
 Informatica 36 (2012) 249–254 249

Mathlab Implementation of Quantum Computation in Searching an
Unstructured Database
I.O. Awoyelu and P. Okoh
Department of Computer Science & Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
E-mail: iawoyelu@oauife.edu.ng

Keywords: qubit, quantum algorithm, classical computing, quantum computing

Received: August 15, 2011

In the classical model of a computer, the most fundamental building block, the bit, can only exist in one
of two distinct states, a 0 or a 1. Computations are carried out by logic gates that act on these bits to
produce other bits. Unless there is duplicate (parallel) hardware, only one problem instance (i.e. input
data set) can be handled at a time. In this classical computing, increasing the number of bits increases
the complexity of the problem and the time necessary to arrive at a solution.
A quantum algorithm consists of a sequence of operations on a register, to transform it into a state
which, when measured, yields the desired result with high probability. An n-bit quantum register can
store an exponential amount of information.
This paper aims at taking advantage of the superiority of quantum computing over classical computing
to solve the problem of searching unstructured databases for a particular item or more than one item in
good time. The general aim of this work is to establish the correctness and optimality of Grover’s
quantum database search algorithm compared against classical database search methods in order to
investigate the superiority or otherwise of quantum computing over classical computing. This is
followed by a simulation of the algorithm using a classical computer, namely through functions that are
present in MATLAB, referred to as “Quantum Computing Functions”.
Povzetek: Članek predstavlja implementacijo kvantnega iskanja v nestrukturiranih bazah.

1 Introduction
The bit is the fundamental unit of storage in a classical
computer; similarly, the basis of quantum computation is
a qubit. The qubit is similar to a bit in that when
measured, its value will be either 0 or 1. It differs
primarily in what it is doing when it is not being
measured. In particular, a qubit can exist in any
superposition of the 0 and 1 state simultaneously. When
a qubit in such a state is measured the superposition will
be destroyed. It will be found to be uniquely in the 0 or 1
state with some probability for each, determined by the
particulars of the superposition prior to the measurement
(Williams and Clearwater, 1998).

The renowned scientist Moore’s empirical law,
which states that “computing power doubles
approximately every 18 months” is believed by just
about everyone that is into computing (Williams and
Clearwater, 1998). Computer components have been
steadily decreasing in size and increasing in speed,
tending to follow this prediction. However, what is the
fate of this trend in real life? A little extrapolation would
suggest that within about 10 years the size of a transistor
logic gate element will be only a few atoms.
Consequently, computer power will soon reach a limit,
unless another approach for computing can be developed.
Quantum computing is one possible approach.

A quantum algorithm consists of a sequence of

operations on a register, to transform it into a state
which, when measured, yields the desired result with
high probability. An n-bit quantum register can store an
exponential amount of information. The register as a
whole can be in an arbitrary superposition of the 2n base
states which it can be measured to be in. While in this
superposition, and computation applied to the register
will be applied to each component of the superposition,
this behavior follows from the linearity of operators on
quantum mechanical systems. This behavior, called
“quantum parallelism” is the basis for most quantum
algorithms. In 1982, the Nobel prize-winning physicist,
Richard Feynman, thought up the idea of a 'quantum
computer', a computer that uses the effects of quantum
mechanics to its advantage (Deutsch and Jozsa, 1992).

In the classical model of a computer, the most
fundamental building block, the bit, can only exist in one
of two distinct states, a 0 or a 1. Computations are carried
out by logic gates that act on these bits to produce other
bits. Unless there is duplicate (parallel) hardware, only
one problem instance (i.e. input data set) can be handled
at a time. In this classical computing, increasing the
number of bits increases the complexity of the problem
and the time necessary to arrive at a solution.

In a quantum computer, the rules are changed. Not
only can a 'quantum bit', usually referred to as a 'qubit',

mailto:iawoyelu@oauife.edu.ng

250 Informatica 36 (2012) 249–254 I.O. Awoyelu et al.

exist in the classical 0 and 1 states, it can also be in a
coherent superposition and all linear combinations of
both.

The number of possibilities grows exponentially
with the number of qubits. For example, for a 2-qubit
system, there are all possible superpositions of the states
00, 01, 10, and 11, including entangled states of the form
(01 ±10). If there are N qubits, the vector space required
to describe their states has dimension 2N . Calculations
are carried out on vectors by quantum gates that apply
unitary transformations to these vectors to produce other
vectors. Since quantum computers can process
superpositions, they can (at least for some problems) be
viewed as devices that can process all possible inputs
simultaneously.

