
https://doi.org/10.31449/inf.v46i8.4197 Informatica 46 (2022) 105–120 105

An Empirical Study of Aging Related Bug Prediction Using Cross Project in
Cloud Oriented Software

Harguneet Kaur and Arvinder Kaur
University School of Information, Communication and Technology (USICT), GGSIPU, Dwarka, New Delhi, India
E-mail: harguneet.13316490018@ipu.ac.in, arvinder@ipu.ac.in

Keywords: Aging related bugs, cross project, cloud-oriented, empirical study, imbalance, software aging

Received:May 23, 2022

Cloud oriented applications enable users to increase the scalability of computing infrastructure by using
shared computer resources. These applications include the characteristics such as NoSQL database, Big-
Data Analytics, distributed file system and MapReduce architecture which may face issues like software
aging due to which ongoing system’s performance decreases and failure rate increases. Aging Related
Bugs (ARB) are bugs that are caused due to memory leakage, null pointer exception, resource depletion
etc. in the ongoing system whose impact can be dangerous, so it’s better to predict them before releasing
the software. Manual extraction of ARB reports are common but finding ARBs within thousand of bug
reports is challenging. This is the first paper that presents the empirical study to automatically search
aging related bug reports through SEARCH_KEYWORD algorithm and implement the ARB prediction in
cross project for cloud oriented applications/softwares. To compare the efficacy of the prediction results,
With-in Project Defect Prediction (WPDP) of ARBs is also performed. The work is divided in three phases:
1. ARB reports are extracted from the summary/description of bug in bug repository through automatic
process. 2. Cross project bug prediction (CPDP) is performed to predict ARB due to limited availability
of training data which is not implemented yet in cloud oriented softwares to the best of our knowledge. 3.
Machine learning techniques are applied for ARB prediction to build fault prediction models. There is an
imbalanced proportion between ARB-prone and ARB-free files, therefore Recall, FPR(False Positive Rate),
Balance are used as major performance measures to predict ARBs. Kruskal Wallis Test and Friedman Test,
are applied on the prediction results and it is proved that Naive Bayes performed significantly better than
other classifiers. The results suggested that CPDP performed better than WPDP of ARBs using machine
learning classifiers in cloud oriented datasets.

Povzetek: Narejena je empirična analiza napovedovanja programskih napak v oblakih.

1 Introduction
A Software bug is an error, fault or defect that has the
capability to produce unexpected or inappropriate results.
Software Bugs are classified into two types: Bohrbugs and
MandelBugs. Bohrbugs are the bugs that are easily iso-
lated and detected as failure and are easily reproducible
whereas Mandelbugs are the bugs where the failure is not
reproducible. ARB falls under the category of Mandel-
Bugs. ARBs are the errors in software at runtime which
are caused due to memory leakage, resource depletion, null
pointer exception, unreleased files and locks etc. It is chal-
lenging to locate aging related bugs in the software after its
deployment, and thus fixing and reproducing them becomes
a task. These bugs are caused due to the aggregation of er-
rors in running software for a long period of time that can
lead to performance degradation, depletion of resources,
and in some cases, the software can even crash. Many open
source softwares related to cloud computing environment
are being used in recent years in which distributed appli-
cations are developed which use shared resources for the
requirement of increased computing capability, memory,

bandwidth and storage area. Some of the software’s use
cloud computing technology, for instance Hadoop MapRe-
duce, Hadoop HDFS, Hive and Storm based on Mapre-
duce framework and Big data analytics. Cassandra has the
unique functionality of NoSQL database of cloud comput-
ing technology. The cloud oriented softwares [1]are anal-
ysed by Machida et al. [2] to find the presence of aging
related bugs. The results of his study confirmed the pres-
ence of ARBs in cloud oriented softwares [3].
Due to the behavior of ARB, it is difficult to detect and
observe ARBs in the software before its released. ARB
prediction is considered as an Independent problem from
other defect predictions. ARBs are caused due to the accu-
mulation of errors in long period of time and the effect of
these can be deadly also. So it is difficult to reproduce and
locate them that is why ARB prediction is taken indepen-
dently in this research. Manual classification [4] of ARBs is
not possible with large distributed and cloud oriented soft-
wares; therefore the automatic process of extracting ARBs
from thousand bug reports is proposed in this study. The
bugs are extracted from the REST API of JIRA and then
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aging related bug reports are extracted automatically using
text mining by exploring the description of bug reports and
finding aging related keywords in them such as memory,
overflow, leakage, race condition etc. The automation part
reduces time in searching ARBs in large datasets and the
outcome produced is reliable and dependable also. ARBs
exist in a very few number as compared to non-aging bugs
which led to improper training set for bug prediction. Soft-
ware bug prediction [5] is the process of predicting bug-
prone areas to strengthen the reliability and quality of the
software andminimize the cost and effort whichmight arise
at the later stage for fixing the defects. In particular, the aim
is to allow the developers to focus on the fault-proneness ar-
eas; therefore it is necessary to predict the location of bugs
in files before the release of software so that more testing
resources are focused on them to assure the quality of soft-
ware. Bug prediction is performed to build the classifica-
tion models from historical data using machine learning al-
gorithms to predict bug-prone areas. If historical data is
not available in sufficient amount then in such cases, Cross
Project Defect Prediction (CPDP) is used. The CPDPmeth-
ods attempt to construct a prediction model on one soft-
ware project (training dataset) for sufficient past data and
then use those learned trainers to predict the unknown la-
bels of another project (testing dataset) [6][7]. In the lit-
erature, CPDP is implemented in datasets such as Linux,
MySQL, Cardamom [8] but not in cloud oriented softwares.
Issues faced so far is the manual classification of ARBs
from all bug reports by reading the description of bug re-
ports and cross project bug prediction which has not been
implemented in cloud oriented softwares as per our knowl-
edge. Therefore in this study, the automatic process of clas-
sifying ARBs through SEARCH_KEYWORD algorithm is
proposed and cross project aging related bug prediction has
been performed on cloud oriented softwares.
This paper focuses primarily on automatic extraction of
ARBs from the bug repository in cloud oriented softwares
to save time and cost during testing. It is an important issue
when large systems like cloud oriented softwares are made
up of thousands of modules. The proposed study uses soft-
ware metrics as predictive variables and exploits machine
learning classifiers using CPDP approach in cloud oriented
softwares to build fault prediction models. Then these re-
sults are validated with the application of the statistical test.
The number of ARB reports found in the dataset is less as
compared to ARB-free bug reports therefore, these datasets
are said to be imbalanced. These Aging related bug reports
are mapped to respective java class files of datasets that
whether each file is associated with ARB or not. Thus to
handle class imbalance problem, CPDP is implemented on
each cloud oriented software to predict ARBs. This study
aims to compare the prediction results of the CPDP ap-
proach with WPDP of ARBs using machine learning clas-
sifiers [9].
The research paper is organized as follows: In Section 2,
related work on the software aging problem is thoroughly
discussed. Section 3 discusses the Framework for ARB

prediction of cloud oriented software and research ques-
tions formulated based on our proposed work. Section 4
describes the research methodology including the Aging re-
lated keywords, software complexity metrics and machine
learning classifiers used in this study. This section also
explores the empirical research representing the cloud ori-
ented datasets, Evaluationmeasures and experimental setup
followed by section 5, where results and analysis are pre-
sented in detail. Section 6 reports the threats to validity and
section 7 summarizes the results of our study along with the
future direction.

