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In the classical model of a computer, the most fundamental building block, the bit, can only exist in one 
of two distinct states, a 0 or a 1. Computations are carried out by logic gates that act on these bits to 
produce other bits. Unless there is duplicate (parallel) hardware, only one problem instance (i.e. input 
data set) can be handled at a time. In this classical computing, increasing the number of bits increases 
the complexity of the problem and the time necessary to arrive at a solution. 
A quantum algorithm consists of a sequence of operations on a register, to transform it into a state 
which, when measured, yields the desired result with high probability. An n-bit quantum register can 
store an exponential amount of information. 
This paper aims at taking advantage of the superiority of quantum computing over classical computing 
to solve the problem of searching unstructured databases for a particular item or more than one item in 
good time. The general aim of this work is to establish the correctness and optimality of Grover’s 
quantum database search algorithm compared against classical database search methods in order to 
investigate the superiority or otherwise of quantum computing over classical computing. This is 
followed by a simulation of the algorithm using a classical computer, namely through functions that are 
present in MATLAB, referred to as “Quantum Computing Functions”. 
Povzetek: Članek predstavlja implementacijo kvantnega iskanja v nestrukturiranih bazah. 

 

1 Introduction 
The bit is the fundamental unit of storage in a classical 
computer; similarly, the basis of quantum computation is 
a qubit. The qubit is similar to a bit in that when 
measured, its value will be either 0 or 1. It differs 
primarily in what it is doing when it is not being 
measured. In particular, a qubit can exist in any 
superposition of the 0 and 1 state simultaneously. When 
a qubit in such a state is measured the superposition will 
be destroyed. It will be found to be uniquely in the 0 or 1 
state with some probability for each, determined by the 
particulars of the superposition prior to the measurement 
(Williams and Clearwater, 1998). 

The renowned scientist Moore’s empirical law, 
which states that “computing power doubles 
approximately every 18 months” is believed by  just 
about everyone that is into computing (Williams and 
Clearwater, 1998). Computer components have been 
steadily decreasing in size and increasing in speed, 
tending to follow this prediction. However, what is the 
fate of this trend in real life? A little extrapolation would 
suggest that within about 10 years the size of a transistor 
logic gate element will be only a few atoms. 
Consequently, computer power will soon reach a limit, 
unless another approach for computing can be developed. 
Quantum computing is one possible approach. 

A quantum algorithm consists of a sequence of 

operations on a register, to transform it into a state 
which, when measured, yields the desired result with 
high probability. An n-bit quantum register can store an 
exponential amount of information. The register as a 
whole can be in an arbitrary superposition of the 2n base 
states which it can be measured to be in. While in this 
superposition, and computation applied to the register 
will be applied to each component of the superposition, 
this behavior follows from the linearity of operators on 
quantum mechanical systems. This behavior, called 
“quantum parallelism” is the basis for most quantum 
algorithms. In 1982, the Nobel prize-winning physicist, 
Richard Feynman, thought up the idea of a 'quantum 
computer', a computer that uses the effects of quantum 
mechanics to its advantage (Deutsch and Jozsa, 1992).  

In the classical model of a computer, the most 
fundamental building block, the bit, can only exist in one 
of two distinct states, a 0 or a 1. Computations are carried 
out by logic gates that act on these bits to produce other 
bits. Unless there is duplicate (parallel) hardware, only 
one problem instance (i.e. input data set) can be handled 
at a time. In this classical computing, increasing the 
number of bits increases the complexity of the problem 
and the time necessary to arrive at a solution. 

In a quantum computer, the rules are changed. Not 
only can a 'quantum bit', usually referred to as a 'qubit', 
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exist in the classical 0 and 1 states, it can also be in a 
coherent superposition and all linear combinations of 
both.  

