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SNCF is a large railway transportation company that operates 365 days a year and 24 hours a day. In order
to schedule a certain category of workers at train stations and ticket selling points, rosters are designed
to cover a cyclical demand. However, the highly combinatorial nature of the rostering problem makes it
very difficult to solve it manually, and experts spend a huge amount of time to make them legally feasible
and to improve a certain number of preference criteria. This paper presents a mixed-integer programming
model to address the cyclical rostering problem using patterns corresponding to feasible blocks of seven
days and assigning them to each week of the roster. Some valid inequalities are presented to improve the
linear relaxation of the model and thereby enhance computational performance. Implementation results
are presented, including comparisons with an alternative daily-variables model

Povzetek: Opisano je optimirano cikli?no razporejanje delavcev z aplikacijo za podjetje SNCF.

1 Introduction

Like many public transportation companies, the French na-
tional railways (SNCF, for Société Nationale des Chemins
de fer Frana̧is) require some work to be performed 365 days
a year and 24 hours a day. Because of complex legal issues,
planning of human resources is very difficult to implement.
People responsible for human resources in different ope-
rational units spend a considerable amount of time prepar-
ing timetables. Yet the plan they finally obtain is rarely
optimal with respect to preferences of workers and unions
or with respect to costs. Indeed, this kind of problem is
highly combinatorial, and so far, no software-based solu-
tion approach has been implemented at SNCF. The lack
of automation in producing timetables was put under the
spotlight when a new regulation of work schedules in 1997
reduced the overall time of work over a year for all employ-
ees and required most timetables to be redesigned.

Nevertheless, many papers dealing with personnel sche-
duling have been published in the open literature, focusing
on different problems specific to several fields [20]. Hos-
pitals, public services (firefighting and police units), and
airline and railway companies are among the most stud-

ied domains. These organizations share the characteris-
tic of being operated 365 days a year and 24 hours a day,
which makes workforce scheduling particularly fastidious
and justifies the effort to design effective decision-support
systems.

Two approaches have been considered for workforce
scheduling: the first approach aims at minimizing the costs
of production through the number of employees required
to perform a certain amount of work [1, 2, 3, 4], whereas
the goal of the second approach is to actually schedule the
work performed by a certain number of employees with re-
spect to a set of operational constraints, while minimizing
costs. Some research is also focused on integrating these
two phases into a single stage to produce either cyclic or
non-cyclic rosters [14].

In the case of the second approach, Beaumont [5] devel-
ops a mixed-integer programming (MIP) model to design
cyclic rosters of length one year, including four or five holi-
day weeks and a certain number of rostered off-days. Cons-
traints on minimal and maximal lengths of work stretches
and rest periods are explicitly expressed, and the objective
function aims at minimizing costs related to workload cov-
erage and acceptability of the roster. Freling et al. [17]
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present a similar problem, which is divided into four parts.
A first module enables the feasibility checking of given ros-
ters, a second one is responsible for the generation of fea-
sible rosters, and a third one evaluates each roster with re-
spect to its cost and preferential criteria. Finally, the fourth
module selects the best quality rosters through mathemati-
cal programming based methods (set partitioning problem).

Problems of workforce scheduling relative to nurses fo-
cus more specifically on the satisfaction of employee pref-
erences. Thus, Miller et al. [26] consider two sets of cons-
traints in their integer program, namely hard constraints
defining the feasibility set, and soft constraints whose vi-
olation is permitted but penalized by an associated cost in
the objective function. Sherali et al. [30] develop a mixed-
integer program for the resident scheduling problem (RSP)
at the St John Hospital and Medical Center and exploit the
inherent network structure of the problem to design a solu-
tion procedure. The advantage of this methodology lies in
its capacity to propose compromise solutions when the MIP
model turns out to be infeasible. For surveys on nurse ros-
tering problems, we refer the interested reader to [10] and
[7]. In a recent paper, Glass and Knight [19] study the nurse
rostering problem structure, and propose an mixed-integer
programming approach validated on four benchmark pro-
blem instances. Another contribution is a methodology for
handling continuity between rostering periods.