2 Related work

Software aging depends on the life span of software where
software grows older and starts showing failures (ARB)
which degrade the performance and even lead to hanging
or crashing the system. This study worked on prediction
of aging related bugs in cloud oriented software. The work
is segmented into three parts: 1. Extraction of aging re-
lated bug reports from thousand of bug reports using au-
tomatic process. 2. Implementing CPDP and WPDP ap-
proach for predicting ARBs using machine learning clas-
sifiers in cloud oriented softwares 3. Comparing the pre-
diction results of CPDP and WPDP and to find out which
classifier worked better. Table 1 focused on the objectives
of the related studies, datasets used in various studies, the
metrics used to achieve the purpose and the research gap
in each study. ST1 and ST3 performed aging related bug
prediction but it has manually sorted ARBs in bug reports.
With large dataset when there are thousand bug reports, it
is hard to sort it manually therefore automata is proposed
in this study. Lov Kumar et al. [10] related source code
metrics with ARB prediction and applied machine learning
classifiers to predict aging related bugs in Linux, MySQL
and ApacheHTTPD. The Software aging concept was in-
vestigated systematically by Huang in 1995.
Work presented by Cotroneo [11] is the empirical analy-
sis on the relation between software aging and static met-
rics such as project size and complexity of the software.
It stated that aging related bugs can be predicted with the
help of Software complexity and size metrics and built the
fault prediction models using the benchmark datasets i.e.
MySQL, and Linux. Cotroneo et al. [8] predicted aging
related bugs in three large software projects and then, with
the help of code and Aging related metrics, built bug pre-
diction models. But the limitation found in Cortroneo’s
research is that the bug reports are manually analyzed to
identify ARB’s in every software module. Cotroneo et al.
[12] discussed the present status of the software aging and
rejuvenation(SAR) community and highlighted the issues
towards which research should be headed in the future.
This process tends to cause the system’s failure after run-
ning continuously for a considerable time due to changes
in the software. Massimo Ficco [13] worked on real-time
data processing applications like apache storm to predict
software aging by identifying its symptoms to prevent the
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harmful and dangerous effects in the running environment.
Xiaohui Wan et al. [14] analyzed that ARB-prone files are
small compared to non ARB-prone files in software and re-
move this shortcoming by proposing a Supervised Repre-
sentation Learning Approach (SRLA) technique based on a
double encoding layer autoencoder in Linux, MySQL and
Apache HTTPD. Software Bug prediction helps the testers
to ensure software reliability by predicting fault-prone ar-
eas [15], [16], [17]. ST8 applied extreme learning machine
with three different kernals and presented the aging related
bug prediction results in Linux and MySQL. ST2, ST5 and
ST6 are the studies where cross project bug prediction is
implemented for aging related bugs using transfer learning
approach on Linux, MySQL but not on cloud oriented soft-
wares. ST4 confirmed the existence of ARBs in cloud com-
puting datasets but has not performed prediction. Shraban
Kumar Apat et al. [18] presented different approaches for
defect prediction of the softwares and then applied machine
learning techniques for them [19]. Therefore based on the
above studies , the State of the Art (SOTA) in this study is
sorting aging related bugs through automata in cloud ori-
ented softwares and then predicting the bugs using cross
project and within project approach with the help of ma-
chine learning classifiers. Table 1 includes the summary
of the related work which describes the accuracies of each
studied research article along with the research gap. As per
the observation, the work done till now is manually explor-
ing the aging related bugs from the bug reports using key-
words but in our study it is done through automata where
aging related bug reports are refined from thousands of bug
reports using aging related keywords. As per our knowl-
edge, cloud oriented datasets are not considered till now
for predicting aging related bugs. But in this study cloud
oriented softwares are evaluated. Cross project bug predic-
tion approach is used in this study for better availability of
training datatsets.

3 Framework for ARB prediction of
cloud oriented software

Bug prediction of cloud oriented softwares undergoes three
phases: Automatic approach for keywords, applying CPDP
and WPDP approach for ARB prediction and then building
prediction models in open source cloud oriented datasets.
The findings obtained in this work through automata helps
in the development of cross project bug prediction models.
It is aimed to design the framework of ARB prediction
shown in Figure 1 which define four modules of Aging
related bug prediction: ARB automatic collection through
scripting (M1), formulated dataset of cloud oriented
softwares (M2), Cross project defect prediction (CPDP) of
cloud oriented softwares (M3) and Within Project Defect
Prediction in cloud oriented dataset(WPDP) (M4). The
inspection is focused on the bug reports which are marked
as CLOSED and RESOLVED. The bug reports which
are fixed and unique (not duplicates of other reports)

are considered in this study. Firstly, Bug reports are
collected from the Jira repository and then automata is
implemented by reading the description of bug reports for
refining Aging related bug reports. Every Aging related
bug report is searched with its bug id in GitHub and then
the java class files effected by these bugs are labelled as
ARB-prone. In the dataset, all java files are then classified
as ARB prone files or non-ARB prone files with the
help of labelled ARB metric. Software metrics and this
labeled ARB metric are used to predict ARB bugs in cloud
oriented dataset. CPDP is applied with machine learning
algorithms on the cloud oriented datasets on the one hand
and on the other side, WPDP is implemented to compare
the results for predicting the bugs. The performance
measures are evaluated to compare prediction models and
statistical tests to validate the results. The novelty of this
framework is in modules M1 and M3. This paper’s main
contribution is 1) According to our knowledge, this is the
first empirical study performing cross project aging related
bug prediction in cloud oriented softwares. 2) This study
proposed extraction of aging related bug reports from
other bug reports using keywords through an automatic
process with the help of python.3) WPDP is also applied
and then the results are compared with CPDP. Several
fault prediction models are evaluated and compared to
identify which classifier works better for ARB prediction.
4) Statistical tests such as Friedman and Kruskal Wallis
Test are applied on prediction results for validating the
hypothesis proposed in this study. The comparative
study is done for cross project and within project defect
prediction in cloud oriented datasets. Manual extraction of
bug reports has been widely used in the past by reading the
description or summary of each bug report and finding if
aging related keyword is there. This study has reduced the
time taking task by implementing SEARCH_KEYWORD
algorithm shown in Algorithm 1 to extract aging related
bug reports.The outcome produced in the algorithm is the
aging related bug reports from thousand bug reports using
their summary (description), issue id and issue key of each
bug report found in cloud oriented datastet.

The empirical study of aging related bug prediction in
cloud oriented softwares formulated the following research
questions (RQs)

RQ 1. Software aging is an imbalanced data problem.
How does it justify?

RQ 2. How is the prediction performance differentiated
from CPDP with WPDP approach for ARB prediction in
cloud oriented softwares ?
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Table 1: Related Work

SerialNo. Author Objective Dataset Performance
measure

Research Gap

ST1 Xiaoxue
Wu [20]

It manually
explored aging
related bug re-
ports in invalid
bug reports and
then the pre-
diction is done
to evaluate its
performance

HDFS and
HBase

Recall, Preci-
sion, F1-score
and AUC

Manually ex-
plored ARBs
in all bug
reports

ST2 Qin,
Fangyun,
et al [21]

Proposed transfer
learning ap-
proach for ARB
prediction in
cross project.