The number of possibilities grows exponentially 
with the number of qubits. For example, for a 2-qubit 
system, there are all possible superpositions of the states 
00, 01, 10, and 11, including entangled states of the form 
(01 ±10). If there are N qubits, the vector space required 
to describe their states has dimension 2N . Calculations 
are carried out on vectors by quantum gates that apply 
unitary transformations to these vectors to produce other 
vectors. Since quantum computers can process 
superpositions, they can (at least for some problems) be 
viewed as devices that can process all possible inputs 
simultaneously.  

When a qubit is in this state, it can be thought of as 
existing in two universes: as a 0 in one universe and as a 
1 in the other. An operation on such a qubit effectively 
acts on both values at the same time. The significant 
point being that by performing the single operation on 
the qubit, we have performed the operation on two 
different values. Likewise, a two-qubit system would 
perform the operation on 4 values, and a three-qubit 
system on eight. Increasing the number of qubits 
therefore exponentially increases the 'quantum 
parallelism' we can obtain with the system (Williams and 
Clearwater, 1998). This is a great leap from the classical 
computing we are familiar with in which increasing the 
number of bits increases the complexity of the problem 
and the time necessary to arrive at a solution.   

With the correct type of algorithm, it is possible to 
use this parallelism to solve certain problems in a 
fraction of the time taken by a classical computer. A 
quantum computer would consist of many qubit gates 
with entangled states. These gates could be addressed in 
parallel by unitary transformations, which must be 
carried out reversibly, implying no loss of energy in a 
gate operation. Quantum computers are “wired” so that 
they can do many calculations at the same time. This is 
known as “quantum parallelism” and represents the 
power of a quantum computer.  

Several systems have been proposed for quantum 
computing including photons in nonlinear optical 
systems, trapped ions, electron and nuclear spins, 
quantum dots, and Josephson junctions (Grover, 2000). 
There are advantages and disadvantages to all these 
approaches. Some, such as those employing light or 
trapped ions, have demonstrated that they can provide 
individual qubits of excellent quality. But, it is not yet 
known if they can be scaled up to produce systems with 
many qubits and many possible quantum gate operations. 

There is nothing a quantum computer can do that 
cannot also be done by an ordinary computer. However, 
for some problems, a quantum computer may be many 
orders of magnitude faster. There are presently two 
important problems involving commerce and security for 
which a quantum computer is believed to be superior. 
These are finding the factors of a large number and 
searching an unstructured database. A quantum computer 
would also be superior for simulating the behavior of 

quantum systems, and thus have enormous implications 
for physics.  

This paper aims at taking advantage of the 
superiority of quantum computing over classical 
computing to solve the problem of searching 
unstructured databases for a particular item or more than 
one item in good time. The general aim of this work is to 
establish the correctness and optimality of Grover’s 
quantum database search algorithm compared against 
classical database search methods in order to investigate 
the superiority or otherwise of quantum computing over 
classical computing. This is followed by a simulation of 
the algorithm using a classical computer, namely through 
functions that are present in MATLAB, referred to as 
“Quantum Computing Functions”. 

2 Existing Works in Quantum 
Computing 

In the early 1980's, physicist Richard Feynman observed 
that no classical computer could simulate quantum 
mechanical systems without incurring exponential 
slowdown (Williams and Clearwater, 1998). At the same 
time, it seems reasonable that a computer which behaves 
in a manner consistent with quantum mechanics could, in 
principle, simulate such systems without exponential 
slowdown.  

For many years the study of quantum computing was 
primarily an academic curiosity. Shor (1994) developed a 
polynomial time algorithm for factoring large integers. 
According to Williams and Clearwater (1998), it is not 
known if there is a classical algorithm for factoring large 
integers efficiently, but the best algorithms published 
thus far are super-polynomial. This algorithm coupled 
with the prominence of cryptographic systems based on 
factoring large integers fueled study of quantum 
computation, both from an algorithmic and a 
manufacturing point of view. Grover (1996) provided an 
O(√n) time algorithm for finding a single marked 
element in an unsorted database of n elements. The best 
possible classical algorithm would run in O (n) time. 
This search problem was not the first problem for which 
a quantum computer was shown to be better than any 
possible classical computer, but it was the first problem 
of real utility found where a quantum computer 
outperforms a classical computer in an asymptotic sense.  