When a qubit is in this state, it can be thought of as
existing in two universes: as a 0 in one universe and as a
1 in the other. An operation on such a qubit effectively
acts on both values at the same time. The significant
point being that by performing the single operation on
the qubit, we have performed the operation on two
different values. Likewise, a two-qubit system would
perform the operation on 4 values, and a three-qubit
system on eight. Increasing the number of qubits
therefore exponentially increases the 'quantum
parallelism' we can obtain with the system (Williams and
Clearwater, 1998). This is a great leap from the classical
computing we are familiar with in which increasing the
number of bits increases the complexity of the problem
and the time necessary to arrive at a solution.

With the correct type of algorithm, it is possible to
use this parallelism to solve certain problems in a
fraction of the time taken by a classical computer. A
quantum computer would consist of many qubit gates
with entangled states. These gates could be addressed in
parallel by unitary transformations, which must be
carried out reversibly, implying no loss of energy in a
gate operation. Quantum computers are “wired” so that
they can do many calculations at the same time. This is
known as “quantum parallelism” and represents the
power of a quantum computer.

Several systems have been proposed for quantum
computing including photons in nonlinear optical
systems, trapped ions, electron and nuclear spins,
quantum dots, and Josephson junctions (Grover, 2000).
There are advantages and disadvantages to all these
approaches. Some, such as those employing light or
trapped ions, have demonstrated that they can provide
individual qubits of excellent quality. But, it is not yet
known if they can be scaled up to produce systems with
many qubits and many possible quantum gate operations.

There is nothing a quantum computer can do that
cannot also be done by an ordinary computer. However,
for some problems, a quantum computer may be many
orders of magnitude faster. There are presently two
important problems involving commerce and security for
which a quantum computer is believed to be superior.
These are finding the factors of a large number and
searching an unstructured database. A quantum computer
would also be superior for simulating the behavior of

quantum systems, and thus have enormous implications
for physics.

This paper aims at taking advantage of the
superiority of quantum computing over classical
computing to solve the problem of searching
unstructured databases for a particular item or more than
one item in good time. The general aim of this work is to
establish the correctness and optimality of Grover’s
quantum database search algorithm compared against
classical database search methods in order to investigate
the superiority or otherwise of quantum computing over
classical computing. This is followed by a simulation of
the algorithm using a classical computer, namely through
functions that are present in MATLAB, referred to as
“Quantum Computing Functions”.

2 Existing Works in Quantum
Computing

In the early 1980's, physicist Richard Feynman observed
that no classical computer could simulate quantum
mechanical systems without incurring exponential
slowdown (Williams and Clearwater, 1998). At the same
time, it seems reasonable that a computer which behaves
in a manner consistent with quantum mechanics could, in
principle, simulate such systems without exponential
slowdown.

For many years the study of quantum computing was
primarily an academic curiosity. Shor (1994) developed a
polynomial time algorithm for factoring large integers.
According to Williams and Clearwater (1998), it is not
known if there is a classical algorithm for factoring large
integers efficiently, but the best algorithms published
thus far are super-polynomial. This algorithm coupled
with the prominence of cryptographic systems based on
factoring large integers fueled study of quantum
computation, both from an algorithmic and a
manufacturing point of view. Grover (1996) provided an
O(√n) time algorithm for finding a single marked
element in an unsorted database of n elements. The best
possible classical algorithm would run in O (n) time.
This search problem was not the first problem for which
a quantum computer was shown to be better than any
possible classical computer, but it was the first problem
of real utility found where a quantum computer
outperforms a classical computer in an asymptotic sense.

While Shor's algorithm may be of more immediate
utility, Grover's algorithm seems more interesting in a
theoretical sense, as it highlights an area of fundamental
superiority in quantum computation.

2.1 Grover's Algorithm
Assuming there is a system with N = 2n states labeled S1,
S2,…, SN. These 2n states are represented by n bit strings.
Assuming there is a unique marked element Sm that
satisfies a condition C(Sm) = 1, and for all other states
C(S) = 0. Suppose that C can be evaluated in unit time.
The task is to devise an algorithm which minimizes the
number of evaluations of C.