Linux,
MySQL,
Apache
HTTPD

PD (prob-
ability of
detection), PF
(probability of
false alarms),
Bal (Balance)

Performed
cross project
ARB predic-
tion not in
cloud oriented
softwares

ST3 Lov Ku-
mar et al.
[10]

It presented
ARB prediction
with the help
of source code
metrics using
machine learning
techniques

Linux,
MySQL

Area under
ROC , F-
measure and
accuracy

Manually ex-
plored ARBs
in all the bug
reports

ST4 Fumio
Machida
et al.[2]

It confirmed
the existence of
aging related bug
reports in five
cloud computing
open source
softwares

Hadoop
Mapreduce,
Cassandra,
Eucalyptus ,
Memcached
and Xen

Classification It has con-
firmed the
presence of
ARB in cloud
oriented soft-
wares but did
not perform
prediction.
It manually
sorted ARBs
in bug reports

ST5 Qin,
Fangyun,
et al.[22]

proposed the
transfer learning
aging related
bug predic-
tion approach
(TLAP)

Linux and
MySQL

Probability of
Detection, PF
and Bal

It performed
cross project
using TLAP
on Linux and
MySQL not on
cloud oriented
softwares

ST6 Fangyun
Qin et
al.[23]

presented the
empirical study
on cross-project
ARB predic-
tion in terms of
Normalisation
methods, Kernal
functions and
data mining
techniques .

Linux,
MySQL,
HTTPD

PD, PF and Bal It performed
cross project
using TLAP
on Linux and
MySQL not on
cloud oriented
softwares.
It manually
explored the
ARBs in bug
reports
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ST7 Steffen
Herbold
[7]

It presented
the systematic
mapping study
on cross project
defect prediction

NASA, SOFT-
LAB, JU-
RECZKO,
RELINK,
AEEEM,
MOCKUS,
ECLIPSE,
NETGENE,
AUDI

Various per-
formance
measures de-
pending on the
availability of
dataset

Cross project
defect pre-
diction is
systematically
explained

ST8 Lov Ku-
mar et
al.[24]

It applied ex-
treme learning
machine with
three different
kernals and pre-
sented the results
for aging related
bug prediction

Linux and
MySQL

Accuracy ,
F-measure and
AUC

Linux and
MySQL
datasets are
used not
cloud oriented
softwares

ST9 Cotroneo
D et al.[8]

Built fault pre-
diction models
for predicting
source code
files which are
more prone to
Aging-Related
Bugs in soft-
ware complex
datasets.

Linux Kernal
, MySQL
DBMS, CAR-
DAMOM
middleware
platform

Program size,
Aging-Related
Metrics
(ARMs) , Hal-
stead metrics,
McCabe’s
cyclomatic
complexity

Cross project
defect pre-
diction is not
explored in
detail

ST10 Tan, L. et
al.[25]

Classified the
bugs into various
categories such
as memory bugs,
semantic bugs,
or concurrency
bugs

Linux kernel,
Mozilla ,
Apache

Precision, Re-
call , F1

Classification
of bugs has
been done
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RQ 3. Is there any statistical difference in machine learn-
ing algorithms using cross project for ARB prediction?
The existence of aging related bugs is confirmed in cloud
computing datasets [2] but cross project bug prediction has
not been performed. In this study, cross project and Within
bug prediction, both are applied in the dataset to predict
ARBs. Automatic extraction of aging related bugs from the
thousand bug reports is performed based on aging-related
keywords. The answers to these research questions provide
good practice for researchers to enhance their prediction in
a large bulk dataset, i.e. cloud oriented softwares.

Algorithm 1: SEARCH_ALGORITHM
Input: Import the Excel File containing the Bug

Description, Bug Id of all the bug reports of
1 Dataset

1.Create the list of all the bug reports containing
Bug Description, Bug Id and Bug Key
2. Create the List of all the Aging Related
Keywords-
’race’, ’leak’,’memory’,’aging’,’overflow’,’deplet’,
’Overflow’,’NPE’, ’null pointer’,
’Buffer exhausted’, ’deadlock’, ’flush’,
’Leak’,’Memory’,’LEAK’,
’MEMORY’,’OVERFLOW’, ’null pointer
exception’
3. while Check if keywords are present in the list of
all the bug reports do
Create a new list of only aging related bug
reports;

4. Remove the duplicates of aging related bugs if
any in the list using the set conversion.
5. Convert the new list of aging related bug reports
back to the dataframe and then to the excel file.
Output: Export the excel file containing only the

aging related bug reports

Table 2: Keywords

Keywords
Race Leak Memory Aging

Overflow deplet overflow NPE
null pointer Buffer Exhausted deadlock flush

leak LEAK memory MEMORY

4 Research methodology

4.1 Techniques revisited
4.1.1 Aging related keywords

Aging related bugs are classified by the effects of aging
while using the resources for the long term. Some of the

Table 3: Software Metrics

Type Metrics
McCabe
cyclo-
matic
complex-
ity

AvgCyclomatic, AvgCyclomaticModified,
AvgCyclomaticStrict, AvgEssential, Cyclo-
matic, CyclomaticModified, Etc.

Program
Size

AvgLine, AvgLineBlank, AvgLineCode,
AvgLineComment, CountClassBase, Count-
ClassDerived, CountDeclClass, CountDe-
clClassMethod, CountDeclClassVariable,
CountDeclExecutableUnit, Etc.

Table 4: Dataset Description

Dataset Version Files ARB-prone files
Cassandra 3 2764 385

Hadoop Mapreduce 0.23.0 1412 161
Hadoop HDFS 0.20.0 521 170

Hive 3.1.0 7112 367
Storm 2.3 2371 131

software resources have limited time and memory eg. data
objects and threads, file descriptors and database connec-
tions; unreleased files and locks. When this limits extends
it cause memory leakage which may lead to deadlock state
sometimes or even the software can crash. In this study, ag-
ing related bugs are foundwith the help of keywords such as
memory, leak, race, overflow, null pointer exception, dead-
lock, etc. All these keywords are related to aging. In most
of the studies, the bug report description is manually stud-
ied and if aging related keywords are found in it, those bugs
are categorized as aging related bugs. But as per today’s
scenario, when the amount of dataset has increased dras-
tically, manual categorization takes a lot of time. Thus in
this research, we have proposed the automatic process to
categorize aging related bugs with scripting in the python
programming language. The keywords used in this study
are given in Table 2 [25] .