The problems encountered in the airline and railway in-
dustries are, in general, divided into two sub-problems: the
Crew Scheduling Problem (CSP) [35] and the Crew Ros-
tering Problem (CRP) [11, 16, 22, 23]. The CSP deals with
the design of pairings, which are sequences of tasks and
rest periods lasting typically 24 to 72 hours, and starting
and ending at the same domicile location. The CRP can be
seen as the natural consequence of the CSP because its aim
is to assign pairings to specific employees and to sequence
them over a longer term planning horizon, typically one to
four months. Caprara et al. [8, 9] address the Crew Sche-
duling Problem and the Crew Rostering Problem for the
railway industry. In [9], a procedure is proposed to com-
bine the CSP and the CRP in an iterative fashion, through
the computation of the Lagrangian cost of potential pair-
ings. De Pont [12] discusses the construction of rosters for
Dutch railway operators. Other research in the context of
the airline industry is concerned with the integration of air-
craft routing and crew scheduling (see for instance [24] and
[25]). This is not relevant in our case since we are inter-
ested in designing rosters for so-called sedentary workers.

Similar problems to those cited above can be found in
urban transportation companies. The problem studied by
Townsend [34] for the bus drivers of “London Regional
Transport” is of certain interest in the sense that it has sim-
ilarities with the design of rosters at SNCF. A solution pro-
cedure based on the utilization of pre-built patterns of one,
four, or five weeks is proposed. This procedure is problem-
specific and cannot be used here. However, the use of pre-
built patterns, such as the use of pairings in the CRP, is
worthwhile since it enables a higher level of abstraction in

the formulation of the model. We refer the reader to [15]
for an annotated bibliography of personnel scheduling and
rostering.

Regarding commercial software, a few rostering pack-
ages are available on the market. The software modules
developed by Quintiq are among the most popular ones
used in the industry and rely heavily on Operations Re-
search techniques (see [28]). The rostering problem de-
scribed in this paper is, however, too specific to be solved
using a generic software tool.

The present paper makes the following specific contribu-
tions:

1. We describe the employee rostering problem faced at
SNCF for a class of workers, and discuss related spe-
cific labor rules and work restrictions along with em-
ployee and management performance criteria for as-
suring high quality rosters.

2. We design an MIP model using special weekly pat-
tern blocks composed of feasible compositions of
work stretches and rest periods, and we further en-
hance the solvability of the model by incorporating
two classes of valid inequalities. The proposed model
is structured to facilitate a direct implementation us-
ing a commercial MIP software package (we used
CPLEX [21] for this purpose).

3. We present computational results based on real data at
SNCF and provide comparisons against an alternative
daily-variable model. Some practical implementation
guidelines are also discussed.

The remainder of this paper is organized as follows. Sec-
tion 2 explains the rosters to be generated. Section 3 devel-
ops the formulation designed to solve the problem. Some
experimental results are presented in Section 4. Section 5
concludes the paper with some perspectives for future re-
search.

2 Problem Definition
A roster is basically a table (see Figure 1) whose rows cor-
respond to work cycles; there are as many rows in the roster
as employees in the team. Each row or work cycle is a se-
quence of work stretches (sequence of consecutive working
days associated with different shifts - for example, morn-
ing, evening, or night) and rest days. Once designed and
validated, the roster is used until a major change arises such
as, for example, an evolution of the requirements in terms
of personnel or a modification of labor policies or union
rules.

The idea behind a roster is that every worker in the team
begins on a different row and then progresses cyclically
through the rows of the roster. Hence, the first worker be-
gins on the first row, and then continues for the next cycle
according to the second row, and so on. Likewise, the sec-
ond worker begins with the second row and proceeds cycli-
cally down the roster, returning back to the first row. As a
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Figure 1: Example of a roster with three daily shifts and
cycle length of two weeks

result, the work covered by the team of workers is cyclical,
with a period equal to the length of the cycle of the ros-
ter. The work covered by a given employee is also cyclical,
with the associated period being the total length of the ros-
ter (product of the length of the cycle with the number of
rows).

In practice, for economic reasons, the workload is not
fully covered by the employees in the roster. Certain re-
serve employees are typically called to cover the shifts that
are not covered by the team scheduled in the roster. Al-
though such reserve employees are called on a regular basis
by a certain number of rosters corresponding to their skills
and experience, their work is not scheduled through the use
of rosters.

Once the phase of roster design is complete, the pro-
cess of scheduling is executed using this roster. This has
one major advantage: it does not require any modification
from the human resources managers, except for slight ad-
justments to take production disturbances into account and
to plan the holidays of the employees. It also guarantees a
certain equity between employees in a given roster, since
they all share the same plan (although with different start-
ing points). Finally, workers enjoy transparency with re-
spect to their work schedules. However, major changes
cannot be made to the schedules without having to build
a new roster; hence leading to a lack of flexibility.

