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Usage of mobile devices has grown over the past years. The term “mobile devices” covers many 

different kinds of devices (e.g. smart phones, cell phones, personal digital assistant (PDA), tablets, 

netbooks, etc.). A typical example that shows the growth of technologies is the smart phone. A Smart 

phone serves not only for voice calls and typing SMS, but can be used to access the internet and e-mails, 

play music and movies, and access remote storages. The Disadvantage of mobile devices is that they do 

not have a wired connection to the internet and thus the connection can vary. It can be fast while using 

WI-FI or the 3G mobile network or very slow using an old GRPS technology. 3G and other  

state-of-the-art technologies are not available everywhere. But users want to access their files as quickly 

and reliably as they can access them on a wired connection. 

If data are demanded repeatedly, they can be stored on mobile devices in an intermediate component 

called a cache. However, the capacity of the cache is limited; thus we should store only the data that 

will probably be demanded again in the future. In this article, we present a caching algorithm which is 

based on client and server statistics. These statistics are used to predict a user’s future behaviour. 

Povzetek: Opisana je nova metoda za predpomnjenje pomnilniških naprav. 

1 Introduction
Over the past years, more and more people can access the 

internet and produce data. The need of storing this data 

has also grown. Whether data are of multimedia types 

(e.g. images, audio, or video), text files, or are produced 

by scientific computation, they should be stored for 

sharing among users and further use. The data files can 

be stored on a local file system, on a remote file system 

or on a distributed file system.  

A local file system (LFS) provides the data quickly 

compared to other solutions. On the other hand, LFS 

does not have enough capacity for storing a huge amount 

of data in general. LFS is also prone to failure. Because 

the data on LFS are usually not replicated, failure of the 

LFS usually causes more or less temporary loss of data 

accessibility, or even loss of data. Another disadvantage 

of LFS is that the local data cannot be accessed remotely. 

A remote file system (RFS) provides the data 

remotely. RFS has otherwise the same disadvantages as 

LFS. It is prone to hardware failure. RFS is also hardly 

scalable. While using remote access, RFS has to use user 

authentication and authorization for preventing data 

stealing or corruption.  

A Distributed file system (DFS) provides many 

advantages over a remote file system. These advantages 

are reliability, scalability, capacity, security, etc. 

Accessing files from mobile devices has to take into 

account changing communication channels caused by the 

user’s movement. DFSs that are widely used were 

designed before mobile devices spread. Now, it is hard to 

develop mobile client applications and to implement 

algorithms for mobile devices into a DFS. None of the 

current DFSs, e.g. Andrew File System (AFS), Network 

File System (NFS), Coda, InterMezzo, BlueFS, 

CloudStore, GlusterFS, XtreemFS, dCache, MooseFS, 

Ceph and Google File System, has suitable clients for 

mobile devices [1] [2] [3]. 

Mobile devices have limited capacity for storing user 

content. They can store up to GBs of the data. Some of 

the devices can extend their capacity by using a memory 

card, but the capacity of these cards is also limited 

(usually to 32GB [4]). On the other hand, a DFS can 

store TBs of the data.  

The speed of a wireless connection is low in 

comparison to a wired connection. The highest wireless 

speed is often limited by the use of the Fair User Policy 

(FUP) by the mobile connection provider. The FUP 

restricts the quantum of the downloaded data in a period 

of time [5]. In addition, the speed of a wireless 

connection can vary. The newest connection technologies 

are not available everywhere, but mobile users wish to 

access their data as fast as possible. So far, users 

download the same data repeatedly; we can use a cache 

to increase system performance.  In this article, we will 

focus on use of the cache by mobile clients in a 

distributed file system 

A cache is an intermediate component which stores 

data that can be potentially used in the future. While 

using a cache, the overall system performance is 
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improved. The cache is commonly used in database 

servers, web servers, file servers, storage servers, etc. [6]. 

However, cache capacity is not usually sufficient to store 

all requested content. When the cache is full, a system 

designer must adopt an algorithm which marks old 

content in the cache to be replaced. This algorithm 

implements replacement policy.  

Cache functionality is depicted in Figure 1. The 

cache in the DFS can be on the client side as well as on 

the server side. 

 

 

Figure 1: Cache. 

The cache on the client side stores content that has 

been downloaded by a user who is running a client 

application. In this case, replacement policy is usually 

based on statistical information gathered from the user's 

behaviour. The cache on the server side contains data 

which has been requested by the most users. 

Replacement policy in this case uses statistics gathered 

from all users' requests. Using a cache on the server and 

the client sides at the same time does not increase system 

performance. Increasing the cache hit ratio on the client 

side causes increasing the miss ratio on the server side 

and vice versa [7]. 

In section 2, we introduce cache policies commonly 

used. We discuss simple, statistics-based and hybrid 

caching algorithms. 

