
 Informatica 36 (2012) 369–378 369

Design and Implementation of a Caching Algorithm Applicable to

Mobile Clients

Pavel Bžoch, Luboš Matějka, Ladislav Pešička and Jiří Šafařík

University of West Bohemia, Faculty of Applied Sciences

Department of Computer Science and Engineering

Univerzitní 8, 306 14 Plzeň, Czech Republic

E-mail: pbzoch@kiv.zcu.cz, lmatejka@kiv.zcu.cz, pesicka@kiv.zcu.cz, safarikj@kiv.zcu.cz

Keywords: mobile device, cache, caching policy

Received: October 24, 2012

Usage of mobile devices has grown over the past years. The term “mobile devices” covers many

different kinds of devices (e.g. smart phones, cell phones, personal digital assistant (PDA), tablets,

netbooks, etc.). A typical example that shows the growth of technologies is the smart phone. A Smart

phone serves not only for voice calls and typing SMS, but can be used to access the internet and e-mails,

play music and movies, and access remote storages. The Disadvantage of mobile devices is that they do

not have a wired connection to the internet and thus the connection can vary. It can be fast while using

WI-FI or the 3G mobile network or very slow using an old GRPS technology. 3G and other

state-of-the-art technologies are not available everywhere. But users want to access their files as quickly

and reliably as they can access them on a wired connection.

If data are demanded repeatedly, they can be stored on mobile devices in an intermediate component

called a cache. However, the capacity of the cache is limited; thus we should store only the data that

will probably be demanded again in the future. In this article, we present a caching algorithm which is

based on client and server statistics. These statistics are used to predict a user’s future behaviour.

Povzetek: Opisana je nova metoda za predpomnjenje pomnilniških naprav.

1 Introduction
Over the past years, more and more people can access the

internet and produce data. The need of storing this data

has also grown. Whether data are of multimedia types

(e.g. images, audio, or video), text files, or are produced

by scientific computation, they should be stored for

sharing among users and further use. The data files can

be stored on a local file system, on a remote file system

or on a distributed file system.

A local file system (LFS) provides the data quickly

compared to other solutions. On the other hand, LFS

does not have enough capacity for storing a huge amount

of data in general. LFS is also prone to failure. Because

the data on LFS are usually not replicated, failure of the

LFS usually causes more or less temporary loss of data

accessibility, or even loss of data. Another disadvantage

of LFS is that the local data cannot be accessed remotely.

A remote file system (RFS) provides the data

remotely. RFS has otherwise the same disadvantages as

LFS. It is prone to hardware failure. RFS is also hardly

scalable. While using remote access, RFS has to use user

authentication and authorization for preventing data

stealing or corruption.

A Distributed file system (DFS) provides many

advantages over a remote file system. These advantages

are reliability, scalability, capacity, security, etc.

Accessing files from mobile devices has to take into

account changing communication channels caused by the

user’s movement. DFSs that are widely used were

designed before mobile devices spread. Now, it is hard to

develop mobile client applications and to implement

algorithms for mobile devices into a DFS. None of the

current DFSs, e.g. Andrew File System (AFS), Network

File System (NFS), Coda, InterMezzo, BlueFS,

CloudStore, GlusterFS, XtreemFS, dCache, MooseFS,

Ceph and Google File System, has suitable clients for

mobile devices [1] [2] [3].

Mobile devices have limited capacity for storing user

content. They can store up to GBs of the data. Some of

the devices can extend their capacity by using a memory

card, but the capacity of these cards is also limited

(usually to 32GB [4]). On the other hand, a DFS can

store TBs of the data.

The speed of a wireless connection is low in

comparison to a wired connection. The highest wireless

speed is often limited by the use of the Fair User Policy

(FUP) by the mobile connection provider. The FUP

restricts the quantum of the downloaded data in a period

of time [5]. In addition, the speed of a wireless

connection can vary. The newest connection technologies

are not available everywhere, but mobile users wish to

access their data as fast as possible. So far, users

download the same data repeatedly; we can use a cache

to increase system performance. In this article, we will

focus on use of the cache by mobile clients in a

distributed file system

A cache is an intermediate component which stores

data that can be potentially used in the future. While

using a cache, the overall system performance is

370 Informatica 36 (2012) 369–378 P. Bžoch et al.

improved. The cache is commonly used in database

servers, web servers, file servers, storage servers, etc. [6].

However, cache capacity is not usually sufficient to store

all requested content. When the cache is full, a system

designer must adopt an algorithm which marks old

content in the cache to be replaced. This algorithm

implements replacement policy.

Cache functionality is depicted in Figure 1. The

cache in the DFS can be on the client side as well as on

the server side.

Figure 1: Cache.

The cache on the client side stores content that has

been downloaded by a user who is running a client

application. In this case, replacement policy is usually

based on statistical information gathered from the user's

behaviour. The cache on the server side contains data

which has been requested by the most users.

Replacement policy in this case uses statistics gathered

from all users' requests. Using a cache on the server and

the client sides at the same time does not increase system

performance. Increasing the cache hit ratio on the client

side causes increasing the miss ratio on the server side

and vice versa [7].

In section 2, we introduce cache policies commonly

used. We discuss simple, statistics-based and hybrid

caching algorithms.

We present a new caching replacement policy in

section 3. We use client and server statistics in a manner

which increases system performance. In section 4, we

present results of performance analysis for the new

algorithm. The results were acquired via simulation of

user behaviour. As a remote storage for user files, we

used KIVFS. KIVFS is a distributed file system which is

being developed at the Department of Computer Science

and Engineering, University of West Bohemia [8]. KIV

is an acronym for the Czech name of our department

(Katedra Informatiky a Výpočetní techniky). KIVFS is

also designed to support mobile devices.