2.1 Labor rules

Rosters have to comply with various rules described in
[32, 33]. Recall that, in this paper, rosters are constructed
for sedentary workers that operate, for instance, at train sta-
tions and ticket selling points. To clarify the following, a
distinction is made between periodic and daily rests: a peri-
odic rest designates the off-day(s) between work stretches,
whereas a daily rest is the rest period between two consec-
utive workdays within a work stretch.

A work stretch cannot last less than three days or longer
than five days. Periodic rests must last one, two, or three
consecutive off-days.

Furthermore, there are two categories of employees: one
is given 114 off-days per year, and the other one is given
118 off-days. The category to which an employee belongs
depends on the difficulty of working conditions (and in par-
ticular, on the length of night work); all employees that
share a given roster, however, must belong to the same cat-
egory, and so, the data for any instance specifies the par-
ticular targeted number of off-days per year for each em-
ployee.

Each employee must have at least 12 consecutive pairs
of Saturday-Sundays off, and at least a total of 22 Sun-
days off combined with an adjacent Saturday off or an ad-
jacent Monday off (called weekends). For instance, a roster
providing yearly 12 Saturday-Sundays off and 10 Sunday-
Mondays off (hence, 12+10=22 weekends) satisfies these
rules.

Finally, the daily rest between two consecutive workdays
must last 12 hours at a minimum. Also, starting with the
first off-day of periodic rest there should be a break for at
least 36 hours. If this rule cannot be respected, the rest
period must last at least 24 hours and the reduction below
these 36 hours must be replaced at the latest during the sec-
ond periodic rest that follows. In any case, the length of the
second and third off-days cannot last less than 24 hours.

2.2 Preference criteria
Aside from the constraints cited above, the quality of a ros-
ter is evaluated by employees and managers according to
several criteria such as:

1. The number of single off-days (i.e., non-consecutive
to other off-days) : to be minimized.

2. The range-width of consecutive Saturday-Sundays off
over the different cycles of the roster : to be mini-
mized.

3. The range-width of weekends over the different cycles
of the roster : to be minimized.

4. The peaks in the use of reserve teams, i.e., the max-
imal number of calls to reserve employees over the
days of the roster : to be minimized.

3 MIP Formulation of the Problem
The formulation of the roster design problem we propose
uses a set of pre-built patterns of one week and generates
rosters within which each day is either a work day or an off-
day (daily shifts are not considered). Section 3.1 discusses
four important assumptions, and the MIP model itself is
presented in Section 3.2.

3.1 Model assumptions
1. Approximations: Labor rules set the annual number
of days of periodic rest to 114 or 118 days, which corre-
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sponds to a proportion of 114
365 or 118

365 of off-days. How-
ever, this proportion can rarely lead to an integer in the
case of real-life rosters. For instance, a roster of length
8 weeks (56 days) for employees of Category 1 (114 off-
days) must include at least 114×56

365 ≈ 17.49 off-days. This
number is rounded down (17 in the example) because it is
always preferable for a manager to assign an off-day that
was rostered as a workday than to assign a workday that
was rostered as an off-day. Indeed, managers can perform
slight changes on the rosters throughout the year to meet la-
bor rules by calling reserve employees. On the other hand,
numbers concerning the minimum proportions of Saturday-
Sundays off and weekends will be rounded up.
2. Workload: We assume that the required workload is
constant over each week, which therefore facilitates the use
of cyclical schedules.
3. Personnel capacities: We assume that personnel capac-
ities are not limited, meaning that whatever the work re-
quirements, there are enough employees to cover the work-
load. This remark concerns both rostered employees and
reserve employees.
4. Shifts: Typically, each workday is partitioned into three
shifts : Morning, Evening, and Night. In practice, it is
desirable (but not necessary) to assign employees to par-
ticular shifts over each work stretch by varying the type
of shift in order; for example, Morning, then Night, and
then the Evening shift. This facilitates satisfying daily rest
constraints and is also desirable from the viewpoint of work
rhythm and health perspectives. Note that the proposed
model built on one-week patterns ignores such shift consid-
erations, and focuses mainly on determining work stretches
comprising workdays and off-days. We assume that man-
agers would determine shift assignments along with any
subsequent tweaking of the generated schedules as neces-
sary at a later stage. (Section 4.2 provides additional dis-
cussion, including possible enhancements in the proposed
model.)