4.1.2 Software metrics

The objective of our study is to predict aging related bugs
with the help of software metrics [26]. A software metric is
an estimate of software characteristic which is measurable
and countable. Thesemetrics play an important role inmea-
suring software productivity, performance, planning, and
many other applications. The software metrics are summa-
rized in Table 3, which have been automatically extracted
using the Understand tool for static code analysis. Metrics
are related to the bugs for fault prediction [11]. Our study
used software metrics to predict aging related bugs. There
are two sets of software metrics evaluated in our research:
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Figure 1: Framework for ARB prediction

Program size and McCabe’s cyclomatic complexity. Pro-
gram size is associated with the program’s size in terms of
lines of code and files and evaluates the developer’s produc-
tivity. To measure the program’s complexity, we require
another set of metrics, i.e. McCabe’s cyclomatic complex-
ity. It controls the number of paths through a program in a
graph and measures the number of operands and operators.

4.1.3 Machine learning classifiers/ classification
models

Classification Models tries to pull out valuable conclusions
from the observed values. In machine learning [27], two
approaches can be followed: supervised and unsupervised.
In supervised learning, the training dataset is provided into
the classification algorithm, and then the testing dataset is
compared with it to predict the outcome values whereas in
unsupervised learning, the provided dataset is not labeled
and looks for datapoints in the cluster. In unsupervised
learning, the algorithm looks for similarities and patterns
and identifies outliers in a dataset. Classification is an ex-
ample of supervised learning and clustering is an example
of unsupervised learning. The problem studied in this pa-
per is a classification problem where it has to predict that
software has bugs or not.
The relationship of software metrics and ARBs has been
proved using machine learning algorithms widely applied
in science to discover valuable patterns when a complex and
large data volume is available [16] . The problem statement
of predicting ARBs is supervised learning, also known as a
binary classification problem. It predicts whether the data
sample is ARB-free or ARB-prone in the testing dataset.
In our research, the data sample mentioned is a java file
called a module. Our study’s focus is not to predict the
number of aging related bugs in each file but the pres-
ence of bugs in each java file of our cloud oriented soft-
wares. The number is not considered as these bugs are in
a very small proportion and these bug’s reproducibility is
also difficult. Cross project defect prediction is performed

in this studywith cloud oriented softwares and then built the
fault prediction models using general machine learning al-
gorithms like Naive Bayes, Logistic Regression, Sequential
Mininmal Optimization, Decision Table, Random Forest,
J48 and bagging. In this section classification algorithms
are discussed which are generally adopted by researchers
and remarkably affect the efficacy of fault prediction[19]
[28]. Somewidely used classifiers in CPDP such as Nearest
Neighbour, Decision Tree implemented with Aging related
bugs bring unsatisfactory results therefore these classifiers
are not considered in this study.

Naive Bayes (NB) This classifier is established on the
basis of Bayes theorem with the features that are strongly
assumed to be independent. It is highly scalable, generally
used in text classification, requiring several variables to
be linear in a learning problem. Bayes theorem evaluates
conditional probability where problem which is to be
classified with n features(independent) and represented by
a vector x = (x1, x2,….xn)

P(Ck|x1, x2….xn)

For each of K possible outcomes or classes, Ck.
When feature takes large number of values, then the Bayes
theorem is decomposed into:

P (Ck|x) = p(Ck)p(x|Ck)/p(x)

Where P (Ck|x) is a Posterior probability and P (x|Ck)
is a Likelihood probability. In this study, the posterior
probability of hypothesis Ck is to be determined if a mod-
ule is ARB-prone. The evidence x contains information
that has been collected for prediction purposes. This
evidence are software complexity metrics or attributes
used to classify software. In this work, each metric xi is
assumed to be independent of each other where xj ! = xi

then the posterior probability is given as:
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P (Ck|x) = [
∑

P (xi|Ck)]P (Ck)/P (x)

Logistic Regression (LR) This is a supervised classifi-
cation algorithm where y variable (output) take discrete
values for a given set of features x(input). Linear re-
gression predicts continuous dependent variable whereas
logistic regression predicts categorical dependent variable.
Logistic forms S-shaped curve which forms exponential
growth taking values between 0 and 1.

y = e(b0 + b1 ∗ x1 + b2 ∗ x2…..+ bn ∗ xn)/(1+ e(b0 +
b1 ∗ x1 + b2 ∗ x2…..+ bn ∗ xn))

where x1, x2…xn are the independent features and
b0, b1…bn are parameters of the functions. It is applied for
binary classification problems. Y measures the probability
of the class and these parameters are adjusted to model the
data according to our requirement. Logistic regression help
in predicting the likelihood of aging prone files.

Sequential Minimal Optimization (SMO) SMO is an
algorithm for the problems cause during the training of sup-
port vector machines. It is an iterative algorithm used for
solving quadratic programming. It divides the problem into
series of smaller sub-problems that are solved analytically.

Decision Table (DT) This is a machine learning tech-
nique made up of a hierarchical table where each node at
a higher level is divided by adding additional attributes to
form another table. It is a visual representation of data that
decides on which conditions, what action is going to per-
form. A Decision table algorithm is used as a supervised
machine learning algorithm. The Decision tree uses the
C4.5 algorithm where questions are based on the attributes,
i.e. complexity code metrics. In decision tree the algorithm
splits the data iteratively until the classification error is not
reduced further. The root and inner node mention metrics,
and leaves show class labels. The Decision table is trans-
formed easily into a decision tree.

Random Forest (RF) The main component of random
forests is decision trees and operated as an ensemble. Ran-
dom forest is widely used for prediction inmachine learning
algorithms. Each tree in a random forest spits out a class
prediction and the class with maximum votes is used for
model prediction. The fundamental concept behind random
forest classifier is that many uncorrelated trees are grouped
as a committee that surpasses any individual constituent
model. When trees become together, the prediction result is
more exact than individual trees because the error rate gets
low as trees protect each other.

J48 In weka C4.5 algorithm is represented by J48. It is
an iterative algorithm where training sample data initial-
ize with the root, and then the partition is created of those
whose link of the common attribute between sub-values is

not there. J48 classification is based on decision tree where
leaves and nodes represent class level. It uses continuous
and categorical values. It also provides a technique of im-
putation which deals with missing values based on avail-
able data. J48 algorithm provides the replacement process
of the subtree that decreases the error of classification after
replacing the subtree with a leaf.

Bagging Bagging is an ensemble classifier that applies a
classifier each on random subset of the original dataset and
then collects their predictions to get a final prediction. It re-
duces the variance of decision tree by initiating randomiza-
tion in its process and developing an ensemble. It uses the
Bootstrap Aggregating algorithm for classification. Each
classifier is trained on a sample training dataset with re-
placement such that the size of each sample equals the size
of the actual training dataset.

4.2 Datasets
Aging related bugs are challenging to observe in software
due to their less presence and difficulty in reproduction.
This limits the availability of training data to develop fault
prediction model. Our study has collected cloud oriented
softwares that are large in scale and widely used in soft-
ware commodities. Aging related bugs exist in open source
cloud oriented softwares such as Hadoop Mapreduce, Cas-
sandra, Hadoop Hdfs, Hive and Storm. Aging related bugs
are less in number as comapre to non aging related bugs
therefore it is a class imbalance problem.Therefore these
datasets in this study are considered to be imbalance with
the proof given in Table 4. To carry out the empirical study,
cross project aging related bug prediction experiments are
conducted on five large datasets. The version, number of
files , ARB prone files and percentage of ARB prone files
for each dataset are given in Table 4. Datasets are taken
from GitHub.

