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People attending teleconference meetings usually follow specific trajectories corresponding to their inten-
tions. In most situations the meeting video content can by sufficiently characterized by capturing the head
trajectories. The tracking of the head is done using a particle filter built on cues such as color, gradient
and shape. The head is represented by an ellipse with fuzzy color histogram in its interior and an intensity
gradient along the ellipse boundary. By comparing pixels in entry zones to a model of the background we
can detect the entry of the person quickly and reliable. The fuzzy color is constructed then in the interior
of an ellipse fitting best the oval shape of the head. When a new person appears in the scene a creation of
new trajectory is initialized. The recognition of actions is performed using kernel histograms built on head
positions as well as segmented trajectories that are related to the layout of the room.

Povzetek: Predstavljen je nov algoritem za sledenje glavam med videokonferenco.

1 Introduction

Recent increase in the amount of multimedia data, consist-
ing of mixed media streams, has created video retrieval an
active research area. Soft computing is tolerant of impre-
cision, uncertainty, partial truth and provides flexible infor-
mation processing ability for dealing with ambiguous sit-
uations in real-world applications. The guiding principle
is to invent methodologies which lead to a robust and low
cost solution of the problem. Soft computing was first pro-
posed by Zadech [25] to construct new generation hybrid
systems using neural networks, fuzzy logic, probabilistic
reasoning, machine learning and derivative free optimiza-
tion techniques. Soft computing based algorithms provide
a very useful basis for solving many problems related to
media mining. Motivated by applications, the soft comput-
ing approach has been explored by several research groups
in recent years [16].

Meeting videos are important multimedia documents
consisting of captured meetings in specialized smart room
environments. Research activities cover for instance
recording, representing and browsing of meeting videos.
Speech can be very useful cue in indexing videos, but pre-
cise speech recognition in meting rooms remains a chal-
lenging task because of extensive vocabulary, different top-
ics, speech styles and so on. The sound cue can also be used
in teleconferencing scenarios to identify the speaker and to
improve the tracking performance. Indexing videos using
visual content is also a challenging task. On the basis of
visual cues it is possible to recognize what single partici-
pants are doing throughout the meeting. An approach to
knowledge extraction from such video data is described in

more detail in this paper.
Human faces are peoples’ identities and play important

role in human action recognition. In most situations the
meeting video content can by sufficiently characterized by
capturing the face trajectories. In majority of the smart
meeting rooms the video cameras are placed in fixed lo-
cations. The coarse extraction of foreground regions can
be realized by comparing each new frame to a model of the
scene background. In videos captured with fixed cameras
we can distinguish several features which remain in con-
stant geometrical relations. Taking into account the specific
structures of the meeting room we can specify head-entry
and head-exit zones, which can then be utilized to detect
events such as person entry and person exit. The shape of
the head is one of the most easily recognizable human parts
and can be reasonably well approximated by an ellipse [2].
The entry/exit events can therefore be detected when a fore-
ground object with an elliptical shape has been found in the
mentioned above zones.

The trajectories of heads have been extracted on the ba-
sis of estimates of positions produced by particle filters.
The particle filters are built on cues such as color, gra-
dient and shape. The appearance of the tracked head is
represented by an ellipse with fuzzy color histogram in its
interior and an intensity gradient along the ellipse bound-
ary. The fuzzy histogram representing the tracked head has
been adapted over time. This makes possible to track not
only the face profile which has been shot during initializa-
tion of the tracker in the entry/exit zones but in addition dif-
ferent profiles of the face as well as the head can be tracked.

When fixed cameras are utilized in a meeting room we
can recognize specific actions which have been performed
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at specific locations. Considering the fact that the loca-
tion of many elements in the meeting room occupies fixed
places (tables, seating, boards, microphones, etc.) we
can recognize actions of participants using the declarative
knowledge provided graphically by the user in advance and
information provided by the visual system. The visual sys-
tem yields trajectories. Each of them contains a sequence
of successive head positions of the same person. This al-
lows us to distinguish between the actions of various per-
sons taking part in an activity.

The paper is organized as follows. After discussing re-
lated work we will present particle filtering in section 3.
Then we describe the face tracking algorithm and present
some tracking results. After that we demonstrate how back-
ground modeling that is based on non-parametric kernel
density estimation can be used to effectively determine the
person entry. In section 6 we discuss our approach to recog-
nition of actions in meeting videos. Finally, some conclu-
sions are drawn in the last section.