2 Overview of Caching Algorithms
We describe replacement policies which are commonly

used in distributed file systems or in operating systems.

Clearly, an optimal replacement policy replaces data

whose next use will occur farthest in the future.

However, this policy is not implementable. We cannot

look into the future to get needed information about

usage of the data. Hence, no implementable caching

policy can be better than an optimal policy.

Caching policies can be divided into three

categories: simple, statistics-based and hybrid policies.

2.1 Simple caching algorithms

Simple caching algorithms do not use any statistics

or additional information. For replacement decisions,

they usually employ other mechanisms. Examples of

simple caching algorithms are Rand, FIFO, FIFO with

2
nd

 chance, and Clock None of these caching policies

takes user behaviour into account.

RAND. RAND or Random is a simple replacement

policy which chooses data to be replaced based on

random selection [9]. It is very easy to implement this

replacement policy.

FIFO. First-In First-Out is another simple

replacement policy. The data that are chosen to be

replaced are the oldest in the cache. Data in the cache are

ordered in a queue. The new data are placed on the tail of

the queue. When the cache is full and new data come into

the cache, the data from the head of the queue are

replaced [10].

FIFO with 2
nd

 chance (FIFO2). First-In First-Out

with second chance is a modification of the FIFO

caching policy. FIFO2 stores the data units in a queue. In

contrast to FIFO, FIFO2 stores a reference bit for each

data unit in the queue. If a cache hit occurs, the reference

bit is set to 1. When a replacement is needed, the oldest

unit in the cache with a reference bit set to 0 is replaced

and the reference bit of the older units is set to 0 at the

same time [11].

CLOCK. The Clock replacement policy stores the

data units in a circular buffer [12]. Clock stores a

reference bit for each cached unit, and a pointer into the

buffer structure. If a cache hit occurs, the reference bit of

the requested data unit is set to 1. The data to be replaced

are chosen by circularly browsing the buffer, and

searching for the unit with a reference bit set to 0. The

reference bit of each data unit with the reference bit set to

1 found during the browsing is reset to 0 [13] .

2.2 Statistics-based caching algorithms

Statistics-based algorithms employ statistical information

about data in the cache: frequency of the accesses, and

recency of the last use of data. Frequency is used by an

LFU algorithm and recency by LRU and MRU

algorithms.

LRU. The Least Recently Used replacement policy

uses the temporal locality of the data [9]. Temporal

locality means that the data units that have not been

accessed for the longest time will not be used in the near

future and can be replaced when the cache is full [14].

According to the tests [15], LRU seems to be the best

solution for caching large files. LRU is frequently

implemented with a priority queue. Priority is the

timestamp of last access. The disadvantage of the LRU

policy is that the data unit can be replaced even if the

U
s

e
r re

q
u

e
s

ts
 d

a
ta

Download the data and store
them in the cache.

Are the data
in the cache?

No, cache miss

Yes, cache hit

P
ro

v
id

e
 d

a
ta

 to
 th

e
 u

s
e

r

DESIGN AND IMPLEMENTATION OF… Informatica 36 (2012) 369–378 371

unit was accessed periodically many times. In this case,

the file will probably be requested in the near future

again.

MRU. The Most Recently Used replacement policy

works conversely to LRU. MRU replaces the most

recently accessed data units. MRU is suitable for a file

which is being repeatedly scanned in a looping sequential

reference pattern [16].

LFU. The Least Frequently Used replacement policy

replaces the data that have been used least. For each data

unit there is a counter which is increased every time the

data unit is accessed [9]. The disadvantage of this

approach is that the data units in the cache that have been

accessed many times in a short period of time remain in

the cache, and cannot be replaced even if they will not be

used in the future at all.

2.3 Hybrid caching algorithms

The disadvantages of LRU and LFU replacement

policies result in hybrid algorithms. These algorithms

mostly combine LFU and LRU to get better results in the

cache hit ratio.
2Q replacement policy uses two queues. The first

queue uses the FIFO replacement policy for data units

and is used for data units that have been referenced only

once. The second queue uses LRU as a replacement

policy, and serves for so-called hot data units. Hot data

units are units that have been accessed more than once. If

a new data unit comes to the cache, it is stored in the

FIFO-queue. When the same data unit is accessed for the

second time, it is moved to the LRU-queue. The 2Q

algorithm gives approximately 5% improvement in the

hit ratio over LRU [17].

MQ replacement policy uses multiple LRU-queues.

Every queue has its own priority. The data units with a

lower hit count are stored in a lower priority queue. If the

number of the hit count reaches the threshold value, the

data unit is moved to the tail of a queue with a higher

priority. When a replacement is needed, the data units

from the queue with the lowest priority are replaced [18].

FBR replacement policy uses the benefits of both

LFU and LRU policies. FBR divides the cache into three

segments: a new segment, a middle segment, and the old

segment. Data units are placed into sections based on

their recency of usage. When a hit occurs, the hit counter

is increased only for data units in the middle and old

segments. When a replacement is needed, the policy

chooses the data unit from the old segment with the

smallest hit count [19].

LIRS replacement policy uses two sets of referenced

units: the High Inter-reference Recency (HIR) unit set

and the Low Inter-reference Recency (LIR) unit set.