3.2 Formulation using one-week patterns

The proposed Mixed-Integer Programming (MIP) model is
inspired by research performed in the airline industry and
uses one-week patterns that can be considered as “blocks”
composed of work stretches and rest periods. They are built
such that, within a pattern, the rules relative to the length of
work periods (3 to 5 days) and rest periods (1 to 3 days) are
respected. Some constraints on the succession of patterns
ensure that these rules are also respected when coupling
two adjacent patterns. A limited number of patterns is used,
which represents the exhaustive set of all different “types”
of weeks respecting labor rules from the basic work-or-rest
point of view. Thus, these patterns only include two types
of days, which are work days and rest days. Such patterns
are assumed to be generated a priori using historical ex-
perience and managerial insights. Column generation ap-
proaches, as for example reviewed in [18] and [13] could
be used alternatively – we recommend such an investiga-

tion for future research. The set of patterns used in our
model is denoted by P .

3.2.1 Model parameters

An instance of the problem is fully defined by the follow-
ing parameters:
- The number of daily shifts (nds) used in the roster. This
is a positive integer.
- The work requirements in number of employees (reqs,d)
for each shift s ∈ S = {0, 1, ..., nds − 1} and each day
of the week d ∈ DW = {1, 2, ..., 7} (1 for Monday to
7 for Sunday). Note that for the proposed one-week pat-
terns model, only the aggregate requirement

∑
s∈S reqs,d

for each day d ∈ DW is of relevance.
- The number of cycles in the roster, corresponding to
the number of employees in the team: ncr (CR =
{1, 2, ..., ncr} denotes the set of cycles).
- The number of weeks in a cycle: nwc (WC =
{1, 2, ..., nwc} denotes the set of weeks of a cycle).
- The number of weeks in the roster: nwr = nwc × ncr
(WR = {1, 2, ..., nwr} denotes the set of weeks of the ros-
ter, indexed consecutively in order of occurence over the
cycles of the roster).
- The number of days in a cycle of the roster: ndc =
7 × nwc (DC = {1, 2, ..., ndc} denotes the set of days of
a cycle, indexed consecutively in order of occurence over
the cycle).
- The number of days in the roster: ndr = 7 × nwr
(DR = {1, 2, ..., ndr} represents the set of days in the ros-
ter).
- The minimum numbers of off-days, Saturday-Sundays
off, and weekends off to be included in the ros-
ter, respectively: minNbOd, minNbSatSun, and
minNbWkendOff .
- The nature of day d of pattern p, patternp,d, is equal to
0 if d is a rest day and equal to 1 if d is a work day. The
index d varies between 1 (Monday) and 7 (Sunday).
- The binary parameter potMonSinglep is equal to 1 if
Monday of pattern p is a rest day and Tuesday of the same
pattern p is a work day, and 0 otherwise. In this case, Mon-
day of pattern p is a potential single off-day.
- The parameter potSunSinglep is equal to 1 if Sunday of
pattern p is a rest day and Saturday of the same pattern is a
work day.
- The number of single off-days within pattern p (i.e., from
Tuesday to Saturday) is represented by withinSinglep.
- The parameter patternp,67 is equal to 1 if both Saturday
and Sunday of pattern p are rest days, 0 otherwise. Note
that these last four parameters are computed while con-
structing the actual MIP model.
- cannotFollowp are sets that are used to determine suc-
cessive pairs of patterns that would violate the rules stating
that work stretches vary “between three and five days” and



OPTIMIZED ROSTERING OF WORKFORCE. . . Informatica 36 (2012) 327–336 331

rest periods “between one and three days”:

cannotFollowp = {p′ ∈ P : p′cannot be selected
just after p in a roster}.

3.2.2 Principal decision variables

The principal decision variables of this model decide
whether pattern p is associated with week w of the roster:

xp,w = 1 if pattern p is associated with week w,
and 0 otherwise.