We present a new caching replacement policy in 

section 3. We use client and server statistics in a manner 

which increases system performance. In section 4, we 

present results of performance analysis for the new 

algorithm. The results were acquired via simulation of 

user behaviour. As a remote storage for user files, we 

used KIVFS. KIVFS is a distributed file system which is 

being developed at the Department of Computer Science 

and Engineering, University of West Bohemia [8]. KIV 

is an acronym for the Czech name of our department 

(Katedra Informatiky a Výpočetní techniky). KIVFS is 

also designed to support mobile devices.  

2 Overview of Caching Algorithms 
We describe replacement policies which are commonly 

used in distributed file systems or in operating systems. 

Clearly, an optimal replacement policy replaces data 

whose next use will occur farthest in the future. 

However, this policy is not implementable. We cannot 

look into the future to get needed information about 

usage of the data. Hence, no implementable caching 

policy can be better than an optimal policy. 

Caching policies can be divided into three 

categories: simple, statistics-based and hybrid policies. 

2.1 Simple caching algorithms 

Simple caching algorithms do not use any statistics 

or additional information.  For replacement decisions, 

they usually employ other mechanisms. Examples of 

simple caching algorithms are Rand, FIFO, FIFO with 

2
nd

 chance, and Clock None of these caching policies 

takes user behaviour into account. 

RAND. RAND or Random is a simple replacement 

policy which chooses data to be replaced based on 

random selection [9]. It is very easy to implement this 

replacement policy.  

FIFO. First-In First-Out is another simple 

replacement policy. The data that are chosen to be 

replaced are the oldest in the cache. Data in the cache are 

ordered in a queue. The new data are placed on the tail of 

the queue. When the cache is full and new data come into 

the cache, the data from the head of the queue are 

replaced [10].  

FIFO with 2
nd

 chance (FIFO2). First-In First-Out 

with second chance is a modification of the FIFO 

caching policy. FIFO2 stores the data units in a queue. In 

contrast to FIFO, FIFO2 stores a reference bit for each 

data unit in the queue. If a cache hit occurs, the reference 

bit is set to 1. When a replacement is needed, the oldest 

unit in the cache with a reference bit set to 0 is replaced 

and the reference bit of the older units is set to 0 at the 

same time [11]. 

CLOCK. The Clock replacement policy stores the 

data units in a circular buffer [12]. Clock stores a 

reference bit for each cached unit, and a pointer into the 

buffer structure. If a cache hit occurs, the reference bit of 

the requested data unit is set to 1. The data to be replaced 

are chosen by circularly browsing the buffer, and 

searching for the unit with a reference bit set to 0. The 

reference bit of each data unit with the reference bit set to 

1 found during the browsing is reset to 0 [13] .  

2.2 Statistics-based caching algorithms 

Statistics-based algorithms employ statistical information 

about data in the cache: frequency of the accesses, and 

recency of the last use of data. Frequency is used by an 

LFU algorithm and recency by LRU and MRU 

algorithms. 

LRU. The Least Recently Used replacement policy 

uses the temporal locality of the data [9]. Temporal 

locality means that the data units that have not been 

accessed for the longest time will not be used in the near 

future and can be replaced when the cache is full [14]. 

According to the tests [15], LRU seems to be the best 

solution for caching large files. LRU is frequently 

implemented with a priority queue. Priority is the 

timestamp of last access. The disadvantage of the LRU 

policy is that the data unit can be replaced even if the 
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unit was accessed periodically many times. In this case, 

the file will probably be requested in the near future 

again. 

MRU. The Most Recently Used replacement policy 

works conversely to LRU. MRU replaces the most 

recently accessed data units. MRU is suitable for a file 

which is being repeatedly scanned in a looping sequential 

reference pattern [16].  

LFU. The Least Frequently Used replacement policy 

replaces the data that have been used least. For each data 

unit there is a counter which is increased every time the 

data unit is accessed [9]. The disadvantage of this 

approach is that the data units in the cache that have been 

accessed many times in a short period of time remain in 

the cache, and cannot be replaced even if they will not be 

used in the future at all. 

2.3 Hybrid caching algorithms 

The disadvantages of LRU and LFU replacement 

policies result in hybrid algorithms. These algorithms 

mostly combine LFU and LRU to get better results in the 

cache hit ratio.  
2Q replacement policy uses two queues. The first 

queue uses the FIFO replacement policy for data units 

and is used for data units that have been referenced only 

once. The second queue uses LRU as a replacement 

policy, and serves for so-called hot data units. Hot data 

units are units that have been accessed more than once. If 

a new data unit comes to the cache, it is stored in the 

FIFO-queue. When the same data unit is accessed for the 

second time, it is moved to the LRU-queue. The 2Q 

algorithm gives approximately 5% improvement in the 

hit ratio over LRU [17]. 