LIRS calculates the distance between the last two

accesses to a data unit and also stores a timestamp of the

last access to the data unit. Based on this statistical

information, the data are divided into either LIR or HIR

blocks. When the cache is full, the least recently used

data unit from the LIR set is replaced. LIRS is suitable

for use in virtual memory management [20].

LRFU replacement policy employs both LRU and

LFU replacement policies at the same time. LRFU

calculates the so-called CRF (Combined Recency and

Frequency) value for each data unit. This value quantifies

the likelihood that the unit will be referenced in the near

future. LFRU is suitable for use and was tested in

database systems [21].

LRD replacement policy replaces the data unit with

the lowest reference density. Reference density is

a reference frequency for a given reference interval.

LRD has two variants of use. The first variant uses a

reference interval which corresponds to the age of a

page. The second variant uses constant interval time [22].

LRU-K replacement policy keeps the timestamps of

the last K accesses to the data unit. When the cache is

full, LRU-K counts so-called Backward K-Distance

which leads the marked data unit to replace. The LRU-K

algorithm is used in data base systems [23]. An example

of LRU-K is LRU-2, which remembers the last two

access timestamps for each data unit. It then replaces the

data unit with the least recent penultimate reference [24].

ARC is similar to the 2Q replacement policy. The

ARC algorithm dynamically balances recency and

frequency. It uses two LRU-queues. These queues

maintain the entries of recently evicted data units [6].

ARC has low computational overhead while performing

well across varied workloads [17], [25]. ARC requires

units with the same size; thus it is not suitable for

caching whole files.

CRASH is a low miss penalty replacement policy. It

was developed for caching data blocks during reading

data blocks from the hard disk. CRASH puts data blocks

with contiguous disk addresses into the same set. When

replacement is needed, CRASH chooses the largest set

and replaces the block with the minimum disk address

[6]. CRASH works with data blocks with the same size;

thus CRASH is not suitable for caching blocks with

different sizes.

3 The LFU-SS and LRFU-SS

Architecture
All caching algorithms mentioned were designed mainly

for low-level I/O operations. These algorithms usually

work with data blocks that have the same size. When

replacement occurs, all the statistics-based and hybrid

caching policies mentioned choose the block to be

removed from the cache based on statistics gathered

during user requests. Moreover, all the caching policies

have to store statistical information for all data blocks in

the cache.
We propose a new caching policy suitable for use in

mobile devices. Our first goal is to minimize costs of

counting the priority of data units in the cache. This goal

was set because mobile device are not as powerful as

personal computers ant their computational capacity is

limited. The speed of data transfer from a remote server

to the mobile device can vary. Thus, our second goal is to

increase the cache hit ratio, and thereby decrease the

network traffic caused by data transfer.

372 Informatica 36 (2012) 369–378 P. Bžoch et al.

We present an innovated LFU algorithm we call

Least Frequently Used with Server Statistics (LFU-SS),

and a hybrid algorithm we call Least Recently and

Frequently Used with Server Statistics (LRFU-SS) [26].

3.1 LFU-SS

In LFU-SS, we use server and client statistics for

replacement decisions. We will consider server statistics

first. The database module of the server maintains

metadata for the files stored in the DFS. The metadata

records contain items for storing statistics. These

statistics are number of read and number of write hits per

file, and number of global read hits for all files in the

DFS. When a user reads a file from the DFS, the

READ_HITSserver counter is increased, and sent to the

user. When a user wants to write the file content, the

WRITE_HITSserver counter is increased. Both of these

counters are provided as metadata for each requested file.

Calculation of the GLOBAL_HITSserver counter is a time-

consuming operation because of summation of the

READ_HITSserver of all files. If we presume that the DFS

stores thousands of files which are accessed by users, the

value of variable GLOBAL_HITSserver is then much

greater than the value of variable READ_HITSserver, and

we do not need to get the value of GLOBAL_HITSserver

for each file access. The value of the GLOBAL_HITSserver

counter is computed periodically, thus saving server

workload.

The caching unit in our approach is the whole file.

By caching whole files, we do not need to store read or

write hits for each block of the file; we store these

statistics for the whole file. Storing whole files also

brings another advantage – calculation of priorities for

replacement is not computationally demanding because

of the relatively low number of units in the cache.

When the LFU-SS replacement policy must mark a

file to be thrown out of the cache, LFU-SS works

similarly to regular LFU. LFU-SS maintains metadata of

files in a heap structure. In LFU-SS, we use a binary

min-heap. The file for replacement is stored in the root

node. When a user reads a cached file, the client read hits

counter READ_HITSclent is increased and the heap is

reordered if necessary. The server statistics are only used

for newly incoming files to the cache.

In a regular LFU policy, the read hits counter for a

new file is initialized to one (the file has been read once).

The idea of LFU-SS is that we firstly calculate the read

hits counter from the statistics from the server. If the new

file in the cache is frequently downloaded from the

server, the file is then prioritized in comparison to a file

which is not frequently read from the server. For

computing the initial read hits value, we use the

following formula:

We first calculate the difference between read and write

hits from the server. We prefer the files that have been

read many times, and have not been written so often.

Moreover, we penalize the files that are often written and

not often read. We do this in order to maintain the data

consistency of the cached files. The variable

GLOBAL_HITSclient represents the sum of all read hits to

the files in the cache. We add 1 because the user wants to

read this file. We must store the read hits value as a

decimal number for accuracy reasons when reordering

files in the heap. The pseudo-code for LFU-SS is in

Figure 2.