While Shor's algorithm may be of more immediate 
utility, Grover's algorithm seems more interesting in a 
theoretical sense, as it highlights an area of fundamental 
superiority in quantum computation. 

2.1 Grover's Algorithm 
Assuming there is a system with N = 2n states labeled S1, 
S2,…, SN. These 2n states are represented by n bit strings. 
Assuming there is a unique marked element Sm that 
satisfies a condition C(Sm) = 1, and for all other states 
C(S) = 0. Suppose that C can be evaluated in unit time. 
The task is to devise an algorithm which minimizes the 
number of evaluations of C. 

The idea of Grover's algorithm is to place the register 
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in an equal superposition of all states, and then 
selectively invert the phase of the marked state, and then 
perform an inversion about average operation a number 
of times. The selective inversion of the marked state 
followed by the inversion about average steps has the 
effect of increasing the amplitude of the marked state by 

(1/ (1) )O N O . Therefore after ( )O N operations the 
probability of measuring the marked state approaches 1 
(Grover, 1996). 
Grover's algorithm is as follows: 
• Prepare a quantum register to be normalized and 

uniquely in the first state. Then place the register in 
an equal superposition of all states 1 1 1, , ,

N N N
 
 
 

    

by applying the Walsh-Hadamard operator W . This 
means simply the state vector will be in an equal 
superposition of each state. 

• Repeat ( )O N  times the following two steps (the 
precise number of iterations is important, and 
discussed below): 
o Let the system be in any state S. If C(S) = 1, 

rotate the phase by π radians, else leave system 
unaltered. It is worth noting that this operation 
has no classical analog. One cannot observe the 
state of the quantum register, doing so would 
collapse the superposition. The selective phase 
rotation gate would be a quantum mechanical 
operator which would rotate only the amplitude 
proportional to the marked state within the 
superposition. 

o Apply the inversion about average operator A, 
whose matrix representation is: NAij /2=   if i ≠ 
j and NAij /21+−= to the quantum register. 

• Measure the quantum register. The measurement 
will yield the n bit label of the marked state C(SM) = 
1 with probability at least 1/2 (Grover, 1996). 

This Grover’s algorithm flow chart is as shown in Figure 
1. 

3 Proposed System 
The proposed system is concerned with the simulation of 
Grover’s Algorithm using MATLAB. Quantum 
computing uses unitary operators acting on discrete state 
vectors. Matlab is a well-known (classical) matrix 
computing environment, which makes it well suited for 
simulating quantum algorithms. 

Appendix A contains the Matlab commands to 
simulate Grover’s algorithm using six qubits. The 
number of database elements is 26 = 64. The desired 
element is randomly generated from among the 64 
elements using Matlab’s rand function and it is the 53rd 
element. The quantum gates are defined using Matlab’s 
eye function. The optimal number of iterations is 
determined by n4

π  as proposed by Grover. Figure 2 
shows the probability dynamics generated by the plot 
function in Matlab while Figure 3 shows the result 
distribution. 

Grover demonstrated that quantum computers can 

perform database search faster than their classical 
counterparts. In this simple example of Grover’s 
algorithm, a haystack function is used to represent the 
database. We are searching for a needle in the haystack, 
i.e. there is one element of the database that we require. 

Grover’s algorithm works by iteratively applying the 
inversion about the average operator to the current state. 
Each iteration amplifies the probability of a measurement 
collapsing the state to the correct needle value. Grover 
showed that performing a measurement after n4

π  
iterations is highly likely to give the correct result. 