3.2.3 Auxiliary decision variables

- satSunw is equal to 1 if Saturday and Sunday of week w
of the roster are both rest days, and 0 otherwise.
- wKendw is equal to 1 if satSunw is equal to 1 or if
Sunday of week w and Monday of week w + 1 are both
off-days, and 0 otherwise.
- likewise, sunMonw is equal to 1 if Sunday of week w
and Monday of week w+ 1 are both off-days, and 0 other-
wise.
- monSinglew (respectively sunSinglew) is equal to 1 if
Monday (respectively Sunday) of week w is a single off-
day, and 0 otherwise.
- nSinglew is an integer variable equal to the number of
single off-days of week w of the roster.
- resd is an integer variable equal to the number of reserve
employees used to fully cover the workload on day d of a
cycle.
- nSingleOffDays is an integer variable associated with
the number of single off-days.
- minSatSun and maxSatSun are integer variables asso-
ciated respectively with the minimal and maximal numbers
of consecutive Saturday-Sundays off over all cycles, and
diffMinMaxSatSun denotes their difference.
- minWkend and maxWkend are, likewise, integer vari-
ables associated respectively with the minimal and maxi-
mal numbers of weekends off over all cycles of the roster,
and diffMinMaxWkend denotes their difference.
- Other dependent variables are evident through the cons-
traint definitions below.

3.2.4 Constraints of the formulation

The unique choice of pattern for each week of the roster is
imposed by: ∑

p∈P

xp,w = 1, ∀w ∈WR. (1)

The constraint on the admissible succession of patterns
is enforced by (in light of (1)):

xp,w +
∑

p′∈cannotFollowp

xp′,w+1 ≤ 1,

∀w ∈WR, ∀p ∈ P. (2)

The number of Mondays that are single off-days is
defined by the following constraint, which imposes that
monSinglew is equal to 1 if potMonSinglep = 1 (for
pattern p associated with week w) and if the adjacent Sun-
day is a work day:

monSinglew ≥
∑
p∈P

(xp,w · potMonSinglep) (3)

+
∑
p∈P

(xp,w−1 · patternp,7)

−1, ∀w ∈WR. (4)
monSinglew ≥ 0, ∀w ∈WR. (5)

The same types of constraints are used to determine the
number of Sundays that are single off-days, sunSinglew.
Then, the number of single off-days in week w is given
by the sum of single off-days within pattern p associated
with week w, plus Monday or Sunday if these are single
off-days:

nSinglew ≥
∑
p∈P

(xp,w · withinSinglep)

+monSinglew + sunSinglew, ∀w ∈WR. (6)

Accordingly, the total number of single off-days in the
roster is given by:

nSingleOffDays =
∑

w∈WR

nSinglew. (7)

Constraint (8) determines if Saturday or Sunday of week
w are off-days, and, if both are off-days, sets satSunw to
1.

satSunw =
∑
p∈P

xp,w · patternp,67, ∀w ∈WR. (8)

Constraints (9) – (14), expressed for Sunday and Mon-
day, enable to define if Sunday of week w and the con-
secutive Monday of week w + 1 are off-days, in which
case sunMonw is set equal to 1. It is more complex to
express here, compared with the above Saturday-Sunday
constraint, because the value of the variable depends on the
choice of patterns for both weeks w and w + 1.

sunw =
∑
p∈P

xp,w · patternp,7, ∀w ∈WR. (9)

monw =
∑
p∈P

xp,w · patternp,1, ∀w ∈WR. (10)

sunMonw ≥ 1− sunw −monw+1,∀w ∈WR. (11)

sunMonw ≤ 1− sunw, ∀w ∈WR, (12)
sunMonw ≤ 1−monw,∀w ∈WR, (13)
sunMonw ≥ 0, ∀w ∈WR. (14)
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The definition of weekends is then obtained by (15) to
(18):

wKendw ≥ satSunw, ∀w ∈WR. (15)
wKendw ≥ sunMonw, ∀w ∈WR. (16)
wKendw ≤ satSunw + sunMonw, (17)

∀w ∈WR. (18)

Note that Equation (19) helps further tighten the LP re-
laxation, besides enforcing wKendw ≤ 1.

wKendw ≤ 1− sunw,∀w ∈WR. (19)

The number of consecutive Saturday-Sundays off in
each cycle, as well as the difference between the maximum
and the minimum values over all cycles, are determined
through Constraints (20) to (23).

satSunCyclec

=
∑

w∈WC

satSunnwc·(c−1)+w, ∀c ∈ CR. (20)

maxSatSun ≥ satSunCyclec,∀c ∈ CR.

(21)

minSatSun ≤ satSunCyclec, ∀c ∈ CR.

