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In this paper, we apply a new method of evaluating the Discrete Fourier Transform that requires signif-
icantly less computational effort. In this evaluation, the Discrete Fourier Transform is defined over the
support of the sequence of interest. The method can be applied to search for sequences with zero periodic
autocorrelation function. As an example we apply the procedure and we were able to classify weighing
matrices W (2n, 9) constructed from two sequences of length n and weight (5, 4) for all 400 ≤ n ≤ 500.

Povzetek: Predstavljena je nova metoda Fourierjeve transformacije.

1 Introduction
Sequences with zero or low autocorrelation function have
been widely used in Statistics and in particular in the the-
ory of optimal experimental designs. In many cases the ex-
perimenter wishes to develop and study an empirical linear
regression model of the form

y = Xβ + ϵ, (1)

where

y =


y1
y2
...
yn

 , X =


1 x11 · · · x1k

1 x21 · · · x2k

...
1 xn1 · · · xnk

 ,

β =


β0

β1

...
βk

 , ε =


ε1
ε2
...
εn

 .

It is well known that the least square estimator for the coef-
ficient vector β is β̂ = (X′X)−1X′y with covariance ma-
trix Cov(β̂) = σ2(X′X)−1. Orthogonality of the design
matrix X is essential to create models with optimal vari-
ance. More details on linear regression analysis and opti-
mal designs can be found in [2, 13]. Sequences with a zero

autocorrelation function can be used to generate orthogonal
design matrices that achieve the optimal covariance matrix
for the estimator of β̂ . Such sequences are also known as
compatible sequences.

Two level and three level design matrices are commonly
used for screening and weighing experiments. Recently,
new methods for constructing three level screening designs,
from weighing matrices, were proposed in the literature.
For example, in [17] the authors used W (n, n− 1) to con-
struct three-level screening designs while their results were
generalized to the case of W (n, k) in [6]. The designs con-
structed by the methods of the above papers, have their
main effects orthogonal to each other, orthogonal to any
quadratic effects and orthogonal to any two-factors inter-
actions. For quantitative factors, the linear model (1) with
such designs can be used for screening out the main ef-
fects in the presence of active second order terms, such as
two-factor interactions or pure quadratic effects, in the true
model.

Such orthogonal designs of experiments can be easily
constructed from sequences with zero autocorrelation func-
tion. The construction of such sequences is important but
the needed computational effort is sometimes enormous,
making the search for such desirable designs infeasible.
Some known algorithms for developing sequences with
zero autocorrelation function and the related optimal ex-
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perimental designs can be found in [1, 8] and the references
therein. A method that uses the Discrete Fourier Transform
(DFT) was recently developed in the literature (see [3]).

In this paper, we proposed a new evaluation of the DFT
that reduces the computational effort. This evaluation can
be used in searching for sequences with zero autocorrela-
tion function. It is applicable to sequences with two, three
or more levels and the complexity of the method does not
depend on the length of the sequences but only on the num-
ber of their non zero elements (weight). So, when search-
ing for weighing matrices of order n and weight k, con-
structed from a number of suitable circulant matrices (se-
quences), the complexity depends only on k. In this way,
for a fixed weight k, one may search for large optimal
weighing designs. Moreover, this method can test each of
the required sequences independently and decide whether
or not this sequence can be a candidate for a set of com-
patible sequences. As an example, we apply the suggested
method to search for sequences with zero periodic autocor-
relation function that can be used to classify a special type
of weighing matrices.

2 Preliminary Results
A weighing matrix W = W (n, k) is a square matrix with
entries 0, ±1 having k non-zero entries per row and col-
umn and having zero inner product of distinct rows. Hence
W satisfies WWT = kIn.. The number k is called the
weight of W . Weighing matrices have long been stud-
ied because of their use in weighing experiments as first
studied by Hotelling [10] and later by Raghavarao [12] and
others [1, 14].

Given a set of ℓ sequences,

A = {Aj : Aj = (aj0, aj1, ..., aj(n−1)), j = 1, . . . , ℓ},
(2)

of length n, the periodic autocorrelation function (abbre-
viated as PAF) PA(s) is defined, reducing i+ s modulo n,
as

PA(s) =
ℓ∑

j=1

n−1∑
i=0

ajiaj,i+s, s = 0, 1, ..., n− 1. (3)

The set A of the above sequences is called compatible
if
∑ℓ

j=1 PAj (s) = a, s = 1, 2, . . . , n − 1. Moreover, if
a = 0 then the sequences A are said to have zero periodic
autocorrelation function (zero PAF).