The idea of Grover's algorithm is to place the register

MATHLAB IMPLEMENTATION OF… Informatica 36 (2012) 249–254 251

in an equal superposition of all states, and then
selectively invert the phase of the marked state, and then
perform an inversion about average operation a number
of times. The selective inversion of the marked state
followed by the inversion about average steps has the
effect of increasing the amplitude of the marked state by

(1/ (1))O N O . Therefore after ()O N operations the
probability of measuring the marked state approaches 1
(Grover, 1996).
Grover's algorithm is as follows:
• Prepare a quantum register to be normalized and

uniquely in the first state. Then place the register in
an equal superposition of all states 1 1 1, , ,

N N N

by applying the Walsh-Hadamard operator W . This
means simply the state vector will be in an equal
superposition of each state.

• Repeat ()O N times the following two steps (the
precise number of iterations is important, and
discussed below):
o Let the system be in any state S. If C(S) = 1,

rotate the phase by π radians, else leave system
unaltered. It is worth noting that this operation
has no classical analog. One cannot observe the
state of the quantum register, doing so would
collapse the superposition. The selective phase
rotation gate would be a quantum mechanical
operator which would rotate only the amplitude
proportional to the marked state within the
superposition.

o Apply the inversion about average operator A,
whose matrix representation is: NAij /2= if i ≠
j and NAij /21+−= to the quantum register.

• Measure the quantum register. The measurement
will yield the n bit label of the marked state C(SM) =
1 with probability at least 1/2 (Grover, 1996).

This Grover’s algorithm flow chart is as shown in Figure
1.

3 Proposed System
The proposed system is concerned with the simulation of
Grover’s Algorithm using MATLAB. Quantum
computing uses unitary operators acting on discrete state
vectors. Matlab is a well-known (classical) matrix
computing environment, which makes it well suited for
simulating quantum algorithms.

Appendix A contains the Matlab commands to
simulate Grover’s algorithm using six qubits. The
number of database elements is 26 = 64. The desired
element is randomly generated from among the 64
elements using Matlab’s rand function and it is the 53rd
element. The quantum gates are defined using Matlab’s
eye function. The optimal number of iterations is
determined by n4

π as proposed by Grover. Figure 2
shows the probability dynamics generated by the plot
function in Matlab while Figure 3 shows the result
distribution.

Grover demonstrated that quantum computers can

perform database search faster than their classical
counterparts. In this simple example of Grover’s
algorithm, a haystack function is used to represent the
database. We are searching for a needle in the haystack,
i.e. there is one element of the database that we require.

Grover’s algorithm works by iteratively applying the
inversion about the average operator to the current state.
Each iteration amplifies the probability of a measurement
collapsing the state to the correct needle value. Grover
showed that performing a measurement after n4

π
iterations is highly likely to give the correct result.

Appendix B contains the Matlab commands needed
to find the needle in a haystack, i.e. to find a particular
element among the elements of a database. The Walsh-
Hadamard transformation, operator to rotate phase and
inversion about average transformation were achieved
through matrices of zeros and ones available as Matlab
commands. At the end of the program, the output was set
to be a movie-like display of the different stages of the
iteration in a 3-dimensional plane comprising the axes
Amplitude, States and Time. This was achieved by using
Matlab’s function movie. The last stage of the iteration
process is shown by Figure 4.

3.1 Open Questions
There are several open questions that prop up from

Grover’s search algorithm proposal. Foremost among
these is how many times exactly we should iterate step 2
of Grover’s algorithm. Grover proves the existence of
some m ∈ O (N), such that after m iterations of step 2
of the algorithm, the probability of finding the register in
the marked state is greater than 1/2. Since the amplitude
of the desired state, and hence the probability of
measuring the desired state, is not monotonic increasing
after m iterations, it is not enough to know the existence
of m, its value must be determined.

3.2 Searching for More Than One Item
Grover briefly mentions that his algorithm can work in a
situation where there is more than one state, such that C
(Si) = 1. In fact, this poses no difficulty whatsoever, and
regardless of the number of marked states, its superior
performance over classical algorithms is still retained. If
there are t marked states, we can find one of the marked
states in O (tN /) time. This presumes that we know the
number of marked elements in advance (Boyer et al,
1996).