2 Related Work
An overview of human motion analysis can be found in
work [1]. Davis and Bobick carry out tracking of human
movement using temporal templates [6]. Their method is
view specific and is based on a combination of Motion Im-
age Energy and a scalar valued Motion History Image. Ya-
coob and Black proposed a recognition method of activities
consisting of repeated patterns [26]. The Principal Com-
ponent Analysis is utilized to perform warping of the ob-
served data to the model data. The system which has been
developed by Madabhushi and Aggarwal is able to classify
twelve different classes of actions [15]. These actions are
walking, standing up, sitting, getting up, bending, bend-
ing sideways, falling, squatting, rising and hugging in the
lateral or frontal views. Each test sequence was a discrete
action primitive. A recognition rate about of 80 percent has
been achieved. In the area of action and activity recognition
the Hidden Markov Models [20] are widely used by sev-
eral research groups [12][17]. The HMMs require a large
amount of training data in the spatio-temporal domain for
actions and events to be recognized. The most of the exist-
ing approaches require either large training data for recog-
nition of actions at acceptable level, or a specific number of
people for training the system. A retraining of the system
which requires a large amount of video data might not be
feasible in several real-world situations.

3 Generic Particle Filtering
Applying face detection procedure to each frame during
video content analysis can be inefficient because of signif-
icant computational load. The variation of a face within
a continuous shot is typically small. Taking into account
the continuity between consecutive frames, the tracking al-
gorithms conduct searching only in a reduced area in the

neighborhood of the face found according to the model
constructed in the earlier frame for the corresponding face,
instead the processing the whole image. The models are
typically updated frame by frame to reflect object changes
over time.

In soft belief systems a weight is attached to each hy-
pothesis. The degree of a belief can be expressed via condi-
tional probability, Dempster-Shafer belief function or fre-
quency of data [16]. Recently, sequential Monte Carlo
methods [7], also known as particle filters, have become
increasingly popular stochastic approaches for approximat-
ing posterior distributions [11] [14] [19] [24]. Particle filter
operates by approximating the posterior distribution using
a collection of weighted samples C = {X(a)

t , π
(a)
t }K

a=1,
where each sample X

(a)
t represents hypothesized state

of the target and the weights are normalized such that∑
a π

(a)
t .

The problem of tracking can be formulated as the
Bayesian filtering

p(Xt | Z1:t) ∝ p(Zt | Xt)
∫

p(Xt | Xt−1)

p(Xt−1 | Z1:t−1)dXt−1 (1)

where Xt and Zt denote the hidden state of the object of
interest and observation vector at discrete time t, respec-
tively, whereas Z1:t = {Z1, ..., Zt} denotes all the ob-
servations up to current time step. With this recursion
we can calculate the posterior p(Xt | Z1:t), given a dy-
namic model p(Xt | Xt−1) describing the state propa-
gation and an observation model p(Zt | Xt) describing
the likelihood that a state Xt causes the measurement Zt

together with the following conditional independence as-
sumptions: Xt⊥Z1:t−1 | Xt−1, Zt⊥Z1:t−1 | Xt.

The evolution of the sample set takes place by drawing
new samples from a suitably chosen proposal distribution
which may depend on the old state and the new measure-
ments, i.e. X

(a)
t ∼ q

(
Xt | X(a)

t−1, Zt

)
and then propagat-

ing each sample according to probabilistic motion model of
the target. To give a particle representation of the posterior
density the samples are set to π

(a)
t ∝ π

(a)
t−1p

(
Zt | X(a)

t

)

p
(
X

(a)
t | X(a)

t−1

)
/q

(
X

(a)
t | X(a)

t−1, Zt

)
.

The particles should be re-sampled according to their
weights to avoid degeneracy. Particle filters rely on im-
portance sampling and in consequence their performance
depends on the nature of the proposal distribution. To im-
plement the particle filter one needs to know the initial con-
dition p(X0 | Z0), the motion model p(Xt | Xt−1) and the
observation model p(Zt | Xt). The next section presents
the ingredients of the particle filter.

4 Face Tracking
In this section we demonstrate our tracking approach to ex-
tract face/head trajectories. We describe below the state
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space and the dynamical model. Next, we discuss the ex-
traction of fuzzy color histogram using the fuzzy c-means
clustering. The observation model is discussed after that.
In this part we explain also how multiple cues are integrated
in a probabilistic manner and describe model update over
time. In the last subsection we demonstrate some tracking
results which have been obtained on PETS-ICVS 2003 data
sets.