The disadvantage of using LFU-SS and general LFU

relates to ageing files in the cache. If the file was

accessed many times in the past, it still remains in the

cache even if the file will not be accessed in the future

again. We prevent this situation by dividing the variable

READ_HITSclient by 2. When the value of variable

READ_HITSclient reaches the threshold value,

READ_HITSclient variables of all cached files are divided

by 2. The threshold value was set to 15 read hits

experimentally.

Input: Request for file F

Initialization: heap of cached files

records /*ordered by client’s cache read

hit counts */

if F is not in cache

{

 while cache is full

 {

 remove file with the least read hits

 reorder heap to be min-heap

 }

 compute initial READ_HITS for file F

 download file F into cache

 insert metadata record to the heap

 reorder heap to be min-heap

}

else

{

 increase READ_HITS value of file F by 1

 reorder heap if necessary

 upload client statistics to server

 if READ_HITS > threshold

 {

 for each FILE in cache do

 {

 FILE.READ_HITS = FILE.READ_HITS / 2

 }

 }

}

Figure 2: Pseudo-code for LFU-SS

Using statistics from the server for gaining better

results in the cache read hit ratio causes a disadvantage in

updating these statistics. If the accessed files are

provided from the cache, the statistics are updated only

on the client side, and are not sent back to the server. In

this case, the server does not provide correct metadata,

and the policy does not work correctly. A Similar case

occurs while using a cache on the server and client sides

simultaneously [7]. To prevent this phenomenon, the

client application periodically sends local statistics back

to the server. The update message contains file ids and

number of requests per each file since the last update. We

show the experimental results for LFU-SS with and

DESIGN AND IMPLEMENTATION OF… Informatica 36 (2012) 369–378 373

without uploading statistics to the server in the next

section.

We will discuss the time complexity of using

LFU-SS now. As mentioned before, we use a binary min-

heap for storing metadata records. This heap is ordered

the by read hits count. For cached files in LFU-SS, we

use three operations: inserting a new file into the cache,

removing a file from the cache, and updating file read

hits. All these three operations are O(logN) [27].

3.2 LRFU-SS

Next, we will use LFU-SS in combination with

standard LRU. As for mentioned hybrid caching

replacement policies, the combination of LRU and LFU

increases the cache hit ratio. For the combination of these

caching policies, we will compute the priority of LRU

and LFU-SS for each file in the cache. The priority of

LRU and LFU-SS is from the interval (0, 65535], where

a higher value represents a higher priority. The file with

the lowest priority is replaced. The formula for counting

the final priority of the file is the following:

In computing the final priority, we can favour one of

the caching policies by setting a higher value for K1 or K2

constants. The impact of setting these constants is shown

in section 4. Next, we will focus on computing priority

values for LFU-SS and LRU caching policies.

3.2.1 PLFU-SS

The priority value for the LFU-SS algorithm is

calculated by using linear interpolation between the

highest and the lowest read hits values. The formula for

counting this priority is the following:

In this formula, the values of variables

GLOBAL_HITSmin,client and GLOBAL_HITmax,client

correspond to the highest and lowest read hits values. In

the case that the file is new in the cache, we calculate

read hits by using the formula from the previous section.

We can expect that a new file in the cache is fresh and

will also be used in the future. Despite computing read

hits for a new file in the cache by using server statistics,

new files in the cache still have a low read hits count.

Therefore, we calculate the PLFU-SS for the new file in the

cache in a different way. We use server statistics again

and calculate the first PLFU-SS as follows:

3.2.2 PLRU

The least recently used policy usually stores the

timestamp for last access to the file. If a replacement is

needed, the file that has not been accessed for the longest

time period is discarded. In our approach, we need to

calculate the priority from the timestamp. We do this as

follows:

As shown in the formula, we again use linear

interpolation for calculating PLRU. We interpolate

between Tleast_recently_file and Tmost_recently_file . Tleast_recently_file

is the timestamp of the file that has not been accessed for

the longest time period. Tmost_recently_file is the timestamp of

the file that has been accessed most recently.

The disadvantage of using LRFU-SS relates to

computation priorities. We need to recalculate priorities

for all cached units every time one cached unit is

requested. We also need to reorder the heap of the cached

files because of changes in these priorities. By caching

whole files, we do not have many units in the cache, so

these calculations are acceptable. The pseudo-code for

the LRFU-SS is in Figure 3.

Input: Request for file F

Initialization: Min-Heap of cached files

/*ordered by priority*/

K1, K2 /*constants for computing Pfinal*/

if F is not in cache

{

 while cache is full

 {

 remove file with the least priority

 reorder heap to be min-heap

 }

 compute read hits for file F

 compute initial PLFU-SS for file F

 compute PLRU for file F

 compute Pfinal := K1 * PLFU-SS + K2 * PLRU;
 download and Insert file F into cache

 recalculate priorities of all files in

 the cache and simultaneously reorder

 the heap

}

else

{

 increase READ_HITS value of file F by 1

 upload client statistics to server

 if READ_HITS > THRESHOLD

 {

 for each FILE in cache do

 {

 FILE.READ_HITS = FILE.READ_HITS / 2

 }

 }

 store new timestamp for file F

 recalculate priorities of all files in

 the cache and reorder the heap

}

Figure 3: Pseudo-code for LRFU-SS.

The LRFU-SS policy uses server statistics like

LFU-SS. Using LRFU-SS causes the same problem with

updating access statistics on the server side. We will

solve this problem by periodically sending update

messages back to the server. We show the experimental

374 Informatica 36 (2012) 369–378 P. Bžoch et al.

results for LRFU-SS with and without uploading

statistics to the server in the next section.

