. Since the number of root 
nodes quantifies the state of the circuit diagram 
processing, it can be used to evaluate the performance of 
the method. The search method is adaptive and local; 
only certain area of the image is processed at a time. This 
is advantageous for images with noise or clutter.   
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Figure 8: Evaluation of the algorithm, by the number of 

root nodes during the recognition  
 
Several simulations have been performed to evaluate the 
method. The algorithm is programmed in Matlab object 
oriented environment. The circuit diagrams processed 
and the components are extracted in a few seconds on a 
regular PC. Figure 8 shows the results of the simulations. 
The processing have been run 20 times and the mean and 
standard deviation of the result is calculated and plotted.  
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5.2 Complexity of the Algorithm 
For a general Bayesian network the worst case 
computational complexity is 2(2 2 )mn l l lk+ + , where n is 
the number of nodes and l is the number of possible 
states of the nodes and mk  is the maximum number of 
children [22]. The complexity calculation in our case is 
different, since it is necessary to calculate also the r  
spatial transformation parameter vector for every node. 
The algorithm proceeds by creating upward and 
downward object hypotheses. The processing of the 
circuit diagram involves identifying the circuit 
components as projected library bases. This identification 
is performed by projections and comparisons; therefore it 
is unavoidable of having a minimum overhead of 
calculations. The algorithm is evaluated by the overhead 
complexity which is calculated from the complexities of 
the failed and successful object hypotheses. The average 
wasted calculation of creating one upward ( ix y← ) 
hypothesis is 

( ) ( )0
1

( ) 1 ( | ) ( | )
i

L
u u y
F y H i ix

i
c y c p x y k I p x yµ

=

= −∑  (17) 

The algorithmic complexity of calculating one upward 
hypothesis is u

Hc . This value is constant for every node 
and it is the sum of the complexity of calculating the 
spatial transformation and the probability updating. 

i

y
xk  

is the number of the child nodes of node ix with the same 
library index as y. For example if y is a line and ix  is an 

opamp then 4line
opampk = ; that is they can be connected four 

different ways. The yµ term is added to account for the 

symmetries of the objects. ( )0 ( | )iI p x y  is an indicator 
function; its value is 0 if  ( | ) 0ip x y =  and 1 otherwise. 
The complexity, due to the sparse coding does not 
depend on the library size. It depends only on u

yL , the 
number of nonzero upward conditional probability values 
of node y. The right hypothesis is found with ( | )ip x y  
probability therefore the wasted effort is proportional to 
1 ( | )ip x y− . The calculation for every hypothesis 
propagates downward. The algorithmic complexity of 
calculating the downward hypothesis for one node is d

Hc . 
This value is constant for every node and it is the sum of 
the complexity of calculating the spatial projection, the 
image base comparison and the probability updating.  
During the downward propagation the projected library 
base is compared against an image element. In case of 
failed hypotheses the result of the comparisons are large 
error term which causes the downward calculations to 
abort. The numbers of these failed node comparisons are 
different for every object, but for the complexity 
estimation an average σ  value is used (its typical value 
is 2-3). The average wasted complexity of a failed object 
hypothesis is  

( ) ( )0
1

( ) 1 ( | ) ( | )
i

L
d u y

F H y H i ix
i

c y c c p x y k I p x yσ µ
=

= −∑ .  (18) 

In case of successful hypothesis all of the predecessor 
nodes of the hypothesis tree will be identified, therefore 
it takes an average 0/n nλ successful node hypotheses to 
identify the full circuit diagram, where 0n is the average 
object size (number of nodes). The λ  constant is 
necessary because the calculation not always starts at the 
lowest level nodes; some of the sub-objects are already 
identified. Its value is between 0 and 1 (it can be set to 
0.5). With the above defined values the average 
complexity overhead can be estimated by 

0

( )o F
nc y c
nλ

= .     (19) 

The Fc  value can be calculated by averaging the ( )Fc y  
values for the tree (for worst case analysis maximum can 
also be used). This is only an approximation of the actual 
complexity, but it can be used to describe the 
dependencies of the parameters. The following 
dependencies can be given for the algorithm: 

- The complexity is linear with the number of 
nodes.  

- The complexity does not depend on the size of the 
library but only on the number of nonzero 
upward conditional probability values. The 
complexity is lower if these probability values 
are concentrated in few high probability entries. 

- The complexity is lower if the average object size 
is higher. 

- The complexity is higher if the objects have 
symmetries.  

- The complexity is higher if a node has several 
child nodes with identical library index (

i

y
xk ). 