MQ replacement policy uses multiple LRU-queues. 

Every queue has its own priority. The data units with a 

lower hit count are stored in a lower priority queue. If the 

number of the hit count reaches the threshold value, the 

data unit is moved to the tail of a queue with a higher 

priority. When a replacement is needed, the data units 

from the queue with the lowest priority are replaced [18].  

FBR replacement policy uses the benefits of both 

LFU and LRU policies. FBR divides the cache into three 

segments: a new segment, a middle segment, and the old 

segment. Data units are placed into sections based on 

their recency of usage. When a hit occurs, the hit counter 

is increased only for data units in the middle and old 

segments. When a replacement is needed, the policy 

chooses the data unit from the old segment with the 

smallest hit count [19]. 

LIRS replacement policy uses two sets of referenced 

units: the High Inter-reference Recency (HIR) unit set 

and the Low Inter-reference Recency (LIR) unit set. 

LIRS calculates the distance between the last two 

accesses to a data unit and also stores a timestamp of the 

last access to the data unit. Based on this statistical 

information, the data are divided into either LIR or HIR 

blocks. When the cache is full, the least recently used 

data unit from the LIR set is replaced. LIRS is suitable 

for use in virtual memory management [20]. 

LRFU replacement policy employs both LRU and 

LFU replacement policies at the same time. LRFU 

calculates the so-called CRF (Combined Recency and 

Frequency) value for each data unit. This value quantifies 

the likelihood that the unit will be referenced in the near 

future. LFRU is suitable for use and was tested in 

database systems [21]. 

LRD replacement policy replaces the data unit with 

the lowest reference density. Reference density is 

a reference frequency for a given reference interval.  

LRD has two variants of use. The first variant uses a 

reference interval which corresponds to the age of a 

page. The second variant uses constant interval time [22]. 

LRU-K replacement policy keeps the timestamps of 

the last K accesses to the data unit. When the cache is 

full, LRU-K counts so-called Backward K-Distance 

which leads the marked data unit to replace. The LRU-K 

algorithm is used in data base systems [23]. An example 

of LRU-K is LRU-2, which remembers the last two 

access timestamps for each data unit. It then replaces the 

data unit with the least recent penultimate reference [24]. 

ARC is similar to the 2Q replacement policy. The 

ARC algorithm dynamically balances recency and 

frequency. It uses two LRU-queues. These queues 

maintain the entries of recently evicted data units [6]. 

ARC has low computational overhead while performing 

well across varied workloads [17], [25]. ARC requires 

units with the same size; thus it is not suitable for 

caching whole files. 

CRASH is a low miss penalty replacement policy. It 

was developed for caching data blocks during reading 

data blocks from the hard disk. CRASH puts data blocks 

with contiguous disk addresses into the same set. When 

replacement is needed, CRASH chooses the largest set 

and replaces the block with the minimum disk address 

[6]. CRASH works with data blocks with the same size; 

thus CRASH is not suitable for caching blocks with 

different sizes. 

3 The LFU-SS and LRFU-SS 

Architecture 
All caching algorithms mentioned were designed mainly 

for low-level I/O operations. These algorithms usually 

work with data blocks that have the same size. When 

replacement occurs, all the statistics-based and hybrid 

caching policies mentioned choose the block to be 

removed from the cache based on statistics gathered 

during user requests. Moreover, all the caching policies 

have to store statistical information for all data blocks in 

the cache. 
We propose a new caching policy suitable for use in 

mobile devices. Our first goal is to minimize costs of 

counting the priority of data units in the cache. This goal 

was set because mobile device are not as powerful as 

personal computers ant their computational capacity is 

limited. The speed of data transfer from a remote server 

to the mobile device can vary. Thus, our second goal is to 

increase the cache hit ratio, and thereby decrease the 

network traffic caused by data transfer.  



372 Informatica 36 (2012) 369–378 P. Bžoch et al.  

 

We present an innovated LFU algorithm we call 

Least Frequently Used with Server Statistics (LFU-SS), 

and a hybrid algorithm we call Least Recently and 

Frequently Used with Server Statistics (LRFU-SS) [26]. 

3.1 LFU-SS 

In LFU-SS, we use server and client statistics for 

replacement decisions. We will consider server statistics 

first. The database module of the server maintains 

metadata for the files stored in the DFS. The metadata 

records contain items for storing statistics. These 

statistics are number of read and number of write hits per 

file, and number of global read hits for all files in the 

DFS. When a user reads a file from the DFS, the 

READ_HITSserver counter is increased, and sent to the 

user. When a user wants to write the file content, the 

WRITE_HITSserver counter is increased. Both of these 

counters are provided as metadata for each requested file. 