Notation. We use the following notation throughout this
paper.

1. We use x to denote −x.

2. We use R = (rij) to denote the n × n back
diagonal matrix whose elements satisfy rij ={

1, when i+ j = n+ 1
0, otherwise

i, j = 1, 2, . . . , n.

3. Let A = (a0, a1, . . . , an−1) where ai ∈ {0,±1}. The
support of A is the set SPA = {i : ai ̸= 0}.

The discrete Fourier transform (DFT) of a sequence B =
(b0, b1, . . . , bn−1) of length n is given by

DFTB(k) = µB(k) =
n−1∑
i=0

biω
ik, k = 0, 1, ..., n− 1,

(4)
where ω is the primitive n-th root of unity, e

2πi
n . If we

take the squared magnitude of each term in the DFT of B,
the resulting sequence is called the power spectral density
(PSD) of B and will be denoted by |µB(k)|2.

We make use of the following well-known theorem (see
[16, chapter 10]).

Theorem 1. Let B be a sequence of length n with elements
from the set {0,±1}. The PSD of this sequence is equal to
the DFT of its periodic autocorrelation function:

|µB(k)|2 =
n−1∑
j=0

PB(j)ω
jk. (5)

3 The Support Based Discrete
Fourier Transform and Power
Spectral Density

The constant value of the PSD of compatible sequences can
be easily calculated using the elements of the sequences
(see [3]). The following Lemma illustrates an alternative
method for calculating this value.

Lemma 1. Let A = {Aj : Aj =
(aj0, aj1, ..., aj(n−1)), j = 1, . . . , ℓ}, be a set of ℓ
sequences of length n, with zero periodic autocorrelation
function. Then we have that

ℓ∑
j=1

|µAj (k)|2 =

ℓ∑
j=1

PAj (0) =

n−1∑
i=0

ℓ∑
j=1

a2ji = c.

Proof. Using equation (5) and the fact that the sequences
have zero PAF we obtain

ℓ∑
j=1

|µAj (k)|2 =
ℓ∑

j=1

n−1∑
s=0

PAj (s)ω
sk

=
n−1∑
s=0

ℓ∑
j=1

PAj (s)ω
sk

=
ℓ∑

j=1

PAj (0) +
n−1∑
s=1

 ℓ∑
j=1

PAj (s)

ωsk

=

ℓ∑
j=1

PAj (0) =

n−1∑
i=0

ℓ∑
j=1

a2ji = c.

2
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Thus, when searching for sequences with zero autocor-
relation, it is very simple to find the constant value of the
PSD since this constant will be the sum of squares of the
elements of the sequences.

Let A = (a0, a1, . . . , an−1) with ai ∈ {0,±1} and let
SPA be the support of A. The discrete Fourier transform
(DFT) of the sequence A can be defined on SPA by

DFTA(k) = µA(k) =
∑

i∈SPA

aiω
ik, k = 0, 1 . . . , n− 1,

(6)
where ω is the primitive n-th root of unity, e

2πi
n .

Lemma 2. Suppose that we have a set A of compatible
sequences, as in (2), with PA(s) = a for s = 1, 2, . . . , n−
1. Then

ℓ∑
j=1

|µAj (k)|2 = c, (7)

where k = 0, 1, . . . n− 1 and c =

ℓ∑
j=1

PAj (0)− a.

Proof. The result is a straightforward generalization of a
case proved in [7] for four sequences and thus the proof is
omitted. 2

Remark 1. Since |µX(k)|2 ≥ 0 and
∑ℓ

j=1 |µAj (k)|2 =
c we have the following. A sequence X should sat-
isfy |µX(k)|2 ≤ c for all k = 0, 1, . . . , n − 1 in order
to be selected as a candidate for the compatible set A.
When searching for sequences with elements from the set
{−1, 0, 1} the computational effort of the PSD does not
depend on the length but only on the number of non-zero
elements (weight) of the sequence.