Another interesting special case comes when t = N/4,
in this case just as in the special case where N = 4, we
will find a solution with unit probability after only one
iteration, which is twice as fast as the expected running
time for a classical algorithm, and exponentially faster
than the worst case classical running time (Boyer et al,
1996).

3.3 Optimality of Grover’s Algorithm
It is stated in Grover (1996) that his result was optimal,
but it is not directly proved. Bennett et al (1996)

252 Informatica 36 (2012) 249–254 I.O. Awoyelu et al.

Figure 1: Grover’s Algorithm Flowchart.

Prepare normalized quantum
register uniquely in the first state.

Apply Walsh-Hadamard
operator to place the register
in an equal superposition of all
states .

Put the system in any state S.

Is C(S) =
1?

Get N, the number
of database elements.

No

Yes

Leave the system
unaltered.

Rotate the phase by
π radians.

Apply inversion about average operator A,
whose matrix representation is:
if I ≠ j and to the quantum
register.

Measure the quantum register. measurement
will yield the n bit label of the marked state
C(SM) = 1 with probability at least 1/2.

MATHLAB IMPLEMENTATION OF… Informatica 36 (2012) 249–254 253

Figure 2: Probability Dynamics.

Figure 3: Result Distribution.

established that any quantum algorithm cannot identify a
single marked element in fewer than Ω (√N). Grover’s
algorithm takes O(√n) iterations, and is thus
asymptotically optimal. It has been shown since that any
quantum algorithm would require at least π/4√N queries,
which is precisely the number queries required by
Grover’s algorithm (Grover, 1999).

4 Conclusion
Intriguing breakthroughs occurred in the area of quantum
computing in the late 1990s. Quantum computers under
development use components of a chloroform molecule
(a combination of chlorine and hydrogen atoms) and a
variation of a medical procedure called magnetic
resonance imaging (MRI) to compute at a molecular
level. Scientists use a branch of physics called quantum
mechanics, which describes the behavior of subatomic
particles (particles that make up atoms), as the basis for
quantum computing (Synder, 2008).

Quantum computers may one day be thousands to
millions of times faster than current computers, because
they take advantage of the laws that govern the behavior

of subatomic particles. These laws allow quantum
computers to examine all possible answers to a query
simultaneously. Future uses of quantum computers could
include code breaking (cryptography) and large database
queries. Theorists of chemistry, computer science,
mathematics, and physics are now working to determine
the possibilities and limitations of quantum computing.

Quantum computation allows for exponential speed
up and storage in a quantum register via quantum
parallelism. The more basis states represented within the
register, the more speed up due to parallelism in the
register, and the more improbable it is that a desired state
can be measured. Grover’s algorithm handles this
problem by relying on transformations which cause the
amplitude of the marked state to increase at the expense
of the non marked states, in a number of ways this is
analogous to interference of waves.

Grover’s algorithm is unique among quantum
algorithms in that it shows a useful calculation that a
quantum computer can calculate faster than any classical
computer possibly can. At the heart of Grover’s
algorithm are two unitary transformations, the first is a
selective phase inversion, which makes the sign of the
amplitude of the target negative. The second unitary
transformation is an inversion about average operation.
Initially we place the amplitude of all states at the same
positive value, each phase switch and inversion about
average increases the amplitude of the target state. The
exact number of times we perform these transformations
is roughly π/4√N for sufficiently large N. For a classical
algorithm the best time bound is O (N).

5 Appendix A: Grover’s Algorithm
Simulation

This Matlab codes simulate Lov Grover’s quantum
database search algorithm by plotting the graph of the
probability distribution of finding the marked state as the
system undergoes Grover iteration.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4: Amplitude-Time Graph for Simulated
Grover’s Algorithm.