Calculation of the GLOBAL_HITSserver counter is a time-

consuming operation because of summation of the 

READ_HITSserver of all files. If we presume that the DFS 

stores thousands of files which are accessed by users, the 

value of variable GLOBAL_HITSserver is then much 

greater than the value of variable READ_HITSserver, and 

we do not need to get the value of  GLOBAL_HITSserver 

for each file access. The value of the GLOBAL_HITSserver 

counter is computed periodically, thus saving server 

workload. 

The caching unit in our approach is the whole file. 

By caching whole files, we do not need to store read or 

write hits for each block of the file; we store these 

statistics for the whole file. Storing whole files also 

brings another advantage – calculation of priorities for 

replacement is not computationally demanding because 

of the relatively low number of units in the cache. 

When the LFU-SS replacement policy must mark a 

file to be thrown out of the cache, LFU-SS works 

similarly to regular LFU. LFU-SS maintains metadata of 

files in a heap structure. In LFU-SS, we use a binary 

min-heap. The file for replacement is stored in the root 

node. When a user reads a cached file, the client read hits 

counter READ_HITSclent is increased and the heap is 

reordered if necessary. The server statistics are only used 

for newly incoming files to the cache. 

In a regular LFU policy, the read hits counter for a 

new file is initialized to one (the file has been read once). 

The idea of LFU-SS is that we firstly calculate the read 

hits counter from the statistics from the server. If the new 

file in the cache is frequently downloaded from the 

server, the file is then prioritized in comparison to a file 

which is not frequently read from the server. For 

computing the initial read hits value, we use the 

following formula: 

 
We first calculate the difference between read and write 

hits from the server. We prefer the files that have been 

read many times, and have not been written so often. 

Moreover, we penalize the files that are often written and 

not often read. We do this in order to maintain the data 

consistency of the cached files. The variable 

GLOBAL_HITSclient represents the sum of all read hits to 

the files in the cache. We add 1 because the user wants to 

read this file. We must store the read hits value as a 

decimal number for accuracy reasons when reordering 

files in the heap. The pseudo-code for LFU-SS is in 

Figure 2.  

The disadvantage of using LFU-SS and general LFU 

relates to ageing files in the cache. If the file was 

accessed many times in the past, it still remains in the 

cache even if the file will not be accessed in the future 

again. We prevent this situation by dividing the variable 

READ_HITSclient by 2. When the value of variable 

READ_HITSclient reaches the threshold value, 

READ_HITSclient variables of all cached files are divided 

by 2. The threshold value was set to 15 read hits 

experimentally. 

Input: Request for file F 

Initialization: heap of cached files 

records /*ordered by client’s cache read 

hit counts */ 

if F is not in cache 

{ 

  while cache is full  

  { 

    remove file with the least read hits 

    reorder heap to be min-heap 

  } 

  compute initial READ_HITS for file F 

  download file F into cache 

  insert metadata record to the heap 

  reorder heap to be min-heap 

} 

else 

{ 

  increase READ_HITS value of file F by 1 

  reorder heap if necessary 

  upload client statistics to server 

  if READ_HITS > threshold 

  { 

     for each FILE in cache do 

     { 

       FILE.READ_HITS = FILE.READ_HITS / 2 

     } 

  } 

} 

Figure 2: Pseudo-code for LFU-SS 

Using statistics from the server for gaining better 

results in the cache read hit ratio causes a disadvantage in 

updating these statistics. If the accessed files are 

provided from the cache, the statistics are updated only 

on the client side, and are not sent back to the server. In 

this case, the server does not provide correct metadata, 

and the policy does not work correctly. A Similar case 

occurs while using a cache on the server and client sides 

simultaneously [7]. To prevent this phenomenon, the 

client application periodically sends local statistics back 

to the server. The update message contains file ids and 

number of requests per each file since the last update. We 

show the experimental results for LFU-SS with and 
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without uploading statistics to the server in the next 

section.  

We will discuss the time complexity of using  

LFU-SS now. As mentioned before, we use a binary min-

heap for storing metadata records. This heap is ordered 

the by read hits count. For cached files in LFU-SS, we 

use three operations: inserting a new file into the cache, 

removing a file from the cache, and updating file read 

hits. All these three operations are O(logN) [27]. 

3.2 LRFU-SS 

Next, we will use LFU-SS in combination with 

standard LRU. As for mentioned hybrid caching 

replacement policies, the combination of LRU and LFU 

increases the cache hit ratio. For the combination of these 

caching policies, we will compute the priority of LRU 

and LFU-SS for each file in the cache. The priority of 

LRU and LFU-SS is from the interval (0, 65535], where 

a higher value represents a higher priority. The file with 

the lowest priority is replaced.  The formula for counting 

the final priority of the file is the following: 

 

 
 

In computing the final priority, we can favour one of 

the caching policies by setting a higher value for K1 or K2 

constants. The impact of setting these constants is shown 

in section 4. Next, we will focus on computing priority 

values for LFU-SS and LRU caching policies. 