As with LFU-SS, we will discuss the time

complexity of using LRFU-SS. Again, we use a binary

min-heap for storing metadata records of cached files.

We also employ three operations to the cached files:

inserting a new file into the cache, removing a file from

the cache, and accessing the file. Let N be the number of

the cached files:

The operation inserting a file entails recalculating

time priorities of all cached files, which takes O(N) time.

New priorities do not affect the heap structure because

the recalculation maintains the min-heap property. After

recalculating new priorities, we insert a new file into the

heap, which is O(logN). Then, insertion of a new file is

O(N). The operation removing a file is O(logN) again.

The operation accessing a file has the time complexity of

O(N). As with inserting a new file, we need to

recalculate priorities of all files taking O(N) time. For an

accessed file, we need to recalculate the PLFU-SS priority

and min-heapify the accessed file, which is O(logN). So,

accessing a file takes O(N) time.

4 Performance Evaluation
In this section, we evaluate the proposed algorithms and

compare them to other caching algorithms. We carried

out two types of test. The first series of tests was

performed using a cache simulator. The second series of

tests ran on a wired client that was connected to the

KIVFS used for storing and accessing files, thus

mimicking a mobile device connection to the server.

We created 500 files with uniformly distributed

random size between 1KB and 5MB on the server side.

This distribution is based on analysis of the log from a

local AFS cell server. We monitored the AFS cell for a

month. In this period of time, users have nearly 930,000

requests to the files. The most of accessed (over 98%)

files are from (0-5MB] in size

The number of requests to the files is not equal. We

observed in the AFS log that some files are requested

more often than other files. Accesses to the files are

simulated by using a Gaussian random generator which

corresponds to the observations gained from the log.

We evaluated the performance of LFU-SS and

LRFU-SS algorithms on cache sizes ranging from 8MB

to 512MB, reflecting the limited capacity of mobile

devices.

We used the cache hit ratio and data transfer

decrease needed to transfer the files as performance

indicators.

4.1 Cache simulator

A cache simulator was developed to prevent the

main disadvantage of testing caching policies in a real

environment, which lies in the fact that it takes a long

period of time to test caching algorithms. This is caused

by the communication over a computer network.

The cache simulator consists of three parts: Server,

Client and Request generator.

 Server represents storage of files collection. Each

file is represented by a unique ID and size in bytes.

Additionally, the server stores a number of read and

writes requests for each file. When a client demands a

file, all the metadata are provided.

Client is an entity which requests files from the

server and uses the evaluated caching algorithm. During

the simulation, the client receives requests for file access

from the Requests generator. The client increases the

counter of requested bytes by the size of the file and

looks into its cache for a possible cache hit. If the file is

found in the cache, the number of cache read hits is

increased. If the file is not in the cache, the file is

downloaded from the server and stored in the cache. At

the same time, the counter maintaining the number of

transferred bytes is increased by the size of the requested

file.

Requests generator is an entity which knows the

files’ ID from a server, and generates requests for these

files. We used a Gaussian random generator for a

simulation with parameters based on the AFS log

mentioned above.

4.2 KIVFS environment

The KIVFS distributed file system consists of two

main parts: server and client applications. The System

architecture is depicted in Figure 4.

Figure 4: Model of KIVFS.

4.2.1 KIVFS client

The client module allows the client to communicate

with KIVFS servers, and to transfer data. The client

applications exist in three main versions: the standalone

application, the core module of the operating system and

Filesystem in Userspace (FUSE).

4.2.2 KIVFS server

The KIVFS Server consists of five modules:

Authorization, Synchronization, VFS, Database, and File

System. These modules can be run on different machines

cooperating in a DFS or on a single machine. We briefly

KIVFS Server

KIVFS Client

Authorization

Synchronization

VFS

Database File system

DESIGN AND IMPLEMENTATION OF… Informatica 36 (2012) 369–378 375

describe these five modules. KIVFS is described in [8] in

more detail.
Authorization Module. This module is an entry point

to the system. It ensures authorization and secure

communication with clients [8]. The communication

channel is encrypted by using OpenSSL.

Synchronization Module. The synchronization

module is a crucial part of the whole system. Several

clients can access the system via several nodes.

Generally, different delays occur in delivering the

messages. The KIVFS system uses Lamport’s logical

clocks for synchronization. Every received message gets

a unique ID corresponding to the logical clock. The

synchronisation is based on this unique ID, which also

serves as a timestamp. This ID is also used for

synchronisation among nodes.

 Virtual File System Module (VFS). The VFS module

hides the technology used for data and metadata storage.

Based on the request, the module determines whether it

is aimed at the metadata, or is aimed at file access.

File System Module (FS). The File system module

stores file content on physical devices like a hard disk. It

is utilized to work with the content of the files that the

user works with.

The FS module also manages the active data

replication. The FS module starts the replication of the

file in the background. The replication process

cooperates with the synchronization layer.

Database Module. The Database module serves for

communication with the database. The database stores

metadata, the list of authorized users, and the client

request queue.

The synchronization of the databases is solved at the

synchronization level of KIVFS. It ensures the

independence of the replication and synchronization

mechanisms of different databases.

4.3 Evaluation

In this subsection, we give the results of the

simulations. The first simulation of the caching

algorithms’ behaviour used the Cache Simulator; the

second one ran on a wired client.

4.3.1 Simulation using the cache simulator

We implemented all caching policies mentioned in

Section 2 in this simulation. Coefficients were set to

K1=0.35, K2=1.1 for LRFU-SS. We chose these

coefficients after a series of experiments with LRFU-SS.