(22)

diffMinMaxSatSun

= maxSatSun−minSatSun. (23)

Similar constraints are used to compute wKendCyclec,
minWkend, maxWkend, and diffMinMaxWkend
for weekends.

The respecting of labor rules on the number of consec-
utive Saturday-Sundays off, on the number of weekends,
and on the total number of off-days over the roster is en-
sured via Constraints (24), (25), and (26), respectively.∑

w∈WR

satSunw ≥ minNbSatSun.

(24)

∑
w∈WR

wKendw ≥ minNbWkendOff.

(25)

∑
w∈WR
p∈P

7∑
d=1

xp,w.patternp,d = ndr−minNbOd. (26)

Reserve calls (resd) on each day d of a cycle are equal to
the total requirements minus the shifts assigned to employ-
ees in the roster, as expressed by the following constraint
(in which mod+ 7 designates an integer between 1 and 7,
computed via modulo 7, except that a modulo value of 0 is
replaced by 7):

resd =
∑
s∈S

reqs,(dmod+ 7)

−
∑
c∈CR
p∈P

xp,(c−1)·nwc+⌈d/7⌉ · patternp,(dmod+ 7),

∀d ∈ DC. (27)

The maximum number of reserve calls over all days d of
a cycle is then bounded by resd.

maxRes ≥ resd, ∀d ∈ DC. (28)

Finally, all auxiliary variables are automatically explic-
itly restricted to be binary or integer variables, where the
principal decision variables xp,w are required to be binary-
valued.

xp,w ∈ {0, 1}, ∀p ∈ P, ∀w ∈WR. (29)

3.2.5 Objective function

The objective function is a weighted sum (with suitable
positive weights A, B, C, and D prioritizing the different
terms) of the criteria described in Section 2.2, expressing
the desirability of the roster from the point of view of both
employees and managing staff:

Minimize :

A · nSingleOffDays (see Constraint (7))
+B · diffMinMaxSatSun

(see Constraint (23))
+C · diffMinMaxWkend

(see statement after Constraint (23))
+D · maxRes (see Constraint (28)).

3.2.6 Model symmetry

Note that the model possesses inherent symmetries due to
its cyclical nature that could be inhibited to achieve greater
computational efficiency (see [31], for example). In partic-
ular, to address this issue, we tried (see [29]) to add some
constraints expressing the fact that the first pattern of the
first cycle should be the one having the lowest index among
all patterns assigned to the beginning of cycles. Some pre-
liminary tests revealed that these symmetry-defeating re-
strictions did not help much in reducing the computational
times, so we did not go further in this direction. However,
we advocate a further investigation of this issue for future
research.
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3.3 Formulation using daily variables
Another formulation to address the cyclical rostering pro-
blem at SNCF was also developed based on daily variables
that determine, for each day d of the roster, whether a rest
period or a work period of any permitted duration, and any
required shift among Morning, Night, and Evening, begins
on day d (see [6] and [29]). This formulation turned out to
be computationally prohibitive due to the large number of
integer variables, and we refer the interested reader to [29]
for details.

4 Model Refinements and
Experimental Results

All computations were performed on a PC equipped with a
2.4 GHz processor, 512 MB memory, and using the ILOG
CPLEX 8.0 optimization software with default settings (al-
though more efficient versions of CPLEX presently ex-
ist [21], this was the software available to us at the time of
the study). The method used to solve the MIP model is the
Branch & Cut algorithm [27] implemented within CPLEX
and the runs were executed until an optimal solution was
found.

Some additional refinements were made to the model
for improving its computational performance. First, we re-
laxed all auxiliary varibles, earlier defined as integer vari-
ables. Integer variables are, in general, known to be dif-
ficult to deal with. However, this extensive use of integer
variables is not necessary since many of them are simply
defined as intermediate variables that depend only on the
principal variables of the formulation. Indeed, these vari-
ables automatically take on integer values at optimality.

Furthermore, we introduced some valid inequalities (or
cuts) in the model before calling CPLEX to solve the pro-
blem. These cuts simply deal with the values that can be
taken by some variables under given conditions:

1. We explicitly imposed maxRes ≥ 1 if the number of
employees in the roster is a priori known to be insuf-
ficient to cover the entire workload.