3.2.1 PLFU-SS 

The priority value for the LFU-SS algorithm is 

calculated by using linear interpolation between the 

highest and the lowest read hits values. The formula for 

counting this priority is the following: 
 

 
 

In this formula, the values of variables 

GLOBAL_HITSmin,client and GLOBAL_HITmax,client 

correspond to the highest and lowest read hits values. In 

the case that the file is new in the cache, we calculate 

read hits by using the formula from the previous section. 

We can expect that a new file in the cache is fresh and 

will also be used in the future. Despite computing read 

hits for a new file in the cache by using server statistics, 

new files in the cache still have a low read hits count. 

Therefore, we calculate the PLFU-SS for the new file in the 

cache in a different way. We use server statistics again 

and calculate the first PLFU-SS as follows: 
 

  

3.2.2 PLRU 

The least recently used policy usually stores the 

timestamp for last access to the file. If a replacement is 

needed, the file that has not been accessed for the longest 

time period is discarded. In our approach, we need to 

calculate the priority from the timestamp. We do this as 

follows: 

 
 

As shown in the formula, we again use linear 

interpolation for calculating PLRU. We interpolate 

between Tleast_recently_file and Tmost_recently_file . Tleast_recently_file 

is the timestamp of the file that has not been accessed for 

the longest time period. Tmost_recently_file is the timestamp of 

the file that has been accessed most recently. 

The disadvantage of using LRFU-SS relates to 

computation priorities. We need to recalculate priorities 

for all cached units every time one cached unit is 

requested. We also need to reorder the heap of the cached 

files because of changes in these priorities. By caching 

whole files, we do not have many units in the cache, so 

these calculations are acceptable. The pseudo-code for 

the LRFU-SS is in Figure 3.  

Input: Request for file F 

Initialization: Min-Heap of cached files 

/*ordered by priority*/ 

K1, K2 /*constants for computing Pfinal*/ 

 

if F is not in cache 

{ 

  while cache is full  

  { 

    remove file with the least priority 

    reorder heap to be min-heap 

  } 

  compute read hits for file F 

  compute initial PLFU-SS for file F 

  compute PLRU for file F 

  compute Pfinal := K1 * PLFU-SS + K2 * PLRU; 
  download and Insert file F into cache 

  recalculate priorities of all files in 

     the cache and simultaneously reorder  

     the heap 

} 

else 

{ 

  increase READ_HITS value of file F by 1 

  upload client statistics to server 

  if READ_HITS > THRESHOLD 

  { 

    for each FILE in cache do 

    { 

      FILE.READ_HITS = FILE.READ_HITS / 2 

    } 

  } 

  store new timestamp for file F 

  recalculate priorities of all files in 

    the  cache and reorder the heap 

} 

Figure 3: Pseudo-code for LRFU-SS. 

The LRFU-SS policy uses server statistics like  

LFU-SS. Using LRFU-SS causes the same problem with 

updating access statistics on the server side. We will 

solve this problem by periodically sending update 

messages back to the server. We show the experimental 
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results for LRFU-SS with and without uploading 

statistics to the server in the next section. 

As with LFU-SS, we will discuss the time 

complexity of using LRFU-SS. Again, we use a binary 

min-heap for storing metadata records of cached files. 

We also employ three operations to the cached files: 

inserting a new file into the cache, removing a file from 

the cache, and accessing the file. Let N be the number of 

the cached files: 

The operation inserting a file entails recalculating 

time priorities of all cached files, which takes O(N) time. 

New priorities do not affect the heap structure because 

the recalculation maintains the min-heap property. After 

recalculating new priorities, we insert a new file into the 

heap, which is O(logN). Then, insertion of a new file is 

O(N). The operation removing a file is O(logN) again. 

The operation accessing a file has the time complexity of 

O(N). As with inserting a new file, we need to 

recalculate priorities of all files taking O(N) time.  For an 

accessed file, we need to recalculate the PLFU-SS priority 

and min-heapify the accessed file, which is O(logN). So, 

accessing a file takes O(N) time. 

4 Performance Evaluation 
In this section, we evaluate the proposed algorithms and 

compare them to other caching algorithms. We carried 

out two types of test. The first series of tests was 

performed using a cache simulator. The second series of 

tests ran on a wired client that was connected to the 

KIVFS used for storing and accessing files, thus 

mimicking a mobile device connection to the server.  

We created 500 files with uniformly distributed 

random size between 1KB and 5MB on the server side. 