The overall complexity can be reduced by reducing the  

i

y
xk  values.  

 By introducing new image basis for the number of 
identical children per node can be decreased. Figure 9 
shows the expanded trees of a few image bases defined 
in the previous section.  
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Figure 9: The number identical children per node is 

reduced by new vertical layer 
 

For example, the number of identical children per node 
for the rectangle is reduced from 4 to 2 by introducing 
another layer. The effect of expanding the library 
vertically is investigated also by simulation. The circuit 
processing is repeated 500 times and a normalized 
histogram of the necessary hypotheses is generated. The 
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mean and the standard deviation are also calculated. 
Figure 10 and table 1 show the results. 
 

 Mean Std 
Original Library 461 149 
Expanded Library 380 95 

 
Table 1: The mean and standard deviation of the 

simulations 
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Figure 10: The histogram of the simulation  

Original library: dotted curve 
Expanded library: continuous curve 

 
The simulation clearly shows the complexity is reduced 
with the new expanded library. That is what we meant in 
section 2 when we argued about horizontal and vertical 
overcompleteness. 

6 Integrated Document Processing 
and Object Recognition  
In practical document analysis applications the 
documents contain different types of image areas: texts, 
drawings and pictures. Figure 10 shows a sample image 
with different types of documents. The presented method 
can be extended to other types of document processing 
tasks also. 
 

  
Figure 10: Sample document for integrated processing 

 
For character and fingerprint recognition the process can 
be performed the same way with different library 
definitions.  The same theoretical background can also be 
applied for general object recognition tasks, but the 
algorithm needs some modifications. The images of the 
tools should be segmented. The individual 
subcomponents should be separated, coded and placed in 
the library (figure 11). The local and adaptive nature of 

the algorithm makes it possible that only a certain portion 
of the image has to be investigated at a time and it is not 
necessary to build up the whole image tree. 
 

  
Figure 11: Image representation by components  

 
The presented algorithm can be applied for integrated 
document processing in two ways. First, a new S node 
can be defined to select among the different processing 
steps. The state of the new node will determine which 
processing task is activated. The state S can be calculated 
by examining the statistical properties of the image areas. 
The image areas are marked for the different S values. 
From the state of node S the probabilities can be 
recalculated for the individual processing tasks. Figure 
12 shows this configuration. 
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Figure 12: Integrated document processing  

 
The second approach would use one large integrated 
library. The document image is processed in a unified 
way and only the image component would determine 
which image bases are used for the identification. Since 
the complexity of the presented method does not depend 
on the library size and the algorithm performs local 
image processing, this would not carry any additional 
burden.  

7   Conclusion and Further Research  
In this paper a method for document image processing is 
introduced. Its theoretical background is investigated and 
a simulation is performed for circuit diagram extraction. 
The simulation on a sample circuit diagram shows that 
the method is capable of extracting the components of a 
circuit diagram and due to the probabilistic nature it 
provides a robust system for document processing. In a 
full Bayesian network the calculation should be 
performed for every possible state of the nodes. In case 
of image processing that would mean enormous storage 
and calculation requirements. For example Adams [1] in 
his Dynamic Tree model calculated the full network, but 
was able to do the processing just for a few nodes. In our 
research the network propagation is performed by 
creating object hypotheses. By terminating the failed 
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hypotheses calculation early, the complexity of the 
algorithm can be reduced significantly. The performance 
of the algorithm can be improved further by 
incorporating more object specific features. For example, 
for circuit diagram processing the examination of the 
connectedness of lines would describe the objects better, 
thus speeding the algorithm up. In this research we 
intentionally tried to avoid putting any object specific or 
heuristic knowledge into the algorithm. In the 
examinations of failed vision systems Draper [34] argues 
that adding new features for new object classes solves 
many problems initially but as the system grows they 
make the system intractable. We considered only such 
library bases that can be learned by an automatic process.  
This approach has the significant advantage that the 
system can be extended to other classes of object 
recognition. The method is easily expandable to lower 
level image processing tasks by adding new library 
elements. Since the algorithm, due to the sparse coding, 
does not depend on the library size, adding new object 
description would not increase the complexity.  
 The presented system performs well, still 
improvement can be added. The symmetries of the image 
bases and their effects on the algorithm should be 
explored more deeply. Lower level image base 
definitions should be added. Wavelet type image bases 
are good candidates because they are flexible and they 
can be easily integrated in library based system. With the 
low level image bases more testing can be done on real 
images.  
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