Apache Cassandra (C) This is a popular open source
management system with a wide column store, distributed
and NoSQL database system. Basically, it provides high
availability with fast support for clusters belonging to mul-
tiple data-centers. Tables are created , altered and dropped
at run-time without blocking updates and queries. It is
java based which is controlled via Java Management Ex-
tensions(JMX).

HadoopMapReduce (HM) It is the programmingmodel
that generates big datasets based on a parallel, distributed
clustering algorithm. MapReduce is composed of two pro-
cedures: 1. Map procedure which is filtering and sorting,
2. Reduce procedure that executes the summary function.
It has also achieved high scalability and fault tolerance and
has become a part of Apache Hadoop. It is basically a
framework where large applications can be written to pro-
cess huge data in reliable cluster manner.

https://github.com/
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Hadoop HDFS (Hadoop Distributed File System)-(HH)
It manages distributed storage across nodes and follows
Master-slave architecture. It is different from other dis-
tributed systems as it is fault-tolerant and divided into two
components: Name node and n number of data nodes.
Name node act asMaster i.e. metadata and data nodes act as
slaves. For huge data, files are stored in various machines.
It is also available for parallel processing and streaming of
file system data. It provides authentication and file permis-
sions.

Hive (HI) It is a data warehouse system based on SQL
for reading, writing and managing large datasets. JDBC
driver and command-line tool are available for connecting
Hive. It is an open source project control by volunteers
at Apache foundation. It provides SQL abstraction to im-
plement SQL-like queries under Java without the need for
low level Java-API. Apache Hive is used and developed by
Facebook and other companies like Netflix, Amazon Web
Services.

Storm This is similar to Hadoop which became a stan-
dard for real-time processing system used to process large
amount of data. Storm is different from Hadoop as it is
stateless and can process tens of thousands of messages per
second on cluster. Apache Storm is used by Twitter , Nav-
iSite andWego to process data in a distributed and fault tol-
erant environment. Storm is user-friendly and reliable that
can be used by small companies as well as large software
industries.

4.3 Evaluation measures
Aging related bug prediction is the imbalanced prediction
problem where ARB-prone files share a small percentage
as compared to non ARB prone files. Therefore it is not
recommended to use accuracy, precision, F-measure which
are used in many studies as these performance measures
are poor indicators for imbalanced data.Thus we have used
Recall , FPR(False Positive Rate) and Bal(Balance) [8] as
performance measures. Classification models when tested,
gives the output as a confusion matrix shown in Table 5
from which the performance measures are evaluated. We
consider TP as True Positives, FP as False Positives, TN as
True Negatives and FN as False Negatives in this study.TP
denotes if the module is ARB-prone and it is correctly clas-
sified and the FN is if the module is ARB-prone but not
correctly classified. Similarly, TN means that the mod-
ule ARB-free is correctly classified, whereas FP incorrectly
classified ARB-free modules.

Recall (TPR) Also known as sensitivity generally used
for imbalanced classification to calculate the coverage of
minor class. It is a measure that evaluates the number
of correct positive predictions made out of all positive
predictions. Basically, it indicates the number of missed
positive predictions.

Table 5: Confusion Matrix

Prediction class

ARB free ARB prone

Actual Class | ARB free TN FP
| ARB prone FN TP

Recall =
TP

(TP + FN)
(1)

FPR (False Positive Rate) also known as Fall-out indicat-
ing the probability of false alerts. It evaluates the negative
classes incorrectly identified as positive classes from total
number of negative classes.

FPR(FalsePositiveRate) =
FP

(FP + TN)
(2)

Balance Bal (Balance) A tradeoff is needed between re-
call and FPR which are themselves comparable measures.
Bal evaluates the euclidean distance between Recall and
FPR.

Bal = 100−
√

(0− FPR)2 + (100−Recall)2√
2

(3)

4.4 Experimental setup
Aging Related Bugs (ARB) are software bugs that have
a severe impact on the system availability due to the ag-
gregation of errors after long term software execution.
ARBs [25] [8] can be listed as memory bugs, Unterminated
Threads, Unreleased files and lock , and Disk Fragmenta-
tion . The categorization of aging related bugs from all the
bug reports has been done manually in recent years by read-
ing each bug report’s description. If the bug report is found
to be memory or aging related then it is marked as Aging re-
lated bug report. We have searched keywords such as mem-
ory leak, deadlock, deallocating, dereference, overflow
buffer, lock, improper synchronization, null pointer excep-
tion, race condition, socket leak and uninitialized variables
in the description of bug reports. In this study, we have
transferred our manual task to automata through scripting
because it becomes tough for the researcher to search for
keywords in the description/summary of each bug report
when there are thousands of bug reports in cloud oriented
softwares. Manual searching is still acceptable whenwe are
working with one dataset. But when we have many datasets
and that too large, then it gets complicated and time taking
that is why we have implemented the automata of searching
the keywords in bug reports. The SEARCH_KEYWORD
algorithm, already shown in Algorithm 1, is used to re-
fine aging related bug reports from thousands of bug re-
ports. To confirm automata results, sorting of aging related
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bugs is also performed manually by reading bug descrip-
tion and then the results are compared as shown in Table 6.
It is observed that the number of ARB collected manually
and through automata are almost the same and comparable,
therefore Bug reports through automata are further studied
and explored. For example, in Cassandra , the aging re-
lated bugs were found to be 601 manually and 677 through
automata. Similarly, in Hadoop Mapreduce ARBs manu-
ally collected are 192 and by applying automata, it came
to 190. In Hadoop HDFS, ARBs explored manually are
377 and through automata, it is found as 344. In storm and
Hive dataset , ARBs inspected manually are 82 and 517 re-
spectively whereas ARBs inspected through automata are
84 and 601 respectively. Thus we have seen that a num-
ber of bugs investigated through manual and automata are
comparable. There is no considerable difference between
the number of ARBs and it is better to implement algorithm
for finding ARBs in large dataset.
This section describes the experimental setup for the em-
pirical study. The efficacy of ARB prediction is evaluated
by training a classification model using training dataset and
then using thismodel to classify other dataset known as test-
ing dataset in order to correctly predict ARB-prone files of
unseen data instances. ARB prone files are those java files
which have confirmed the presence of ARBs with the help
of bug reports. These datasets are obtained from cloud-
oriented softwares by dividing it into training and testing
set. The division is performed in two ways to evaluate
the proposed approach. Firstly, fault prediction is evalu-
ated when data about ARBs in the project under analysis
is available i.e. ARB-prone files are predicted by training a
classificationmodel using data of the same project. In order
to execute this way known as within project defect predic-
tion (WPDP), the dataset of same cloud oriented software
is split into training set compose of known ARB-prone files
and testing set where ARB-prone files are to be predicted.
The training set which is available to developers represents
the historical data about ARBs of the dataset. Similar anal-
ysis is provided for cross-project defect prediction(CPDP)
which is the second executed way where the test dataset is
made up of a specific project and training dataset is com-
posed of data from another cloud oriented software. The
experiment is performed on five large cloud oriented soft-
wares, thus there are 5*5 = 25 pairwise cases altogether for
within and cross project prediction where each dataset per-
formed cross project and within the project. We have ap-
plied 7 classifiers, calculated 3 performance measures on 5
large datasets thus this produces 7*3*25= 525 results which
are fair enough to predict ARB. The bug reports of each
dataset are collected from JIRA through Rest API where at
each round 1000 bugs are collected, therefore to retrieve a
greater number of bug reports we have to change the mini-
mum and maximum value of bug reports and repeat the ex-
traction rounds and then thousands of bug reports are col-
lected for each dataset in excel file. Then automatic pro-
cess is performed on bug reports to extract aging related
bug reports with the help of keywords defined in Table 2