This distribution is based on analysis of the log from a 

local AFS cell server. We monitored the AFS cell for a 

month. In this period of time, users have nearly 930,000 

requests to the files. The most of accessed (over 98%) 

files are from (0-5MB] in size  

The number of requests to the files is not equal. We 

observed in the AFS log that some files are requested 

more often than other files. Accesses to the files are 

simulated by using a Gaussian random generator which 

corresponds to the observations gained from the log. 

We evaluated the performance of LFU-SS and 

LRFU-SS algorithms on cache sizes ranging from 8MB 

to 512MB, reflecting the limited capacity of mobile 

devices.  

We used the cache hit ratio and data transfer 

decrease needed to transfer the files as performance 

indicators.  

4.1 Cache simulator 

A cache simulator was developed to prevent the 

main disadvantage of testing caching policies in a real 

environment, which lies in the fact that it takes a long 

period of time to test caching algorithms. This is caused 

by the communication over a computer network.  

The cache simulator consists of three parts: Server, 

Client and Request generator. 

 Server represents storage of files collection. Each 

file is represented by a unique ID and size in bytes. 

Additionally, the server stores a number of read and 

writes requests for each file. When a client demands a 

file, all the metadata are provided. 

Client is an entity which requests files from the 

server and uses the evaluated caching algorithm. During 

the simulation, the client receives requests for file access 

from the Requests generator. The client increases the 

counter of requested bytes by the size of the file and 

looks into its cache for a possible cache hit. If the file is 

found in the cache, the number of cache read hits is 

increased. If the file is not in the cache, the file is 

downloaded from the server and stored in the cache. At 

the same time, the counter maintaining the number of 

transferred bytes is increased by the size of the requested 

file. 

Requests generator is an entity which knows the 

files’ ID from a server, and generates requests for these 

files. We used a Gaussian random generator for a 

simulation with parameters based on the AFS log 

mentioned above.  

4.2 KIVFS environment 

The KIVFS distributed file system consists of two 

main parts: server and client applications. The System 

architecture is depicted in Figure 4. 

 
Figure 4: Model of KIVFS. 

4.2.1 KIVFS client 

The client module allows the client to communicate 

with KIVFS servers, and to transfer data. The client 

applications exist in three main versions: the standalone 

application, the core module of the operating system and 

Filesystem in Userspace (FUSE). 

4.2.2 KIVFS server 

The KIVFS Server consists of five modules: 

Authorization, Synchronization, VFS, Database, and File 

System. These modules can be run on different machines 

cooperating in a DFS or on a single machine. We briefly 

KIVFS Server

KIVFS Client

Authorization

Synchronization

VFS

Database File system
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describe these five modules. KIVFS is described in [8] in 

more detail. 
Authorization Module. This module is an entry point 

to the system. It ensures authorization and secure 

communication with clients [8]. The communication 

channel is encrypted by using OpenSSL.  

Synchronization Module. The synchronization 

module is a crucial part of the whole system. Several 

clients can access the system via several nodes. 

Generally, different delays occur in delivering the 

messages. The KIVFS system uses Lamport’s logical 

clocks for synchronization. Every received message gets 

a unique ID corresponding to the logical clock. The 

synchronisation is based on this unique ID, which also 

serves as a timestamp. This ID is also used for 

synchronisation among nodes. 

 Virtual File System Module (VFS). The VFS module 

hides the technology used for data and metadata storage. 

Based on the request, the module determines whether it 

is aimed at the metadata, or is aimed at file access.  

File System Module (FS). The File system module 

stores file content on physical devices like a hard disk. It 

is utilized to work with the content of the files that the 

user works with.  

The FS module also manages the active data 

replication. The FS module starts the replication of the 

file in the background. The replication process 

cooperates with the synchronization layer.  

Database Module. The Database module serves for 

communication with the database. The database stores 

metadata, the list of authorized users, and the client 

request queue.  

The synchronization of the databases is solved at the 

synchronization level of KIVFS. It ensures the 

independence of the replication and synchronization 

mechanisms of different databases.  

4.3 Evaluation 

In this subsection, we give the results of the 

simulations. The first simulation of the caching 

algorithms’ behaviour used the Cache Simulator; the 

second one ran on a wired client. 

4.3.1 Simulation using the cache simulator 

We implemented all caching policies mentioned in 

Section 2 in this simulation. Coefficients were set to 

K1=0.35, K2=1.1 for LRFU-SS. We chose these 

coefficients after a series of experiments with LRFU-SS. 

In experiments, we simulated LFRU-SS and LFU-SS 

with and without sending client statistics back to the 

server, to demonstrate the effect of sending client 

statistics.  

In the experiments, we generated 100,000 requests 

on files. The cache read hit ratio is shown in Table 1. 