4.1 State Space and the Dynamical Model
The outline of the head is modeled in the 2D image do-
main as a vertical ellipse that is allowed to translate and
scale subject to a dynamical model. Each sample repre-
sents a state of an ellipse that is parameterized by X =
{x, ẋ, y, ẏ, sy, ṡy}, where x and y denote centroid of the
ellipse, ẋ and ẏ are the velocities of the centroid, sy is the
length of the minor axis of the ellipse with an assumed fixed
aspect ratio and ṡy is the velocity of sy .

The samples are propagated on the basis of a dynamic
model Xt = AXt−1 + Wt, where A denotes a determin-
istic component describing a constant velocity movement
and Wt is a multivariate Gaussian random variable. The
diffusion component represents uncertainty in prediction
and thus provides the algorithm with a local search about
the state.

4.2 Fuzzy Color Histogram
Digital images are mappings of natural scenes and thus
possess a reasonable amount of uncertainty due to sampling
and quantization [13]. A conventional color histogram con-
siders no color similarity across the miscellaneous bins
[10]. By considering inter-color distance we can construct
a fuzzy color histogram [13] and thus to incorporate the
uncertainty and the imprecise nature of color components.
In such a histogram a pixel of a given color contributes not
only to its specific bin but also to the neighboring bins of
the histogram.

A color histogram can be used to represent the color
distribution [21]. For an image I containing N pixels a
histogram representation H(I) = {h1, h2, ..., hn}, where
hi = Ni/N denotes the probability that a pixel belongs to
a i-th color bin, can be extracted by counting the number
Ni of pixels belonging to each color bin. The probability
hi can be computed as follows [10]:

hi =
N∑

j=1

Pi|jPj =
1
N

N∑

j=1

Pi|j (2)

where Pj is the probability of a pixel from image I being
the j-th pixel, Pi|j is the conditional probability and it is
equal to 1 if the j-th pixel is quantized into the i-th color
bin, 0 otherwise. Therefore, the probability hi can be com-
puted on the basis of the following equation

hi =
1
N

N∑

j=1

δ(g(j)− i) (3)

where the function g() maps the color of pixel j to bin num-
ber, and δ is the Dirac impulse function.

The value of each bin in a fuzzy histogram should repre-
sent a typicality of the color within the image rather than its
probability. The fuzzy color histogram of image I can be
expressed as F (I) = {f1, f2, ...fn}, where the probability
fi expressing color typicality is computed as follows:

fi =
N∑

j=1

µijPj =
1
N

N∑

j=1

µij (4)

and µij is the membership value of the color of j-th pixel in
the i-th color bin. In order to compute the fuzzy color his-
togram of an image, we need to consider the membership
values with respect to all color bins. The probability fi can
be expressed as follows:

fi =
1
N

∑

j∈C

h(g(j))µij (5)

where C is the set of colors of the image I , and the func-
tion g() maps the color to bin number. This equation is
the linear convolution between the conventional color his-
togram and the filtering kernel. The convolution provides a
smoothing of the histogram. This means that each pixel’s
color influences all the histogram bins. In work [13] such
a smoothing based approach, where the influence from
neighboring bins is expressed by triangular membership
functions, has been used to extract fuzzy histograms of gray
images.

To precisely quantify the perceptual color similarity be-
tween two colors a perceptually uniform color space should
be utilized. In a perceptually uniform color space the per-
ceived color differences recognized as equal by the human
eye should correspond to equal Euclidean distances [18].
The CIELab color space [18], one of the perceptually uni-
form color spaces, has been utilized in this work to con-
struct the fuzzy histogram.

The L∗, a∗ and b∗ components are given by:

L∗ = 116g

(
Y

Y0

)
− 16

a∗ = 500
[
g

(
X

X0

)
− g

(
Y

Y0

)]
(6)

b∗ = 200
[
g

(
Y

Y0

)
− g

(
Z

Z0

)]

where

g(x) =
{

x
1
3 x > 0.008856

7.887x + 16
116 otherwise


X
Y
Z


 =




0.4125 0.3576 0.1804
0.2127 0.7152 0.0722
0.0193 0.1192 0.9502







R
G
B




and X0, Y0, Z0 represents reference white point that is de-
termined for [R G B]T = [1 1 1]T .
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In work [10] an efficient method to compute the mem-
bership values without a direct use of the color space trans-
formation RGB → CIElab has been proposed. The mem-
bership values are computed using fuzzy c-means (FCM)
algorithm [4]. The main idea of this approach is to com-
pute in an off-line phase the membership matrix and then
use it on-line to compute the membership values on the ba-
sis of colors in RGB space.