In experiments, we simulated LFRU-SS and LFU-SS

with and without sending client statistics back to the

server, to demonstrate the effect of sending client

statistics.

In the experiments, we generated 100,000 requests

on files. The cache read hit ratio is shown in Table 1.

Table 2 shows the data transfer decrease. The total size

of transferred files was 247.5GB, which is also the

number of bytes transferred without usage of a cache.

Read Hit

Ratio [%] /

Cache Policy

Caching

policy
8 16 32 64 128 256 512

2Q 1.77 4.26 9.07 18.23 35.51 64.26 95.27

Clock 1.48 3.32 6.85 13.78 27.26 52.62 90.43

FBR 2.85 7.71 14.45 22.27 36.32 66.48 93.51

FIFO 1.48 3.32 6.84 13.70 26.87 51.13 85.09

FiFO 2nd 1.48 3.32 6.92 14.00 27.96 54.49 92.28

LFU 3.61 7.17 11.41 17.31 34.44 63.22 95.38

LFU-SS 3.74 7.84 13.48 22.25 38.55 65.93 94.21

LFU-SS

without

sending

statistics

2.26 6.00 8.06 13.50 21.96 36.21 61.71

LIRS 1.93 3.98 7.69 15.48 29.91 56.90 92.83

LRDv1 1.48 3.31 6.90 14.02 28.06 56.11 93.80

LRDv2 1.48 3.31 6.91 13.87 27.42 53.05 89.83

LRFU 1.94 4.05 8.60 18.18 35.19 64.65 93.89

LRFU-SS 2.98 4.63 10.15 19.77 37.72 66.67 94.48

LRFU-SS

without

sending

statistics

0.95 2.35 5.50 8.61 18.51 37.22 65.36

LRU 1.48 3.32 6.88 13.82 27.55 53.48 91.68

LRU-K 1.48 3.39 8.07 17.08 34.10 64.15 95.23

MQ 1.79 3.78 7.59 14.95 29.38 55.49 92.06

MRU 1.35 2.32 4.27 7.61 14.22 29.94 57.55

RND 1.53 3.26 6.90 13.74 26.86 50.90 85.27

Cache Size [MB]

Table 1: Cache Read Hit Ratio vs. Cache Size Using

Cache Simulator.

Without sending these statistics, both LFU-SS and

LRFU-SS have significantly worse results than the other

caching policies. This situation shows both indicators,

cache hit ratio and data transfer decrease.

LFU-SS with sending local statistics back to the

server has the best results in terms of the cache hit ratio.

The second-best is the FBR policy. Recall that we use the

whole file as the caching unit. Hence, the policy with the

best read hits ratio is not necessarily the best one in

decreasing data transfer, which is obviously caused by

the variety of file size. Although FBR has good results in

terms of the cache hit ratio, it has worse results in

decreasing network traffic. LFU-SS has the best result in

decreasing network traffic for cache sizes from 8MB to

128MB. For higher cache sizes, LRFU-FF is a better

choice.

Overall, results in this experiment show that LFU-SS

achieves up to 2% improvement in saving network traffic

in smaller cache sizes over other caching policies.

LRFU-SS achieves up to 1% improvement in higher

cache sizes.

376 Informatica 36 (2012) 369–378 P. Bžoch et al.

Data

Transfer

Decrease

[GB] / Cache

Policy

Caching

policy 8 16 32 64 128 256 512

2Q 244.20 238.52 227.93 206.48 164.15 89.86 12.12

Clock 244.08 239.48 230.74 213.57 179.73 116.76 23.14

FBR 244.65 242.78 228.18 206.35 169.36 91.02 16.64

FIFO 244.08 239.48 230.60 212.97 178.15 111.61 18.54

FiFO 2nd 244.08 239.48 230.77 213.77 180.77 120.43 36.54

LFU 243.42 238.16 229.34 210.16 170.23 98.76 12.57

LFU-SS 243.32 237.73 225.75 202.86 156.81 83.29 13.82

LFU-SS

without

sending

statistics

245.10 242.34 236.92 224.94 201.61 161.67 98.56

LIRS 243.82 239.01 229.46 209.95 173.72 105.76 17.09

LRDv1 244.08 239.50 230.67 212.91 177.89 107.90 14.90

LRDv2 244.07 239.50 230.59 213.29 179.41 115.57 24.62

LRFU 243.79 238.88 228.40 206.98 165.56 90.31 14.64

LRFU-SS 243.44 238.72 226.91 203.06 158.67 81.79 13.38

LRFU-SS

without

sending

statistics

245.64 242.69 237.30 225.89 202.18 158.99 91.84

LRU 244.08 239.48 230.69 213.40 179.11 114.49 19.97

LRU-K 244.08 239.42 229.14 207.99 166.00 90.71 12.36

MQ 243.93 238.89 229.30 210.92 174.79 109.10 19.09

MRU 243.98 239.60 230.65 213.58 180.86 121.04 36.13

RND 244.47 242.02 237.23 229.06 212.48 173.45 99.20

Cache Size [MB]

Table 2: Data Transfer Decrease vs. Cache Size Using

Cache Simulator.

4.3.2 Simulation on a wired client

The second simulation ran on a wired client to accelerate

the experiments. Because of high time consumption of

the experiments, we implemented only RND, FIFO, LFU

and LRU policies for comparison with

LFU-SS and LRFU-SS policies.