Appendix B contains the Matlab commands needed 
to find the needle in a haystack, i.e. to find a particular 
element among the elements of a database. The Walsh-
Hadamard transformation, operator to rotate phase and 
inversion about average transformation were achieved 
through matrices of zeros and ones available as Matlab 
commands. At the end of the program, the output was set 
to be a movie-like display of the different stages of the 
iteration in a 3-dimensional plane comprising the axes 
Amplitude, States and Time. This was achieved by using 
Matlab’s function movie. The last stage of the iteration 
process is shown by Figure 4. 

3.1 Open Questions 
There are several open questions that prop up from 

Grover’s search algorithm proposal. Foremost among 
these is how many times exactly we should iterate step 2 
of Grover’s algorithm. Grover proves the existence of 
some m ∈ O ( N ), such that after m iterations of step 2 
of the algorithm, the probability of finding the register in 
the marked state is greater than 1/2. Since the amplitude 
of the desired state, and hence the probability of 
measuring the desired state, is not monotonic increasing 
after m iterations, it is not enough to know the existence 
of m, its value must be determined. 

3.2 Searching for More Than One Item 
Grover briefly mentions that his algorithm can work in a 
situation where there is more than one state, such that C 
(Si) = 1. In fact, this poses no difficulty whatsoever, and 
regardless of the number of marked states, its superior 
performance over classical algorithms is still retained. If 
there are t marked states, we can find one of the marked 
states in O ( tN / ) time. This presumes that we know the 
number of marked elements in advance (Boyer et al, 
1996).  

Another interesting special case comes when t = N/4, 
in this case just as in the special case where N = 4, we 
will find a solution with unit probability after only one 
iteration, which is twice as fast as the expected running 
time for a classical algorithm, and exponentially faster 
than the worst case classical running time (Boyer et al, 
1996). 

3.3 Optimality of Grover’s Algorithm 
It is stated in Grover (1996) that his result was optimal, 
but it is not directly proved.  Bennett et al (1996)  
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Figure 1: Grover’s Algorithm Flowchart. 

Prepare normalized quantum 
register uniquely in the first state. 

Apply Walsh-Hadamard 
operator  to place the register 
in an equal superposition of all 
states . 

Put the system in any state S. 

Is C(S) = 
1? 

Get N, the number 
of database elements. 

No 

Yes
 

Leave the system 
unaltered. 

Rotate the phase by 
π radians. 

Apply inversion about average operator A, 
whose matrix representation is:   
if I ≠ j and to the quantum 
register. 

Measure the quantum register. measurement 
will yield the n bit label of the marked state 
C(SM) = 1 with probability at least 1/2. 



MATHLAB IMPLEMENTATION OF…  Informatica 36 (2012) 249–254 253 
 

  
Figure 2: Probability Dynamics. 

 
Figure 3: Result Distribution. 

established that any quantum algorithm cannot identify a 
single marked element in fewer than Ω (√N). Grover’s 
algorithm takes O(√n) iterations, and is thus 
asymptotically optimal. It has been shown since that any 
quantum algorithm would require at least π/4√N queries, 
which is precisely the number queries required by 
Grover’s algorithm (Grover, 1999).  

4 Conclusion 
Intriguing breakthroughs occurred in the area of quantum 
computing in the late 1990s. Quantum computers under 
development use components of a chloroform molecule 
(a combination of chlorine and hydrogen atoms) and a 
variation of a medical procedure called magnetic 
resonance imaging (MRI) to compute at a molecular 
level. Scientists use a branch of physics called quantum 
mechanics, which describes the behavior of subatomic 
particles (particles that make up atoms), as the basis for 
quantum computing (Synder, 2008). 

Quantum computers may one day be thousands to 
millions of times faster than current computers, because 
they take advantage of the laws that govern the behavior 

of subatomic particles. These laws allow quantum 
computers to examine all possible answers to a query 
simultaneously. Future uses of quantum computers could 
include code breaking (cryptography) and large database 
queries. Theorists of chemistry, computer science, 
mathematics, and physics are now working to determine 
the possibilities and limitations of quantum computing. 