At the beginning a fine and uniform quantization consist-
ing in mapping all colors from RGB space to n′ histogram
bins is performed [10]. Then, the transformation of n′ bins
into CIELab color space is conducted. Finally, the n′ col-
ors from CIELab space are classified to n ¿ n′ clusters
using FCM clustering technique. As a result a membership
matrix U = [uik]n×n′ is computed. It can be then utilized
on-line to compute n-bin fuzzy color histogram using the
n′-bin typical histogram of the image I . The equation ex-
pressing this conversion has the following form

Fn×1 = Un×n′Hn′×1. (7)

In the classical k-means algorithm, each data point is as-
sumed to be in exactly one cluster. In FCM algorithm each
sample has a membership in a cluster and the memberships
are equivalent to probabilities. The FCM algorithm seeks a
minimum of a heuristic global cost function, which is the
weighted sum of squared errors within each cluster, and is
defined as follows:

Jfuz(U, v) =
n∑

k=1

c∑

i=1

(uik)m ‖xk − vi‖2 (8)

where U is a fuzzy c partition of the data set X =
{x1, x2, ..., xn}, the vector v is defined as v =
{v1, ..., v2, ..., vc}, and vi is the cluster center of class i, m
is a free parameter selected to adjust the extent of member-
ship shared by c clusters. For m > 0 the criterion allows
each data point to belong to multiple clusters. The term
uik is the membership value reflecting that the individual
k-th data point is in the i-th fuzzy set. The probabilities
of cluster membership are normalized as

∑n
i=1 uik = 1,

where 1 ≤ k ≤ n, uik ∈ [0, 1], and 0 <
∑n

k=1 uik < n
for 1 ≤ i ≤ c. The Jfuz criterion is minimized when the
cluster centers vi are in proximity of those points that have
high estimated probability of being in cluster i.

The cluster means and probabilities have been estimated
iteratively using the following equations [4]:

vi =
Pn

k=1(uik)mxkPn
k=1(uik)m

uik = 1Pc
j=1

� ‖xk−vi‖2
‖xk−vj‖2

� 1
m−1

(9)

where 1 ≤ i ≤ c, and 1 ≤ k ≤ n. No guarantee ensures
that FCM converges to an optimum solution. The following
convergence test has been utilized in each iteration l

∥∥U l−1 − U l
∥∥ = maxi,k

{∣∣∣u(l−1)
ik − u

(l)
ik

∣∣∣
}

< ε. (10)

The performance of FCM depends on initial clusters. In
our implementation we utilized n′=512 bins in the typical
histogram and n=32 bins in the fuzzy histogram.

4.3 The Observation Model
To compare the fuzzy histogram Q representing the tracked
face to each individual fuzzy histogram F , which has been
computed in the interior of the ellipse determined in ad-
vance on the basis of the state hold in the considered par-
ticle, we utilized the metric

√
1− ρ(F, Q) [3]. This met-

ric is derived from Bhattacharyya coefficient ρ(F,Q) =∑n
u=1

√
F (u)Q(u). Using this coefficient we utilized

the following color observation model p(ZC | X) =
(
√

2πσ)−1e−
1−ρ

2σ2 . Applying such Gaussian weighting we
favor head candidates whose color distributions are similar
to the distribution of the tracked head.

The second ingredient of the observation model reflect-
ing the edge strength along the elliptical head boundary
has been weighted in a similar fashion p(ZG | X) =

(
√

2πσ)−1e−
1−φg

2σ2 , where φg denotes the normalized gra-
dient along the ellipse’s boundary. To compute the gradi-
ents and the histograms fast we prepared and stored for the
future use two lists. For each possible length of the minor
axis the lists contain coordinates of the outline in relation
to the center as well as corresponding coordinates of all
interior pixels.