For LRFU-SS, we choose the same coefficients as in

the first simulation. In the simulation scenario, we

generated 10,000 requests. Table 3 summarizes the cache

read hit ratio for each of the implemented algorithms.

The best algorithm in this scenario is LFU-SS. While

using LFU-SS with cache capacities of 16MB and

32MB, we can achieve up to 11% improvement over

commonly used LRU or LFU caching policies. When we

use a cache with a larger capacity (64, 128, 256, and

512MB), the improvement is up to 4% in the cache hit

ratio.
Again, the policy with the best read hits ratio is not

necessarily the best one in decreasing data traffic.

ReadHit

Ratio [%]/

Caching

Policy

Caching

Policy
8 16 32 64 128 256 512

RND 2.98 5.68 10.36 16.03 25.46 40.39 62.34

FIFO 2.66 5.49 10.18 15.34 25.44 39.69 60.23

LFU 2.79 6.18 11.21 19.09 30.19 41.23 63.87

LRU 2.79 6.36 10.84 19.3 28.94 40.67 63.54

LFU-SS 6.55 13.05 21.68 25.14 31.47 42.47 64.23

LFU-SS

without

sending client

statistics

2.56 5.48 11.02 18.52 28.56 35.25 55.45

LRFU-SS 4.5 10.03 15.22 23.76 30.8 41.9 64.14

LRFU-SS

without

sending client

statistics

2.48 5.1 10.54 18.65 29.15 36.82 56.75

Cache Size [MB]

Table 3: Cache Read Hit Ratio vs. Cache Size on Wired

Client.

Next, we measured the data transfer decrease. The total

size of transferred files was 22,5GB. Table 4 summarizes

the data transfer decrease for different caching policies.

Data Transfer

Decrease [GB] /

Cache Policy

Caching policy 8 16 32 64 128 256 512

RND 21.97 21.38 20.47 19.25 17.57 14.09 8.63

FIFO 22.03 21.43 20.41 19.33 17.68 14.59 9.19

LFU 22.11 21.51 20.61 18.21 16.95 14.48 8.36

LRU 21.96 21.15 20.12 18.41 17.15 14.55 8.70

LFU-SS 20.99 19.32 18.61 18.14 15.16 12.55 7.95

LFU-SS

without

sending client

statistics

21.97 21.07 19.94 18.30 16.58 14.48 9.90

LRFU-SS 21.74 20.27 18.90 16.93 14.94 12.44 7.88

LRFU-SS

without

sending client

statistics

21.99 21.24 20.07 18.30 16.19 14.08 9.33

Cache Size [MB]

Table 4: Data Transfer Decrease vs. Cache Size on

Wired Client.

The best caching algorithm for cache sizes 8MB, 16MB,

and 32MB is LFU-SS again. For larger cache capacity,

the best caching policy is LRFU-SS. While using LRFU-

SS with a cache size of 512MB, we saved up 65% of the

network traffic. LFU-SS achieves up to 8% improvement

over LRU in small cache sizes. LRFU-SS achieves up to

3% improvement over LRU and LFU in larger cache

capacities.

DESIGN AND IMPLEMENTATION OF… Informatica 36 (2012) 369–378 377

5 Further Work
In our future work, we will add direct generation of the

file requests from the AFS log file to the cache simulator.

The simulator will then allow the simulation of more real

situations.

Storing files in the user’s cache may cause data

inconsistency. The data on a server can be modified

while the user constantly works with the old files in the

cache. In our future work, we intend to develop an

algorithm for maintaining data consistency for cached

files.

6 Conclusion
This article presented caching algorithms for caching

files in mobile devices. Our goals in developing new

caching algorithms were to decrease network traffic, and

minimize the cost of counting the priority of the data unit

in the cache. These two goals were set because of the

varying network connection quality of mobile devices

caused by the movement of the user, and because of the

limited performance of the mobile devices.

The comparison of caching policies proved that the

algorithms introduced perform better in comparison to

other caching policies except in one case. For smaller

cache sizes, LFU-FF is a suitable caching policy; for

larger cache sizes, LRFU-SS is a better choice.

Considering time consumption, LFU-SS is the

asymptotically better algorithm. When caching whole

files, both algorithms introduced are suitable for mobile

devices.

Acknowledgement
This work is supported by the Ministry of Education,

Youth, and Sport of the Czech Republic – University

spec. research – 1311. We thank Radek Strejc, Václav

Steiner, and Jindřich Skupa for implementing and testing

proposed concepts and ideas.

References

[1] A. Boukerche, R. Al-Shaikh and B. Marleau,

“Disconnection-resilient file system for mobile

clients,” in Local Computer Networks, 2005. 30th

Anniversary. The IEEE Conference on, Sydney,

2005.

[2] A. Boukerche and R. Al-Shaikh, “Servers

Reintegration in Disconnection-Resilient File

Systems for Mobile Clients,” in Parallel Processing

Workshops, 2006. ICPP 2006 Workshops. 2006

International Conference on, Columbus, 2006.

[3] N. Michalakis and D. Kalofonos, “Designing an

NFS-based mobile distributed file system for

ephemeral sharing in proximity networks,” in

Applications and Services in Wireless Networks,

2004. ASWN 2004. 2004 4th Workshop on, 2005.

[4] K. T. Corporation, “microSD Cards | Kingston,”

Kingston Technology Corporation, 2012. [Online].

Available: http://www.kingston.com

/us/flash/microsd_cards#sdc10. [Accessed 10 10

2012].

[5] M. Chetty, R. Banks, A. Brush, J. Donner and R.