2. diffMinMaxSatSun and diffMinMaxWkend
cannot be equal to 0 if the number of consecutive
Saturday-Sundays off (respectively, weekends off)
that is specified to be included in the roster is not
a multiple of the number of cycles. For example,
if one wants to include five Saturday-Sundays off
and nine weekends off in a four-cycle roster, it is
not possible to obtain an equal number of Saturday-
Sundays and weekends off in each cycle. Hence, we
specifically impose diffMinMaxSatSun ≥ 1 and
diffMinMaxWkend ≥ 1 in such cases.

Our test set was comprised of 432 = 16× 27 realistic ins-
tances constructed by composing :

– 16 combinations of employee requirements and num-
bers of weeks per cycle corresponding to real-world
instances that vary between 2 and 4 employees per
day, and between 2 and 5 weeks per cycle; along with:

– 27 (= 3× 3× 3) realistic sets of values for the min-
imum annual number of: (a) off-days (114, 118, or
122, where this third case was introduced for exper-
imental purposes); (b) consecutive Saturday-Sunday
off-days (10, 12, or 14); and (c) number of week-
ends(19, 22, or 25).

Table 1 displays results on the computational times (in
seconds) required to obtain optimal rosters with the differ-
ent cuts. We tested the aforementioned 432 instances for
each configuration : without the two cuts mentioned above,
with cut (1), with cuts (2), and with cuts (1) and (2). The
columns of this table provide the average and maximum
CPU times over all the test problems, and the number of
problems whose computation requires more than 1 s., 10
s., and 100 s., and the mean CPU times in these three cate-
gories.

The results presented in Table 1 show that cut (1), by
itself or in combination with cut (2), does not help the res-
olution process as it increases the mean CPU time. More
recent versions of CPLEX might be able to handle such
lower-bounding restrictions more efficiently. However,
adding cut (2) to the model leads to major improvements
in the computational effort: the mean CPU time with (2) is
smaller by a factor of more than five, and there is only one
instance requiring more than 100 s. In general, cuts alter LP
relaxation solutions of different nodes of the branch-and-
bound tree, thereby affecting the choice of branching vari-
ables, and consequently result in varying effects on overall
performance. In our runs, for three particular instances,
where the root node relaxation was unaffected (although
other node relaxations can still be affected after branch-
ing), cut (1) increased the CPU times for two instances
from 7.7 to 9.1 seconds and from 55.8 to 255.0 seconds,
respectively, but decreased it for a third instance from 195
to 109.5 seconds. On average, cut (1) increased the overall
effort as indicated in Table 1.

Since the best results were obtained by adding cuts (2) to
the formulation, this refinement was included in the model
for further experiments.

We also observe from Table 1 that the computational
times to solve the roster generation problem vary widely.
Many parameters of the formulation impact the CPU times
but the computational times are mainly dependent on two
of them that determine the number of integer variables: the
number of weeks in the roster (nwr) and the number of cy-
cles in the roster (ncr). Tables 2 and 3 present mean CPU
times obtained on sets of instances of the problem having
varying values of nwr and ncr. The general trend is an ex-
ponential increase of the computational times with respect
to these two parameters.
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Mean Max Nb of problems Mean CPU
CPU CPU >1s. >10s. >100s. >1s. >10s. >100s.

No cuts 11.3 498.5 167 66 9 28.7 66.7 278.9
Cut (1) 12.7 423.9 143 73 14 37.9 70.5 240.1
Cuts (2) 2.1 121.2 75 12 1 11.4 55.4 121.2
Cuts (1) & (2) 12.8 385.7 162 84 21 33.5 61.9 184.7

Table 1: Number of problems solved and CPU times (in s.) by introducing cuts within the formulation using one-week
patterns

nwr CPU
4 0.09
6 0.12
8 0.72
9 0.13
10 0.34
12 11.48
16 1,022.64
20 1,640.15

Table 2: Mean CPU times (in s.) with respect to nwr for
the formulation using one-week patterns

ncr CPU
2 0.34
3 0.15
4 304.83
8 5,108.80

Table 3: Mean CPU times (in s.) with respect to ncr for
the formulation using one-week patterns

4.1 Computational comparison with the
formulation using daily variables

For the formulation using daily variables mentioned in Sec-
tion 3.3, over the 432 tested instances, 360 were infeasible
and, among the remaining 72 feasible instances, there was
no case where this model required less time than the formu-
lation using one-week patterns. For some particularly hard
to solve instances (where ncr equals 4 and nwc equals 3 –
hence, the rosters comprise 12 weeks overall), the required
CPU time ranged from 1,498 s. to 7,972 s. with the daily
variables model, whereas the CPU times ranged from 1 s.
to 98 s. with the formulation using one-week patterns. We
refer the interested reader to [29] for further details on this
daily-variables model.