The aim of probabilistic multi-cue integration is to en-
hance visual cues that are more reliable in the current con-
text and to suppress less reliable cues. The correlation be-
tween location, edge and color of an object even if exist
is rather weak. Assuming that the measurements are con-
ditionally independent given the state we obtain the equa-
tion p(Zt | Xt) = p(ZG

t | Xt) · p(ZC
t | Xt), which al-

lows us to accomplish the probabilistic integration of cues.
To achieve this we calculate at each time t the L2 norm
based distances D

(j)
t , between the individual cue’s cen-

troids and the centroid obtained by integrating the likeli-
hood from utilized cues [22]. The reliability factors of
the cues α

(j)
t are then calculated on the basis of the fol-

lowing leaking integrator ξα̇
(j)
t = η

(j)
t − α

(j)
t , where ξ

denotes a factor that determines the adaptation rate and
η
(j)
t = 0.5 ∗ (tanh(−eD

(j)
t ) + w). In the experiments

we set e = 0.3 and w = 3. Using the reliability factors the
observation likelihood has been determined as follows:

p(Zt |Xt) = [p(ZG
t |Xt)]α

(1)
t · [p(ZC

t |Xt)]α
(2)
t (11)

where 0 ≤ α
(j)
t ≤ 1.

To deal with profiles of the face the histogram repre-
senting the tracked head has been updated over time. This
makes possible to track not only a face profile which has
been shot during initialization of the tracker but in addi-
tion different profiles of the face as well as the head can
be tracked. Using only pixels from the ellipse’s interior,
a new fuzzy color histogram is computed and combined
with the previous model in the following manner Q

(u)
t =
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(1− γ)Q(u)
t−1 + γF

(u)
t , where γ is an accommodation rate,

Ft denotes the histogram of the interior of the ellipse rep-
resenting the estimated state, Qt−1 is the model histogram
representing the head in the previous frame, whereas u =
1, ..., n.

4.4 Tracking Results

The experiments described in this subsection have been re-
alized on the basis of PETS-ICVS data sets. The images
of size 720x576 have been converted to size of 320x240 by
subsampling (consisting in selecting odd pixels in only odd
lines) and bicubic based image scaling. The PETS data set
contains several videos. For cameras 1 and 2 in scenario
C there are a maximum of 3 people sitting in front of each
camera. Figure 1 depicts some tracking results. The exper-
iments have been conducted using a relatively large range
of the axis lengths, namely from 6 to 30. A typical length of
the ellipse’s axis which is needed to approximate the heads
in the PETS-ICVS data sets varies between 10 and 14. The
frame-rate of the tracking module is about 12-15 Hz on a
2.4 GHz PC.

a) b)

Figure 1: Tracking the face. Frame #10686 (a). Frame
#14840 (b).

The related tracker [19] also uses color distributions and
particle filtering for multiple object tracking. It employs
typical color histogram while we use fuzzy histogram. By
employing fuzzy histogram our tracker can track objects
more reliably in cases of illumination changes and tempo-
ral occlusions. The methods differ in the model update,
shape representation and initialization of the tracker. The
initialization of the tracker is discussed in the next section.

5 Background Subtraction Using a
Non-parametric Model of the
Scene

In most of the smart meeting rooms the video cameras are
placed in fixed locations. The camera locations should be
chosen carefully to capture the meetings with little occlu-
sions as possible. The lighting conditions should provide
the repetitive appearance of objects during realization of
particular actions. In meeting scenarios the detection of
foreground regions can be realized by comparing each new
frame to a model of the scene background. Since person

actions are always coupled with motion, our approach uti-
lizes the model of scene background to detect the person
entry/exit events. A background subtraction technique is
used to initialize the tracker as well as to provide the tracker
with additional information about possible locations of ob-
jects of interests. The initialization of the tracker has been
performed by searching for an elliptical object in deter-
mined in advance head-entry and head-exit zones. A back-
ground subtraction procedure which was executed in men-
tioned above boxes has proven to be sufficient in detection
of person entry.

In work [9] the background of an image is extracted on
the basis of collection of pixels considered as being the
background in a sequence of images. The robust back-
ground extraction is based on estimation of density func-
tion of the density distribution given a history of pixel val-
ues. The model of the background holds a sample of inten-
sity values for each pixel in the image and uses this sam-
ple to estimate the probability density function of the pixel
value. If S = {x1, x2, ..., xL} is a recent sample of inten-
sity values for a gray pixel, the probability density func-
tion that this pixel will have intensity value xt at time t
can be non-parametrically estimated using the kernel Kh

as Pr (xt) = 1
L

∑L
i=1 Kh (xt − xi). For Gaussian kernel

Kh = N (0,Σ) and a given sample S = {xi}L
i=1 from a

distribution with density p(x), where Σ = σ2 represents
the kernel bandwidth, an estimate of this density at x can
be calculated as follows [9]:

Pr (x) =
1
L

L∑

i=1

1√
2πσ2

exp−1
2

(x− xi)2

σ2
(12)

The pixel is considered as a foreground if
Pr(x) < threshold. The kernel bandwidth expresses the
local variation in the pixel intensity due to image blur and
not the intensity jumps. The local variance varies over the
image and changes over time. The standard deviation was
estimated using the following equation [9]:

σ =
1

0.68
√

2(L− 1)

L−1∑

i=1

|xi − xi+1|. (13)

Figure 2 demonstrates exemplary result of background sub-
traction, which has been obtained for L = 10. The thresh-
old has been set to 0.1. The probabilities have been calcu-
lated using precalculated lookup tables for the kernel func-
tion.
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a) b)

Figure 2: Frame #10683 of Scenario C viewed from Cam-
era 1 (a). Background subtraction (b).

6 Action Recognition
In the first subsection of this section we demonstrate the
framework for action recognition relying on spatial rela-
tions of objects as well as domain knowledge. In the next
subsection we discuss the segmentation algorithm of video
streams. The section explains also how actions are recog-
nized using prior isolated sequences of action features.

6.1 Action Recognition Using Spatial
Relations

In a meeting room there are typical locations, where the
participants perform particularly interesting activities, such
as conference tables, whiteboards, projection screens, and
where the actions should be recognized more perfectly. In
meeting videos which are captured with fixed cameras it
is possible to distinguish specific structures depending on
world constraints. The locations of many elements in the
meeting room remain fixed. Therefore the visual struc-
ture of the images varies very little over multiple meetings.
Such scene structures remaining within mutual context can
be used in an automatic recognition of simple individual or
group actions and events. The recognition can be realized
using absolute and relative positions between objects and
heads.

The module works on the basis of head locations com-
ing from the tracking module and the knowledge provided
in advance by the user. The recognition rules are generated
on the basis of rectangular zones specified with a graphical
user interface. The zones are used to define the specific ac-
tions at particular places. The drawing tool allows the user
to easily create the spatio-temporal action templates. The
location of a template can be absolute or relative. Each
zone can be in state on or off. A zone is in state on when
a head is currently inside the specified area. It is possible
to join the rectangular zones using arrows. For the abso-
lute zones the axes are used to specify possible paths or
trajectories of the head. In case of the relative boxes the
axes can be used to specify spatial relations. To define
trajectories the user can specify a time-line separately for
axes and boxes. 3-4 zones usually specify a typical trajec-
tory. Thanks to keeping the consecutive positions of par-
ticular heads the recognition module can take into account
the temporal locations of objects of interest (movement and

duration of presence). The trajectories allow us to distin-
guish between the actions of various persons taking part in
an activity. This approach has proved particularly useful
in recognizing actions in PETS-ICVS data sets because the
available training material is too limited. A disadvantage
of the drawing tool in its present version is that it can only
be used with static images.

6.2 Segmentation of Video Streams Using
the Bayesian Information Criterion

The Bayesian Information Criterion (BIC) as the model
selection criterion has been used in [5]. The problem of
model selection consists in selecting one among a set of
candidate models in order to represent a given data set.
In the mentioned above work the segmentation/clustering
problem has been formulated as the model selection be-
tween two nested competing models on the basis of com-
parison of BIC values. Several desirable properties of the
method, such as threshold independence, optimality and ro-
bustness have been demonstrated as well. In recent years
BIC has been mainly used in speech systems in segmen-
tation and segments clustering. In this work the tempo-
ral segmentation of streams consisting of feature sequences
has been realized on the basis of an efficient variant of BIC
introduced by Tritschler and Gopinath [23]. In order to im-
prove the precision, especially on small segments, a new
windows choosing scheme has been proposed.