Example 1. Suppose we wish to search for a weighing de-
sign of order 2n and weight w, constructed from two se-
quences A,B of length n each and 2n ≥ w. We need 2n
summations and 2n multiplications to calculate the DFT
(or the PSD) using the classic definition of DFT but only
w summations and w multiplications are needed using the
support based definition. If w << n then the new defini-
tion is extremely fast (by comparison), while when w = n
it will be shown that the needed computational effort of the
PSD is reduced in half. Note that the above calculation
concerns only one candidate pair of compatible sequences
from the total number of possible pairs in the search space.
Since the search space in such problems is huge and expo-
nentially increasing with n, it is clear that any reduction in
the computational effort at each point of the search space
results in a huge reduction of the total computational effort
(in absolute terms).

Lemma 3. Suppose we have a set A of ℓ = 2m sequences
of length n, as in (2), with elements from the set {−1, 1}
and PA(s) = 0 for s = 1, 2, . . . , n− 1. Then the set

B = { B2j−1 = 1
2 (A2j−1 +A2j),

B2j =
1
2 (A2j−1 −A2j), j = 1, . . . ,m

}

is a set of ℓ sequences of length n with elements from the
set {−1, 0, 1} and PB(s) = 0 for s = 1, 2, . . . , n− 1. The
total weight of the new sequences, in B, is nm.

Remark 2. Using Lemma 3, we are able to get the ben-
efits of the new definition of DFT even in the case of se-
quences with elements from the set {−1, 1}. Suppose that
we are interested in searching for four sequences with el-
ements from the set {−1, 1}, zero PAF and length n. By
using the proposed definition of DFT we need 2n summa-
tions/multiplications for each evaluation of the DFT while
the old definition of DFT requires 4n calculations. Gener-
ally, each calculation of the DFT will be reduced in half.
If recursively ℓ nested evaluations of the DFT are used in
the algorithm, then we have a reduction of calculation by a
scale factor 1/2ℓ.

4 An Illustrating Example
In this section we illustrate the use of the suggested proce-
dure in searching for weighing matrices constructed from
suitable circulant matrices (sequences). The computational
advantages of this approach, as these were discussed in the
previous section, are illustrated through numerical exam-
ples. We present in details the case of weighing matrices
W (2n, 9) that can be constructed from two circulants.

Weighing matrices W (2n, 9) constructed from two se-
quences are of great interest but hard to find, since the
necessary conditions for their existence are not sufficient
(see [9]). It is well known that if there exist a W (2n, k)
constructed from two circulant matrices of order n, then
k = a2 + b2, where a and b are the row (and column)
sums of A and B respectively. The next theorem gives
a known construction of weighing matrices by using two
sequences with elements from the set {0, 1,−1} and con-
stant PSD (equivalently, by using two circulant matrices
A1, A2 with elements from the set {0, 1,−1} satisfying
A1A

T
1 +A2A

T
2 = kI).

Theorem 2. (Geramita and Seberry (1979), Theorem
4.46) If there exist two circulant matrices A1, A2 of order
n with elements from the set {0, 1,−1}, satisfying

2∑
i=1

AiA
T
i = kI,

then there exists a W (2n, k).

The construction of the corresponding weighing matrix
is achieved by using either of the following two arrays

D =

(
A1 A2

−AT
2 AT

1

)
, D =

(
A1 A2R

−A2R A1

)
.(8)

The case of weighing matrices constructed from two cir-
culants A and B having (|SPA|, |SPB|) = (9, 0), which
is actually the case where a circulant weighing matrix ex-
ists, was resolved in [15]. In [15] it was shown that a
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circulant weighing matrix W (n, 9) exist if and only if n
is multiple of 13 or 24 (i.e. 13 | n or 24 | n). This
case implies that there exists one sequence with elements
from the set {0, 1,−1} having weight 9 and zero PAF.
Thus, a circulant weighing matrix W (n, 9) exists and a
weighing matrix W (2n, 9), constructed from two circu-
lant matrices, exists (take one to be the matrix with all
elements zero and the other to be the circulant weighing
matrix W (n, 9) as it is given in [15]). For more details
on this case see [15]. If (|SPA|, |SPB |) = (8, 1) and
PA(s) + PB(s) = 0, ∀ s = 1, 2, . . . , n − 1, and there
exists a W (2n, 9), constructed from two circulant matri-
ces, such that 9 = a2 + 12 which is not possible since 8 is
not a perfect square. So the case (8, 1) is not permitted.