Table 2 shows the data transfer decrease. The total size 

of transferred files was 247.5GB, which is also the 

number of bytes transferred without usage of a cache.  

 

Read Hit 

Ratio [%] / 

Cache Policy

Caching 

policy
8 16 32 64 128 256 512

2Q 1.77 4.26 9.07 18.23 35.51 64.26 95.27

Clock 1.48 3.32 6.85 13.78 27.26 52.62 90.43

FBR 2.85 7.71 14.45 22.27 36.32 66.48 93.51

FIFO 1.48 3.32 6.84 13.70 26.87 51.13 85.09

FiFO 2nd 1.48 3.32 6.92 14.00 27.96 54.49 92.28

LFU 3.61 7.17 11.41 17.31 34.44 63.22 95.38

LFU-SS 3.74 7.84 13.48 22.25 38.55 65.93 94.21

LFU-SS 

without 

sending 

statistics

2.26 6.00 8.06 13.50 21.96 36.21 61.71

LIRS 1.93 3.98 7.69 15.48 29.91 56.90 92.83

LRDv1 1.48 3.31 6.90 14.02 28.06 56.11 93.80

LRDv2 1.48 3.31 6.91 13.87 27.42 53.05 89.83

LRFU 1.94 4.05 8.60 18.18 35.19 64.65 93.89

LRFU-SS 2.98 4.63 10.15 19.77 37.72 66.67 94.48

LRFU-SS 

without 

sending 

statistics

0.95 2.35 5.50 8.61 18.51 37.22 65.36

LRU 1.48 3.32 6.88 13.82 27.55 53.48 91.68

LRU-K 1.48 3.39 8.07 17.08 34.10 64.15 95.23

MQ 1.79 3.78 7.59 14.95 29.38 55.49 92.06

MRU 1.35 2.32 4.27 7.61 14.22 29.94 57.55

RND 1.53 3.26 6.90 13.74 26.86 50.90 85.27

Cache Size [MB]

 
 

Table 1: Cache Read Hit Ratio vs. Cache Size Using 

Cache Simulator. 

Without sending these statistics, both LFU-SS and 

LRFU-SS have significantly worse results than the other 

caching policies. This situation shows both indicators, 

cache hit ratio and data transfer decrease.  

LFU-SS with sending local statistics back to the 

server has the best results in terms of the cache hit ratio. 

The second-best is the FBR policy. Recall that we use the 

whole file as the caching unit. Hence, the policy with the 

best read hits ratio is not necessarily the best one in 

decreasing data transfer, which is obviously caused by 

the variety of file size. Although FBR has good results in 

terms of the cache hit ratio, it has worse results in 

decreasing network traffic. LFU-SS has the best result in 

decreasing network traffic for cache sizes from 8MB to 

128MB. For higher cache sizes, LRFU-FF is a better 

choice. 

Overall, results in this experiment show that LFU-SS 

achieves up to 2% improvement in saving network traffic 

in smaller cache sizes over other caching policies. 

LRFU-SS achieves up to 1% improvement in higher 

cache sizes. 
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Data 

Transfer 

Decrease 

[GB] / Cache 

Policy

Caching 

policy 8 16 32 64 128 256 512

2Q 244.20 238.52 227.93 206.48 164.15 89.86 12.12

Clock 244.08 239.48 230.74 213.57 179.73 116.76 23.14

FBR 244.65 242.78 228.18 206.35 169.36 91.02 16.64

FIFO 244.08 239.48 230.60 212.97 178.15 111.61 18.54

FiFO 2nd 244.08 239.48 230.77 213.77 180.77 120.43 36.54

LFU 243.42 238.16 229.34 210.16 170.23 98.76 12.57

LFU-SS 243.32 237.73 225.75 202.86 156.81 83.29 13.82

LFU-SS 

without 

sending 

statistics

245.10 242.34 236.92 224.94 201.61 161.67 98.56

LIRS 243.82 239.01 229.46 209.95 173.72 105.76 17.09

LRDv1 244.08 239.50 230.67 212.91 177.89 107.90 14.90

LRDv2 244.07 239.50 230.59 213.29 179.41 115.57 24.62

LRFU 243.79 238.88 228.40 206.98 165.56 90.31 14.64

LRFU-SS 243.44 238.72 226.91 203.06 158.67 81.79 13.38

LRFU-SS 

without 

sending 

statistics

245.64 242.69 237.30 225.89 202.18 158.99 91.84

LRU 244.08 239.48 230.69 213.40 179.11 114.49 19.97

LRU-K 244.08 239.42 229.14 207.99 166.00 90.71 12.36

MQ 243.93 238.89 229.30 210.92 174.79 109.10 19.09

MRU 243.98 239.60 230.65 213.58 180.86 121.04 36.13

RND 244.47 242.02 237.23 229.06 212.48 173.45 99.20

Cache Size [MB]

 

Table 2: Data Transfer Decrease vs. Cache Size Using 

Cache Simulator. 