Quantum computation allows for exponential speed 
up and storage in a quantum register via quantum 
parallelism. The more basis states represented within the 
register, the more speed up due to parallelism in the 
register, and the more improbable it is that a desired state 
can be measured. Grover’s algorithm handles this 
problem by relying on transformations which cause the 
amplitude of the marked state to increase at the expense 
of the non marked states, in a number of ways this is 
analogous to interference of waves.  

Grover’s algorithm is unique among quantum 
algorithms in that it shows a useful calculation that a 
quantum computer can calculate faster than any classical 
computer possibly can. At the heart of Grover’s 
algorithm are two unitary transformations, the first is a 
selective phase inversion, which makes the sign of the 
amplitude of the target negative. The second unitary 
transformation is an inversion about average operation. 
Initially we place the amplitude of all states at the same 
positive value, each phase switch and inversion about 
average increases the amplitude of the target state. The 
exact number of times we perform these transformations 
is roughly π/4√N for sufficiently large N. For a classical 
algorithm the best time bound is O (N). 

5 Appendix A: Grover’s Algorithm 
Simulation 

This Matlab codes simulate Lov Grover’s quantum 
database search algorithm by plotting the graph of the 
probability distribution of finding the marked state as the 
system undergoes Grover iteration. 
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Figure 4: Amplitude-Time Graph for Simulated 
Grover’s Algorithm. 
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%This script simulates the Quantum Mechanical Lov 
Grover's  

%Search Alghorithm. 
clear all; 
%-----parameters----------- 
nqubits=6;%number of q-bits 
n=2^nqubits;%nnumber of elements in database 
findmode=mod(round(n*rand+1),n);%desired element 
%-----defining quantum gates 
d=-eye(n)+2/n;%diffusion transform 
oracle=eye(n);%oracle 
oracle(findmode,findmode)=-1;  
%--calculate the optimal number of iterations--- 
finish=round(pi/4*sqrt(n)); 
%--step(i)--initialization---- 
psistart=ones(n,1)/sqrt(n); 
psi=psistart*exp(i*rand); 
%step (ii)--algorithm body---- 
for steps=1:finish 
steps 
psi=d*oracle*psi; 
probability(steps)=psi(findmode)*conj(psi(findmode)); 
end 
%see the probability dynamics 
plot(probability); 
%see the result distribution 
figure; 
stem(psi.*conj(psi)); 

6 Appendix B: Searching for a 
Needle in a Haystack 

This set of Matlab codes simulate the Lov Grover’s 
quantum database search algorithm by using the example 
of searching for a needle in a haystack. 

 
s=[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]'; 
W=zeros(16,16); %Walsh-Hadamard transformation 
for i=1:16 
for j=1:16 
W(i,j)=2^(-4/2)*(-1)^double(bitand(uint8(i-1),uint8(j-

1))); 
end 
end 
s=W*s; 
R=zeros(16,16); %Operator to rotate phase 
for i=1:16 
if i==9 
R(i,i)=-1; 
else 
R(i,i)=1 
end 
end 
A=(2/16)*ones(16,16); %inversion about average 

transformation 
for i=1:16 
A(i,i)=-1+2/16; 
end 
path=zeros(7,16); 
path_i=1; 
path(path_i,:)=s'; 

surf(path); 
axis([0 20 0 8 -0.5 1]); 
xlabel('States');ylabel('Time');zlabel('Amplitude'); 
F(path_i)=getframe; 
path_i=2; 
n=1; 
while n<(pi/2)*sqrt(16), %needed iteration time is 

(pi/4)*sqrt(N) 
s=R*s; 
s=A*s; 
path(path_i,:)=s'; 
surf(path); 
xlabel('States');ylabel('Time');zlabel('Amplitude'); 
F(path_i)=getframe; 
path_i=path_i+1; 
n=n+1; 
end 
movie(F,3,3); 
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