Grinter, “You're capped: understanding the effects

of bandwidth caps on broadband use in the home,”

in Proceedings of the 2012 ACM annual conference

on Human Factors in Computing Systems, Austin,

Texas, USA, 2012.

[6] N. Xiao, Y. Zhao, F. Liu and Z. Chen, “Dual

queues cache replacement algorithm based on

sequentiality detection,” in SCIENCE CHINA

INFORMATION SCIENCES, Volume 55, Number

1, Research paper, 2011.

[7] K. Froese and R. Bunt, “The effect of client caching

on file server workloads,” in System Sciences,

1996., Proceedings of the Twenty-Ninth Hawaii

International Conference on, Wailea, HI , USA,

1996.

[8] L. Matějka, L. Pešička and J. Šafařík, “Distributed

file system with online multi-master replicas,” in

2nd Eastern european regional conference on the

Engineering of computer based systems, Los

Alamitos, 2011.

[9] B. Reed and D. D. E. Long, “Analysis of caching

algorithms for distributed file systems,” in ACM

SIGOPS Operating Systems Review, Volume 30

Issue 3, New York, NY, USA, 1996.

[10] L. A. Belady, R. A. Nelson and G. S. Shedler, “An

anomaly in space-time characteristics of certain

programs running in a paging machine,” Commun.

ACM, vol. 12, no. 6, pp. 349-353, June 1969.

[11] R. P. Draves, “Page Replacement and Reference Bit

Emulation in Mach,” in In Proceedings of the

Usenix Mach Symposium, 1991.

[12] P. Steven W. Smith, “Digital Signal Processors -

Circular Buffering,” in The Scientist and Engineer's

Guide to Digital Signal Processing, San Diego,

California Technical Publishing, 1998, pp. 506-509.

[13] S. Jiang, F. Chen and X. Zhang, “CLOCK-Pro: an

effective improvement of the CLOCK

replacement,” in ATEC '05 Proceedings of the

annual conference on USENIX Annual Technical

Conference, Berkeley, 2005.

[14] R. Mattson, J. Gecsei, D. Slutz and I. Traiger,

“Evaluation techniques for storage hierarchies,”

IBM Systems Journal, vol. 9, no. 2, pp. 78-117,

1970.

[15] B. Whitehead, C.-H. Lung, A. Tapela and G.

Sivarajah, “Experiments of Large File Caching and

Comparisons of Caching Algorithms,” in Network

Computing and Applications, 2008. NCA '08.

Seventh IEEE International Symposium on,

Cambridge, MA, 2008.

[16] H.-T. Chou and D. J. DeWitt, “An evaluation of

buffer management strategies for relational

database systems,” in VLDB '85 Proceedings of the

11th international conference on Very Large Data

Bases - Volume 11, 1985.

[17] T. Johnson and D. Shasha, “2Q: A Low Overhead

High Performance Buffer Management

Replacement Algorithm,” in In VLDB '94:

378 Informatica 36 (2012) 369–378 P. Bžoch et al.

Proceedings of the 20th International Conference

on Very Large Data Bases, 1994.

[18] Y. Zhou, J. F. Philbin and K. Li, “The Multi-Queue

Replacement Algorithm for Second Level Buffer

Caches,” in In Proceedings of the 2001 USENIX

Annual Technical Conference, Boston, 2001.

[19] A. Boukerche and R. Al-Shaikh, “Towards building

a fault tolerant and conflict-free distributed file

system for mobile clients,” in Proceedings of the

20th International Conference on Advanced

Information Networking and Applications - Volume

02, AINA 2006., Washington, DC, USA, 2006.

[20] S. Jiang and X. Zhang, “LIRS: An Efficient Low

Interreference Recency Set Replacement Policy to

Improve Buffer Cache Performance,” in

Proceedings of the 2002 ACM SIGMETRICS

Conference on Measurement and Modeling of

Computer Systems, (SIIMETRICS'02), Marina Del

Rey, 2002.

[21] D. Lee, J. Choi, J.-H. Kim, S. Noh, S. L. Min, Y.

Cho and C. S. Kim, “LRFU: a spectrum of policies

that subsumes the least recently used and least

frequently used policies,” in Computers, IEEE

Transactions on, 2001.

[22] W. Effelsberg and T. Haerder, “Principles of

database buffer management,” in Journal ACM

Transactions on Database Systems (TODS) Volume

9 Issue 4, Dec. 1984, New York, 1984.

[23] E. J. O'Neil, P. E. O'Neil and G. Weikum, “The

LRU-K page replacement algorithm for database

disk buffering,” in SIGMOD '93 Proceedings of the

1993 ACM SIGMOD international conference on

Management of data, New York, 1993.

[24] N. Megiddo and D. S. Modha, “ARC: A Self-

Tuning, Low Overhead Replacement Cache,” in

FAST '03 Proceedings of the 2nd USENIX

Conference on File and Storage Technologies,

2003.

[25] W. Lee, S. Park, B. Sung and C. Park, “Improving

Adaptive Replacement Cache (ARC) by Reuse

Distance,” in 9th USENIX Conference on File and

Storage Technologies (FAST'11), San Jose, 2011.

[26] P. Bžoch, L. Matějka, L. Pešička and J. Šafařík,

“Towards Caching Algorithm Applicable to Mobile

Clients,” in Federated Conference on Computer

Science and Information Systems (FedCSIS), 2012,

Wroclaw, 2012.

[27] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C.

Stein, Introduction To Algorithms, 3rd ed., MIT

Press and McGraw-Hill, 2009.