4.3.2 Simulation on a wired client 

The second simulation ran on a wired client to accelerate 

the experiments. Because of high time consumption of 

the experiments, we implemented only RND, FIFO, LFU 

and LRU policies for comparison with  

LFU-SS and LRFU-SS policies.  

For LRFU-SS, we choose the same coefficients as in 

the first simulation. In the simulation scenario, we 

generated 10,000 requests. Table 3 summarizes the cache 

read hit ratio for each of the implemented algorithms. 

The best algorithm in this scenario is LFU-SS. While 

using LFU-SS with cache capacities of 16MB and 

32MB, we can achieve up to 11% improvement over 

commonly used LRU or LFU caching policies. When we 

use a cache with a larger capacity (64, 128, 256, and 

512MB), the improvement is up to 4% in the cache hit 

ratio. 
Again, the policy with the best read hits ratio is not 

necessarily the best one in decreasing data traffic.  

ReadHit 

Ratio [%]/ 

Caching 

Policy

Caching 

Policy
8 16 32 64 128 256 512

RND 2.98 5.68 10.36 16.03 25.46 40.39 62.34

FIFO 2.66 5.49 10.18 15.34 25.44 39.69 60.23

LFU 2.79 6.18 11.21 19.09 30.19 41.23 63.87

LRU 2.79 6.36 10.84 19.3 28.94 40.67 63.54

LFU-SS 6.55 13.05 21.68 25.14 31.47 42.47 64.23

LFU-SS 

without 

sending client 

statistics

2.56 5.48 11.02 18.52 28.56 35.25 55.45

LRFU-SS 4.5 10.03 15.22 23.76 30.8 41.9 64.14

LRFU-SS 

without 

sending client 

statistics 

2.48 5.1 10.54 18.65 29.15 36.82 56.75

Cache Size [MB]

 

Table 3: Cache Read Hit Ratio vs. Cache Size on Wired 

Client. 

Next, we measured the data transfer decrease. The total 

size of transferred files was 22,5GB. Table 4 summarizes 

the data transfer decrease for different caching policies.  

Data Transfer 

Decrease [GB] / 

Cache Policy

Caching policy 8 16 32 64 128 256 512

RND 21.97 21.38 20.47 19.25 17.57 14.09 8.63

FIFO 22.03 21.43 20.41 19.33 17.68 14.59 9.19

LFU 22.11 21.51 20.61 18.21 16.95 14.48 8.36

LRU 21.96 21.15 20.12 18.41 17.15 14.55 8.70

LFU-SS 20.99 19.32 18.61 18.14 15.16 12.55 7.95

LFU-SS 

without 

sending client 

statistics

21.97 21.07 19.94 18.30 16.58 14.48 9.90

LRFU-SS 21.74 20.27 18.90 16.93 14.94 12.44 7.88

LRFU-SS 

without 

sending client 

statistics 

21.99 21.24 20.07 18.30 16.19 14.08 9.33

Cache Size [MB]

 
 

Table 4: Data Transfer Decrease vs. Cache Size on 

Wired Client. 

The best caching algorithm for cache sizes 8MB, 16MB, 

and 32MB is LFU-SS again. For larger cache capacity, 

the best caching policy is LRFU-SS. While using LRFU-

SS with a cache size of 512MB, we saved up 65% of the 

network traffic. LFU-SS achieves up to 8% improvement 

over LRU in small cache sizes. LRFU-SS achieves up to 

3% improvement over LRU and LFU in larger cache 

capacities. 
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5 Further Work 
In our future work, we will add direct generation of the 

file requests from the AFS log file to the cache simulator. 

The simulator will then allow the simulation of more real 

situations.  

Storing files in the user’s cache may cause data 

inconsistency. The data on a server can be modified 

while the user constantly works with the old files in the 

cache. In our future work, we intend to develop an 

algorithm for maintaining data consistency for cached 

files.  

6 Conclusion 
This article presented caching algorithms for caching 

files in mobile devices. Our goals in developing new 

caching algorithms were to decrease network traffic, and 

minimize the cost of counting the priority of the data unit 

in the cache. These two goals were set because of the 

varying network connection quality of mobile devices 

caused by the movement of the user, and because of the 

limited performance of the mobile devices.  

The comparison of caching policies proved that the 

algorithms introduced perform better in comparison to 

other caching policies except in one case. For smaller 

cache sizes, LFU-FF is a suitable caching policy; for 

larger cache sizes, LRFU-SS is a better choice. 

Considering time consumption, LFU-SS is the 

asymptotically better algorithm. When caching whole 

files, both algorithms introduced are suitable for mobile 

devices. 
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