using the SEARCH_KEYWORD algorithm mentioned in
section 3. The source code of all five open source cloud ori-
ented datasets are collected from Github repository. Soft-
ware metrics are used in this study for predictive purpose
which are automatically extracted from Understand tool [8]
for static code analysis. The dataset for prediction is com-
posed of software metrics (independent variables) and la-
bel (dependent variable) which are fed into the weka tool
[29] for implementation of CPDP and WPDP of ARBs us-
ing different machine learning classifiers. The label i.e. de-
pendent variable is marked as ’1’ if the file is ARB-prone
otherwise it is marked as ’0’. The marking of the dependent
variable is donemanually by exploring each bug reports and
listed java files associated with it. Then different perfor-
mance measures are evaluated from the prediction results
to build fault prediction models for cloud oriented datasets.

5 Results and analysis

In this section, the answers to all the research questions
are presented in detail. The analysis of bug prediction
is performed based on various performance measures
evaluated by applying general mining algorithms and
imbalance machine learning classifiers.

RQ 1. Software aging is an imbalanced data problem.
How does it justify?
Software aging is the phenomenon of system failure after
a long and continuous runtime which may cause due to the
software’s ongoing changes. Reinstalling or rebooting the
software is a short term fix but is not a successful remedy for
every software. Software aging is caused due to memory
leakage, deadlock, memory bloating , unreleased file locks,
numerical error and many more. The major hindrance of
this phenomenon is that it is not reproducible; therefore
these bugs are not easily repairable. Software aging may
also lead to software crashes and degradation. ARBs are
challenging to find in software, but it may cause significant
harm to the software or humans. Thus it is necessary to
predict aging related bugs in software.Table 6 displays the
description of bug reports collected through JIRA reposi-
tory where as in Table 7, description of Java files in each
dataset is shown after the mapping of bug reports to java
files. In Table 7, it is clearly visible that in each cloud ori-
ented software, the percentage of ARB files from total java
files is very less. For example, in Cassandra total number
of java files are 2764, out of which only 385 are aging re-
lated java files which turn out to be 13.93% only. Hence,
it is easily proved that software aging is the imbalanced
data problem as each large dataset has less than 50% of pre-
dicted class i.e. aging related files.Similarly, in Hive aging
related files only constitute 5% out of 7112 total number of
files. If the predicted class in the dataset is less than 50%
then that dataset is said to be imbalanced. It is significantly
proved that software aging is the imbalance problem found
in cloud oriented softwares. Due to the low probability of
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ARB-prone files compared to ARB-free files, software ag-
ing is considered class imbalanced data problem. The key
challenge of class imbalance is that the minority class left
behind in front of the majority class. It is necessary to pre-
dict minority class i.e. ARB-prone files to assure software
reliability.

Table 6: Comparison of ARB frommanually with automata

S.
No

Cloud
Computing
Dataset

Total No. of
Bugs

ARB
Manually
collected

ARB
through
au-
tomata

1 Cassandra 7869 601 677
2 Hadoop

Mapreduce
2541 192 190

3 Hadoop
HDFS

5125 377 344

4 Storm 1316 82 84
5 Hive 9598 517 601

Table 7: Percentage of ARB files

Dataset Total Java
Files

Aging Re-
lated Java
Files

Percentage

Hadoop
HDFS

521 170 32.62956

Cassandra 2764 385 13.92909
Hadoop
Mapreduce

1412 161 11.40227

Hive 7112 367 5.160292
Storm 2371 131 5.525095

RQ 2. How is the prediction performance differentiated
from CPDP with WPDP approach for ARB prediction in
cloud oriented softwares?
Software aging is the class imbalance problem where the
prediction class i.e. ARB prone files, are in the minority
compared to Aging-free files that fall under the majority
class. When data is imbalance, it becomes difficult to
predict bugs due to insufficient training dataset. In this
study,two different paths are implemented : i) cross project
defect prediction (CPDP) is carried out in cloud oriented
softwares. ii) Within project defect prediction (WPDP)
is implemented for five large cloud oriented softwares.
In WPDP, original dataset which is used as training ,
the same is used for testing as well but in CPDP due to
the unavailability of enough dataset, the dataset which is
trained is different from the testing dataset. Weka performs
WPDP by splitting the dataset in 10 cross fold validation.
The performance measures: Recall, FPR and Balance
are calculated for all five datasets in all the combinations
of training and testing datasets with cross project bug

prediction[8] and within defect prediction. The main
objective is to compare the prediction results for Aging
related bugs in cloud oriented open source software with
the help of CPDP and WPDP approach using machine
learning classifiers. Table 8 shows the average results
for within project defect prediction(WPDP) and cross
project defect prediction(CPDP) of aging related bugs
for all the five cloud oriented softwares. Classification
machine learning algorithms are performed using the
WEKA machine learning tool. On observing the data ,
it is clearly seen that CPDP performs much better than
WPDP in most of the cases for ARB prediction. Thus it
is significantly proved that for predicting aging related
bugs, cross project is the better option than With-in project
defect prediction using machine learning algorithms. Table
9 presents the results in terms of Recall performance
measure for each classifier in 25 pairwise experimented
datasets for ARB prediction.The above five experimented
datasets in the table denotes the Within-project approach
and rest 20 datasets represent cross project approach.
The classification algorithms adopted in this study are
Naïve Bayes, Logistic Regression, SMO, Decision Table,
Random Forest , J48 and Bagging. The best prediction
result i.e. higher recall value is highlighted yellow for
each experimented dataset.The high recall value denotes
ARB-prone files are correctly classified. The high value
of Balance performance measure provdes the best tradeoff
between Recall and FPR. The result observed is cross
project ARB prediction performed better than within
project ARB prediction where Naive Bayes predicts better
results than other machine learning classifiers according
to the statistics of Recall performance measure. As shown
in Table 9,the recall value for Cassandra WPDP is 0.362
whereas max CPDP value is 0.42 when different testing
dataset is considered for the same.SMO has performed
worst on average in all the pairwise cases during predic-
tion. The low performance of other classifiers is due to the
negative effect of the less percentage of ARB-prone files in
the cloud oriented datasets. Overall, Naïve Bayes is opted
for best machine learning algorithm to predict ARB-prone
files among cloud oriented softwares according to the
statistics of recall performance measure.
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Table 8: Results of Aging relate bug prediction in cloud oriented softwares

Training Cassandra Hadoop Mapreduce Hadoop HDFS Hive Storm

Testing Recall FPR Bal Recall FPR Bal Recall FPR Bal Recall FPR Bal Recall FPR Bal