0
5

10
15

20

0
2

4

6
8

-0.5

0

0.5

1

StatesTime

A
m

pl
itu

de

254 Informatica 36 (2012) 249–254 I.O. Awoyelu et al.

%This script simulates the Quantum Mechanical Lov
Grover's

%Search Alghorithm.
clear all;
%-----parameters-----------
nqubits=6;%number of q-bits
n=2^nqubits;%nnumber of elements in database
findmode=mod(round(n*rand+1),n);%desired element
%-----defining quantum gates
d=-eye(n)+2/n;%diffusion transform
oracle=eye(n);%oracle
oracle(findmode,findmode)=-1;
%--calculate the optimal number of iterations---
finish=round(pi/4*sqrt(n));
%--step(i)--initialization----
psistart=ones(n,1)/sqrt(n);
psi=psistart*exp(i*rand);
%step (ii)--algorithm body----
for steps=1:finish
steps
psi=d*oracle*psi;
probability(steps)=psi(findmode)*conj(psi(findmode));
end
%see the probability dynamics
plot(probability);
%see the result distribution
figure;
stem(psi.*conj(psi));

6 Appendix B: Searching for a
Needle in a Haystack

This set of Matlab codes simulate the Lov Grover’s
quantum database search algorithm by using the example
of searching for a needle in a haystack.

s=[0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0]';
W=zeros(16,16); %Walsh-Hadamard transformation
for i=1:16
for j=1:16
W(i,j)=2^(-4/2)*(-1)^double(bitand(uint8(i-1),uint8(j-

1)));
end
end
s=W*s;
R=zeros(16,16); %Operator to rotate phase
for i=1:16
if i==9
R(i,i)=-1;
else
R(i,i)=1
end
end
A=(2/16)*ones(16,16); %inversion about average

transformation
for i=1:16
A(i,i)=-1+2/16;
end
path=zeros(7,16);
path_i=1;
path(path_i,:)=s';

surf(path);
axis([0 20 0 8 -0.5 1]);
xlabel('States');ylabel('Time');zlabel('Amplitude');
F(path_i)=getframe;
path_i=2;
n=1;
while n<(pi/2)*sqrt(16), %needed iteration time is

(pi/4)*sqrt(N)
s=R*s;
s=A*s;
path(path_i,:)=s';
surf(path);
xlabel('States');ylabel('Time');zlabel('Amplitude');
F(path_i)=getframe;
path_i=path_i+1;
n=n+1;
end
movie(F,3,3);

7 References
[1] Bennett C.H, Bernstein E., Brassard G. and

Vazirani U.
[2] (1996). Strengths and Weaknesses of Quantum

Computing. In the proceedings of SIAM Journal of
Computing.

[3] Boyer M., Brassard G., Hoyer P. and Tapp A.,
Tight Bounds on Quantum Searching. In the
Proceedings of PhysComp. (lanl e-print quant-
ph/9701001).

[4] Deutsch, D., and Jozsa, R.(1992). Rapid Solutions
of Problems by Quantum Computation,
Proceedings of the Royal Soc. of London, 439, 553.

[5] Eppstein D., Irani S., and Dillencthet M. (2000).
ICS 260-Fall Class Notes 11: Turing Machines,
Non-determinism, P and NP. Available at:
http://www1.ics.uci.edu/~eppstein/260/notes/notes1
1.ps. Accessed on 20th April, 2010.

[6] Grover, L. K. (1996). A Fast Quantum Mechanical
Algorithm for Database Search. In Proceedings of
28th Annual ACM Symposium on the Theory of
Computing, New York, pp. 212.

[7] Grover L. (2000). Searching with Quantum
Computers, lanl e-print quantph/0011118.

[8] Papadimitriou, C (1994). Computational
Complexity, Addison-Onesley Publishing
Company.

[9] Shor, P. W. (1994). Algorithms for Quantum
Computation: Discrete Logs and Factoring. In Proc.
35th Annual Symposium on Foundations of
Computer Science.

[10] Snyder T. (2008). Law in “Computer." Microsoft®
Encarta® 2009 [DVD]. Redmond, WA: Microsoft
Corporation.

[11] Williams C. and Clearwater S. (1998). Explorations
in Quantum Computing, Springer-Verlag, New
York, Inc.

http://www1.ics.uci.edu/~eppstein/260/notes/notes11.ps
http://www1.ics.uci.edu/~eppstein/260/notes/notes11.ps

	1 Introduction
	2 Existing Works in Quantum Computing
	2.1 Grover's Algorithm

	3 Proposed System
	3.1 Open Questions
	3.2 Searching for More Than One Item
	3.3 Optimality of Grover’s Algorithm

	4 Conclusion
	5 Appendix A: Grover’s Algorithm Simulation
	Figure 4: Amplitude-Time Graph for Simulated Grover’s Algorithm.
	6 Appendix B: Searching for a Needle in a Haystack
	7 References