4.2 Practical use of the model

The formulation using one-week patterns reaches optimal
solutions much faster than the formulation using daily vari-
ables - 10 to 20 times faster on average. Therefore, if mul-
tiple solutions are to be produced quickly, for example for
the sake of comparison of different feasible rosters, the for-
mulation using one-week patterns is well adapted.

Figure 2: A valid roster for the formulation using one-week
patterns

One should keep in mind that the formulation using one-
week patterns specifies only the nature of each day of the
roster as either a workday or an off-day. This has a sig-
nificant impact on computational times but also has conse-
quences on the usability of the rosters. For example, con-
sider the roster presented in Figure 2. This roster has 10
off-days, one Saturday-Sunday off-day, and two weekend
off-days. Its work stretches are three to five days long, and
the rest periods are between one and three days. Hence, it
is valid with respect to work regulations. However, the se-
quence of assigned shifts Morning→ Night→ Evening→
Morning, and so on, one type for each work stretch, which
is commonly implemented for three-shift rosters, cannot be
respected here because the roster has five work stretches,
which is not a multiple of three. On the other hand, the
formulation using daily variables directly handles such re-
strictions on sequences of shifts.

The pattern-based formulation recognizes a large num-
ber of rosters as valid, but these rosters do not necessarily
correspond to certain expectations of workforce managers.
A way to resolve this issue would be to use one-week pat-
terns that specify for each workday the type of shift that is
worked. If we consider three shifts that alternate with each
other according to the sequence Morning, then Night, and
then Evening, and so on, the number of such patterns is
exactly three times the number of ”basic” patterns (indeed,
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for each basic pattern, there are three possible choices for
the first workday, and the nature of the following work-
days derives from this initial choice). This new set of pat-
terns is still of manageable size for the MIP formulation
using patterns, and could be used instead of the original
set of patterns to produce more precise rosters. Moreover,
the pattern-based formulation can be useful to design other
types of rosters, for example, rosters having only one or
two different shifts.

Finally, we comment on handling infeasibilities in the
generated solutions in practice. In such cases, we advise
the user to try another computational run with a different
number of weeks per cycle. This is acceptable from a prac-
titioner’s point of view since roster specialists know that
some numbers of weeks per cycle fit better certain require-
ments that need to be covered (although there is no formal
proof of this), and thus accordingly, they manually adapt
the roster width to meet these requirements.

5 Summary and Conclusions

The research described in this paper on the rostering pro-
blem at SNCF has enabled the design of a model using one-
week patterns, producing rosters where each day is defined
as being either a workday or an off-day. As discussed in
Section 4, it can be solved very fast and allows users to gen-
erate several rosters for the sake of comparison, or to obtain
”long” rosters within reasonable computational times.

5.1 From theoretical models to an industrial
tool

This study was initiated by SNCF to develop a decision-
support system that would be available to all workforce
managers of the railway company. A prototype of this sys-
tem was designed based on the proposed formulation, and
has been used online by several SNCF workforce managers
via the company intranet. The system is basically com-
posed of a set of dynamical Web pages. Once problem ins-
tances are submitted and optimal solutions are found, all
relevant pieces of information are written in a database and
displayed in a graphical manner on a Web page.

The feedback obtained from the users is very encourag-
ing. The consensus is that the prototype is very helpful
and saves a great deal of time. Also, the solutions that
are proposed are sometimes quite different from the ones
that workforce managers would have found manually, thus
enlarging the field of possibilities. Of course, efforts are
needed to improve the user interface and the reliability of
the system, but the prototype proved the need and inter-
est for such a decision-support system. The next step is
the industrialization of the tool to make it available to all
workforce managers of the company.

5.2 Recommendations for future research
Although the formulations designed in this study are ca-
pable of designing feasible rosters in acceptable times, the
following features can be investigated to further improve
the models:

– Use more specific patterns in which the shifts are addi-
tionally assigned to workdays, and introduce new se-
quence constraints in the formulation using one-week
patterns to produce more detailed and ready-to-use
rosters.

– Implement column generation to derive patterns, or
use longer patterns, that are dynamically generated by
column generation, to reduce computational times.
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