Two pairs of sequence are said to be equivalent if the one
can be constructed from the other by some transformations.
More specifically, we recall the following definition.

Definition 1. We say that two pairs of (0,±1) sequences
((A,B) and (C,D)) of length n are equivalent iff one can be
obtained from the other by applying some of the following
transformations.

1. Multiply one or both sequences of the pair by −1.

2. Reverse one or both sequences of the pair.

3. Take circulant permutation of one or both sequences
of the pair.

4. Multiply the elements of the support of both se-
quences by ℓ, (ℓ, n) = 1.

We call the corresponding weighing matrices, constructed
from the two circulant matrices whose first rows are the
sequences (A,B) and (C,D), equivalent. More details on
weighing matrices constructed from two circulant matrices
can be found in [11].

In this section we classify the weighing matrices
W (2n, 9) for 400 ≤ n ≤ 500 constructed from two
sequences of weight 5 and 4 respectively. Results for
n < 100 were presented in [4], for n ≤ 400 in [5], and
the results for 400 ≤ n ≤ 500 are new and given in Table
4. One representative of each order was known, and were
presented in [5]. Thus, in Table 4, we only present the num-
ber of inequivalent solutions for each order. All inequiva-
lent sequences and the corresponding weighing designs are
available on request.

In the next example we illustrate numerically the com-
putational gain from the suggested approach in the case of
n = 500.

Example 2. Following Example 1, we need just 9 calcula-
tions for each evaluation of the PSD in contrast to the 1000
calculations needed for the old definition. Note that we
have about 5004 sequences in the search space and thus the
proposed algorithm require 2×1010 while the old definition
needs 4× 1012 simple calculations. So, the time needed is
approximately 1 day by applying the old definition and just

n 400 403 405 406 407 408 410 413
N 16 5 5 8 5 8 5 1
n 414 415 416 418 420 424 425 427
N 2 1 10 12 27 3 6 1
n 429 430 432 434 435 437 440 441
N 10 5 7 7 6 6 20 3
n 442 444 445 448 450 451 455 456
N 8 2 1 15 10 6 7 9
n 459 460 462 464 465 468 469 470
N 3 11 17 6 5 7 1 4
n 472 473 475 476 480 481 483 484
N 3 6 7 13 20 5 5 8
n 485 488 490 492 493 494 495 496
N 1 3 11 3 4 9 10 5
n 497 500
N 1 11

Table 1: Number N of inequivalent solutions for the con-
struction of W (2n, 9), when (|SPA|, |SPB |) = (5, 4) and
400 ≤ n ≤ 500.

10 minutes with the new evaluation. As an extreme exam-
ple consider a large search space (for n=100000) where the
required search time using the old definition is more than
a year (infeasible). The reduction of time (simple compu-
tations) will be by a scale factor 9/2n (i.e., 999.99% less)
and thus the required time will be just a few hours.

5 Discussion
In this paper, we proposed a new evaluation of the DFT
that reduces the computational effort. This evaluation can
be used in searching for sequences with zero autocorre-
lation function. It is applicable to sequences with two,
three or more levels and the complexity of the method
does not depend on the length of the sequence but only
on the number of non-zero elements (weight). So, when
searching for weighing matrices of order n and weight w,
constructed from a number of suitable circulant matrices
(sequences), the complexity depends only on w. In this
way, for fixed weight w, one may search for large optimal
weighing designs. Moreover, this method can test each of
the required sequences independently and decide whether
or not this sequence can be a candidate for a set of compat-
ible sequences. As an example, we applied the suggested
method to search for sequences with zero periodic autocor-
relation function that can be used to classify a special type
of weighing matrices W (2n, 9).

The reduction of the computational effort could lead
to many new numerical results and help to resolve other
open cases for weighing matrices. Moreover, the support
based approach may be used for theoretical investigation of
weighing matrices and other optimal designs. The same ap-
proach can be applied in many other cases where circulant
matrices are used for the construction of optimal designs
(see [2, 8, 12]).
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