C
as
sa
nd
ra

NB 0.36 0.08 29.54 0.36 0.09 29.54 0.47 0.16 29.62 0.1 0.02 29.36 0.17 0.03 29.41
LR 0.14 0.02 29.39 0.19 0.05 29.42 0.58 0.25 29.7 0.01 0 29.3 0.32 0.08 29.52
SMO 0 0 29.29 0 0 29.29 0.08 0.01 29.35 0 0 29.29 0 0 29.29
DT 0.11 0.02 29.36 0.1 0.02 29.36 0.43 0.13 29.59 0.01 0 29.3 0.16 0.03 29.41
RF 0.14 0.03 29.39 0.06 0.01 29.34 0.39 0.1 29.57 0.01 0 29.3 0.08 0.01 29.34
J48 0.25 0.07 29.47 0.17 0.05 29.41 0.47 0.2 29.62 0.02 0.01 29.3 0.18 0.04 29.42
Bagging 0.16 0.03 29.4 0.05 0.01 29.33 0.45 0.13 29.61 0 0 29.29 0.09 0.02 29.35

H
ad
oo
p
M
ap
re
du
ce NB 0.28 0.09 29.49 0.27 0.08 29.48 0.42 0.23 29.59 0.11 0.02 29.36 0.16 0.03 29.4

LR 0.08 0.01 29.35 0.12 0.02 29.37 0.31 0.13 29.51 0.03 0 29.31 0.17 0.03 29.41
SMO 0 0 29.29 0.01 0 29.3 0.12 0.02 29.37 0 0 29.29 0 0 29.29
DT 0.11 0.02 29.36 0.08 0.01 29.35 0.31 0.13 29.51 0.02 0 29.3 0.14 0.04 29.39
RF 0.12 0.02 29.37 0.21 0.01 29.44 0.36 0.13 29.54 0 0 29.29 0.1 0.02 29.36
J48 0.24 0.11 29.46 0.24 0.04 29.46 0.42 0.23 29.59 0.05 0.01 29.32 0.18 0.05 29.42
Bagging 0.16 0.03 29.4 0.21 0.02 29.44 0.41 0.16 29.58 0.01 0 29.3 0.14 0.03 29.39

H
ad
oo
p
H
D
FS

NB 0.26 0.05 29.47 0.26 0.05 29.47 0.56 0.23 29.69 0.16 0.03 29.4 0.17 0.03 29.41
LR 0.08 0.01 29.34 0.09 0.01 29.36 0.38 0.12 29.56 0.01 0 29.29 0.2 0.03 29.43
SMO 0 0 29.29 0.01 0 29.29 0.14 0.03 29.39 0 0 29.29 0 0 29.29
DT 0.09 0.01 29.35 0.06 0.01 29.33 0.42 0.11 29.59 0.03 0 29.31 0.14 0.01 29.39
RF 0.11 0.01 29.36 0.08 0.01 29.34 0.51 0.12 29.65 0 0 29.29 0.11 0.01 29.36
J48 0.28 0.09 29.49 0.17 0.05 29.41 0.51 0.23 29.65 0.04 0.01 29.32 0.2 0.03 29.43
Bagging 0.13 0.01 29.38 0.08 0.01 29.34 0.5 0.14 29.64 0.01 0 29.29 0.15 0.01 29.39

H
iv
e

NB 0.42 0.14 29.59 0.42 0.14 29.58 0.48 0.26 29.63 0.21 0.06 29.44 0.22 0.05 29.45
LR 0.16 0.02 29.4 0.16 0.03 29.4 0.44 0.17 29.6 0.05 0 29.33 0.2 0.03 29.43
SMO 0 0 29.29 0.03 0 29.31 0.19 0.05 29.42 0 0 29.29 0 0 29.29
DT 0.15 0.04 29.4 0.13 0.02 29.38 0.46 0.14 29.61 0.02 0 29.3 0.18 0.03 29.42
RF 0.18 0.04 29.42 0.11 0.02 29.37 0.4 0.15 29.57 0.05 0 29.33 0.14 0.02 29.39
J48 0.26 0.13 29.47 0.16 0.04 29.4 0.41 0.21 29.58 0.1 0.01 29.36 0.2 0.04 29.43
Bagging 0.23 0.04 29.45 0.1 0.02 29.36 0.46 0.18 29.61 0.03 0 29.31 0.18 0.02 29.41

St
or
m

NB 0.28 0.07 29.49 0.27 0.07 29.48 0.43 0.12 29.59 0.11 0.02 29.37 0.18 0.02 29.41
LR 0.1 0.01 29.36 0.07 0 29.34 0.36 0.07 29.54 0.01 0 29.29 0.19 0.01 29.43
SMO 0 0 29.29 0.02 0 29.3 0.1 0.02 29.36 0 0 29.29 0 0 29.29
DT 0.18 0.03 29.41 0.08 0.01 29.35 0.32 0.09 29.51 0.02 0 29.3 0.15 0.01 29.4
RF 0.11 0.01 29.37 0.05 0.01 29.33 0.32 0.07 29.51 0.01 0 29.29 0.12 0 29.37
J48 0.2 0.07 29.43 0.13 0.01 29.38 0.31 0.15 29.51 0.03 0 29.31 0.14 0.01 29.39
Bagging 0.15 0.02 29.39 0.05 0.01 29.33 0.37 0.09 29.55 0.01 0 29.29 0.08 0 29.35
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Table 9: Recall Performance Measure for all experimented
datasets

Training-
Testing
Dataset

NB LR SMO DT RF J48 Bagging

C -C 0.362 0.138 0 0.107 0.141 0.25 0.159
HM-HM 0.269 0.119 0.013 0.082 0.207 0.244 0.207
HH-HH 0.563 0.385 0.137 0.421 0.509 0.515 0.503
HI-HI 0.208 0.052 0 0.022 0.055 0.099 0.033
Storm-
Storm

0.177 0.193 0 0.154 0.116 0.139 0.085

C-HM 0.282 0.082 0 0.107 0.119 0.238 0.157
C-HH 0.261 0.077 0 0.089 0.107 0.285 0.131
C-HI 0.42 0.159 0.003 0.153 0.18 0.257 0.227
C-Storm 0.277 0.1 0 0.177 0.108 0.2 0.147
HM-C 0.359 0.19 0.003 0.097 0.065 0.169 0.055
HM-HH 0.261 0.095 0.006 0.06 0.077 0.166 0.077
HM-HI 0.417 0.161 0.03 0.131 0.109 0.159 0.104
HM-Storm 0.27 0.07 0.016 0.085 0.054 0.131 0.054
HH-C 0.473 0.577 0.084 0.429 0.395 0.468 0.452
HH-HM 0.419 0.307 0.119 0.313 0.357 0.419 0.407
HH-HI 0.483 0.436 0.191 0.456 0.404 0.406 0.456
HH-Storm 0.431 0.362 0.1 0.316 0.316 0.308 0.37
HI-C 0.104 0.011 0 0.011 0.011 0.021 0.003
HI-HM 0.107 0.025 0 0.019 0 0.05 0.013
HI-HH 0.16 0.006 0 0.03 0 0.042 0.006
HI-Storm 0.108 0.008 0 0.016 0.008 0.031 0.008
Storm-C 0.167 0.32 0 0.164 0.076 0.185 0.089
Storm-HM 0.157 0.169 0 0.138 0.1 0.182 0.138
Storm-HH 0.172 0.196 0 0.143 0.107 0.202 0.148
Storm-HI 0.224 0.197 0 0.183 0.142 0.197 0.178