Denote X = {xi}M
i=1 where xi ∈ Rd as the sequence of

frame-based feature vectors extracted from a video stream
in which there is at most one segment boundary. Our in-
tention is to determine all possible frames where there is a
boundary segment. If we suppose that each feature block
can be modeled as one multivariate Gaussian process, the
segmentation can be treated as a model selection problem
between the following two nested models [5][23]: model
Q1 where X = {xi}M

i=1 is identically distributed to a sin-
gle Gaussian N(µ, Σ), and model Q2 where X = {xi}M

i=1

is drawn from two Gaussians while {xi}b
i=1 is drawn from

one Gaussian N (µ1, Σ1), and {xi}M
i=b+1 is drawn from

another Gaussian N (µ2, Σ2). Since xi ∈ Rd, the model
Q1 has k1 = d+0.5d(d+1) parameters, while the second
model Q2 has twice as many parameters. The b-th frame
is a good candidate for the segment boundary if the BIC
difference

∆BICb = 1
2M log |Σ| − b log |Σ1|

−(M − b) log |Σ2|
− 1

2λ
(
d + 1

2d(d + 1)
)
log M

(14)

is negative, where | | denotes the matrix determinant, Σ is
the covariance matrix of the whole stream consisting of M
samples, Σ1 is the covariance of the first subdivision, Σ2 is
the covariance of the second subdivision, and λ is penalty
weight. The BIC difference can be seen as an approxima-
tion of the logarithm of the Bayes factor. The final seg-
mentation decision can be obtained via MLE and applying
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this test for all possible values of b and choosing the most
negative ∆BICb, b̂ = arg maxb ∆BICb. If no segment
boundary has been found on the current window, the size
of the window is increased [23].

The experiments have shown that good segmentation re-
sults can be obtained using the energy cue. The initial win-
dow length with 15 features gives optimal segmentation re-
sults. Figure 3 illustrates exemplifying segmentation re-
sults which were obtained for Person 2 in PETS-ICVS data
sets (scenario C, camera 1, person sitting in the middle, see
Fig. 1b).

Figure 3: Segmentation of temporal trajectories.

7 Experiments
The trajectory of Person 2 that has been obtained using the
images acquired by Cam1 and the face/head tracker is de-
picted in Fig. 4. The performance of the recognition mod-
ule has been evaluated on a part of the PETS-ICVS data set
(scenario A and C, camera 1 and 2).

On the basis of coherency in time and space between in-
dexes generated by the spatio-temporal recognizer and the
BIC based segmentation of trajectory we extracted the seg-
ments consisting of head positions. The histograms reflect-
ing executed actions have been constructed using a Gaus-
sian kernel [8][14]. During extraction of a histogram the
kernel has been utilized to weight the head coordinates ac-
cording to their distance to the center of the kernel. The

Figure 4: Trajectory of Person 2 in PETS-ICVS data sets,
Scenario C, Cam1.

larger the distance of the head from the kernel center, the
smaller the weight. The kernel center has been located at
the last position in an extracted segment. Figure 5 illus-
trates exemplar histograms which have been obtained from
two different scenarios A and C. The first histogram from
this figure has been obtained on the basis of the kernel that
has been situated in the head center in the frame #10680.
The second histogram has been constructed using the ker-
nel situated in the head center in the frame #10822. Figure
6 demonstrates selected frames from the sequences which
were used to construct the histograms. We can observe
that despite two different realizations of an action the his-
tograms look quite similar.

The system has also been verified on our own video data
with PETS-like scenario. A high recognition ratio depend-
ing mainly on number of actions to be recognized, compli-
cation degree of actions and the way of realization of par-
ticular actions has been obtained in several dozen minutes
videos. Two people performed actions such as: entering
the scene and taking seat, leaving the seat, keeping seat,
standing up, sitting down, walking from left to right, draw-
ing on the board. The system achieves average recognition
rate up to 90% and the frame-rate is 11-13 Hz.

8 Conclusion

We have presented an action recognition system. By em-
ploying shape, color, as well as elliptical shape features
the utilized particle filter can track a head in a sequence
of images and generate the trajectories of the head. The
algorithm is robust to uncertainty in color representation
mainly due to the fuzzy histogram based representation of
the tracked head. To demonstrate the effectiveness of our
approach, we have conducted several experiments using
PETS-ICVS data set. One of the future research direc-
tions of the presented approach is to extend the drawing
tool about a possibility of specification kernel-based zones
as well as a possibility of a simulation and visualization of
predefined actions.



288 Informatica 29 (2005) 281–289 B. Kwolek

a)

b)

Figure 5: The kernel histograms of head positions. Sce-
nario A, Cam 1 (a). Scenario C, Cam 1 (b).

Figure 6: Selected frames from Scenario A and C. Frames
#10552, #10584, #10616, #10648 and #10680 (top).
Frames #10694, #10726, #10758, #10790 and #10822 (bot-
tom).
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