RQ 3.Is there any statistical difference in machine learn-
ing algorithms using cross project for ARB prediction ?
The hypothesis test is performed to point out the best clas-
sifier to confirm the difference between classifiers statisti-
cally significant. In this study, non-parametric tests: Fried-
man and Kruskal Wallis Test are conducted based on Re-
call performance measure at a significance level of 0.05
i.e. 95% confidence level. The Kruskal-Wallis Test analy-
ses the response of more than two levels of just one factor
on the result whereas Friedman Test analyses the response
of two factors on the experimental result. Kruskal Wallis
Test is the nonparametric equivalent of OneWayANNOVA
whereas Friedman Test is the nonparametric equivalent of
Two Way ANNOVA. There are total of 25 combinations of
dataset with seven machine learning classifiers. Both the
tests are performed on the basis of ranking. The hypothesis
formulated for this study are:
H0: There is no significant difference between the machine
learning classifiers
H1 : There is a difference between the machine learning
classifiers.
H0 is null hypothesis and H1 is alternate hypothesis. Re-
jectingH0 means that there is a statistical difference among
the classifiers i.e. p value ( probability of statistic test )
which is supposed to be lower than the significant level of
0.05. It does not tell us where that difference is among the
classifiers. Both the tests are one-tailed test because it uses
chi-square distribution to obtain a p-value. Under two con-

Figure 2: Distribution of classifiers on basis of Friedman
Test

ditions Null hypothesis can be rejected : first is if p value
is less than the critical value and another is if Friedman test
value (Q) or kruskal wallis Test value (K) is greater than
the critical value evaluated by implementing these statisti-
cal tests.
After applying Friedman Test, p-value<<0.0001 which is
lower than the significant level (0.05) using chi-square dis-
tribution andwe haveQ value i.e. friedman test valuewhich
turns out to be 105.484. Q value observed is greater than the
critical value (12.592) shown in Figure 4. Thus null hypoth-
esis is rejected on the basis of Q and p value shown in Table
10 as Friedman Test indicates that Q value should be greater
than critical value to reject null hypothesis . This concludes
that all seven general classifiers have not performed the
same. Figure 3 points out that Naïve Bayes performs better
for predicting aging related bugs than other machine learn-
ing classifiers with respect to Recall value.Kruskal Wallis
Test is also applied to confirm the results for CPDP on Ag-
ing related bugs. K value (Kruskal Wallis Test value) is
observed on the basis of sum of the ranks for each classifier
shown in figure 6. The value of K(59.301) is much higher
than chi-square distribution i.e. K(critical)=12.592 seen in
Table 11, therefore null hypothesis is rejected. It confirms
the presence of an alternate hypothesis that says seven gen-
eral machine learning classifiers applied to predict aging
related bugs are different. Figure 5 shows Naive Bayes per-
form better results than other machine learning classifiers.
Finally, this study analyze the efficiency of Naive Bayes
classifier in both the conditions for WPDP and CPDP in
ARB prediction models.

Table 10: Results of Friedman Test

Q (Observed value) 105.484
Q (Critical value) 12.592

DF 6
p-value (one-tailed) 0.0001

alpha 0.050
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Figure 3: Graphical representation of Friedman Test

Figure 4: Distribution of classifiers on the basis of Kruskal
Wallis Test

Figure 5: Graphical representation of Kruskal Wallis Test

Table 11: Results of Kruskal Wallis Test

K (Observed value) 59.301
K (Critical value) 12.592

DF 6
p-value (one-tailed) 0.0001

alpha 0.050

6 Threats to validity
In this section, limitations are discussed which are gener-
ally familiar in the empirical literature. Cloud oriented open
source datasets have been taken for the experiment but it is
suggested if industrial datasets are considered , it confirm
the results and validate the proofs. In this study, software
metrics are predicting aging related bugs in cloud oriented
softwares but Aging related metrics and Halstead metrics
are not extracted due to the industrial restrictions of Un-
derstand tool. It is observed in other studies [21] , aging
related metrics are an vital component to predict aging re-
lated bugs for bug prediction models. Imbalance mitigation
procedure and Transfer learning approach need to be ap-
plied for avoiding imbalance class problem. Cross project
aging related bug prediction and WPDP is applied in five
cloud oriented softwares with seven general machine learn-
ing classifiers that result in twenty-five datasets combined,
still generalization cannot be done about the results as soft-
ware is of different size with different development appli-
cations.

7 Conclusion and future work
An empirical study has been conducted to predict aging
related bugs in cloud oriented software for building
cross project bug prediction models. Five different cloud
oriented datasets are explored with seven machine learning
classifiers are considered in this study. Bug reports are
extracted using JIRARESTAPI and then through automata
approach, aging related bug reports are classified from
all the bug reports based on the aging related keywords.
Source code metrics of cloud oriented softwares are driven
from Understand tool and then machine learning classifiers
are applied to predict aging related bugs using cross project
bug prediction and within project ARB prediction. The
prediction results are then validated using the Kruskal
Wallis Test and Friedman test where null hypothesis has
been rejected and concluded that Naïve Bayes is the best
among the other machine learning classifiers for predicting
aging related bugs in the cloud oriented softwares. The
following work has been contributed in our study:

1. Bug reports of cloud oriented softwares are in
thousands, therefore it is not possible to directly download
the bug reports thus we have used JIRA REST API in
which at a time, every thousand bug reports is directly
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downloaded in an excel file.

2. As per the research ,aging related bug reports are
sorted manually by reading bug description on the basis
of keywords in recent years but now when there are
cloud oriented softwares containing thousands of bugs , it
becomes tedious to do it manually. Hence we have created
the algorithm and implemented in python to classify aging
related bugs from all bug reports.

3. Software aging is a imbalance data problem where
aging -prone files are in low proportion as compared to
aging-free files. Cross project bug prediction is applied on
five large datasets to predict the aging -prone class files for
building bug prediction models.

4. Seven machine learning classifiers are executed on
five different projects and CPDP and WPDP is carried out
to predict ARBs. Naïve Bayes is proved to be the best
among these classifiers to predict aging related bugs where
it is proved that CPDP performed better than WPDP using
general machine learning classifiers.

5. Non-parametric test i.e. Kruskal Wallis Test and
Friedman Test are performed to validate the results.
On application of these statistical tests, null hypothesis
is rejected and it proved that all classifiers work differently.

In the future, it is planned to consider aging related met-
rics , Halstead metrics along with software metrics for pre-
dicting ARBs. Feature selection and imbalance mitigation
procedures are going to be applied in future work. By us-
ing imbalance class methods, the results can be more gen-
eralized and confirmed as ARBs is the imbalance prob-
lem.Imbalance techniques are planned to be implemented
in future work. More advance imbalance machine learn-
ing classifiers are planned to implement in cloud oriented
datasets which will be enhanced withmore experimentation
on large size datasets.
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