
Informatica 36 (2012) 185-200 185

Graph Theory Algorithms for Mobile Ad Hoc Networks

Natarajan Meghanathan
Department of Computer Science, Jackson State University
Jackson, MS 39217, USA
E-mail: natarajan.meghanathan@jsums.edu

Keywords: mobile ad hoc networks, routing protocols, graph algorithms, unicast, multi-path, multicast and broadcast

Received: April 22, 2011

Various simulators (e.g., ns-2 and GloMoSim) are available to implement and study the behavior of the
routing protocols for mobile ad hoc networks (MANETs). But, students and investigators who are new to
this area often get perplexed in the complexity of these simulators and lose the focus in designing and
analyzing the characteristics of the network and the protocol. Most of the time would be spent in
learning the existing code modules of the simulator and the logical flow between the different code
modules. The purpose of this paper would be to illustrate the applications of Graph Theory algorithms
to study, analyze and simulate the behavior of routing protocols for MANETs. Specifically, we focus on
the applications of Graph Theory algorithms to determine paths, trees and connected dominating sets
for simulating and analyzing respectively unicast (single-path and multi-path), multicast and broadcast
communication in mobile ad hoc networks (MANETs). We will discuss the (i) Dijkstra’s shortest path
algorithm and its modifications for finding stable paths and bottleneck paths; (ii) Prim’s minimum
spanning tree algorithm and its modification for finding all pairs smallest and largest bottleneck paths;
(iii) Minimum Steiner tree algorithm to connect a source node to all the receivers of a multicast group;
(iv) A node-degree based algorithm to construct an approximate minimum connected dominating set
(CDS) for sending information from one node to all other nodes in the network; and (v) Algorithms to
find a sequence of link-disjoint, node-disjoint and zone-disjoint multi-path routes in MANETs.

Povzetek: Prispevek opisuje algoritme za mobilna omrežja.

1 Introduction
A Mobile Ad hoc Network (MANET) is a dynamically
changing infrastructureless and resource-constrained
network of wireless nodes that may move arbitrarily,
independent of each other. The transmission range of the
wireless nodes is often limited, necessitating multi-hop
routing to be a common phenomenon for communication
between any two nodes in a MANET. Various routing
protocols for unicast, multicast, multi-path and broadcast
communication have been proposed for MANETs. The
communication structures that are often determined
include: a path (for unicast – single-path and multi-path
routing), a tree (for multicast routing) and a connected
dominating set – CDS (for broadcast routing). Within a
particular class, it is almost impossible to find a single
routing protocol that yields an optimal communication
structure with respect to different route selection metrics
and operating conditions.

Various simulators such as ns-2 [5] and GloMoSim
[20] are available to implement and study the behavior of
the routing protocols. But, students and investigators who
are new to this area often get perplexed in the complexity
of these simulators and lose the focus in designing and
analyzing the characteristics of the network and the
protocol. Most of the time would be spent in learning the
existing code modules of the simulator and the logical
flow between the different code modules. The purpose of

this paper would be to illustrate the applications of Graph
Theory algorithms to study, analyze and simulate the
behavior of routing protocols for MANETs. We will
discuss the applications of Graph Theory algorithms for
unicast (single-path and multi-path), multicast and
broadcast communication in MANETs.

An ad hoc network is often approximated as a unit
disk graph [10]. In this graph, the vertices represent the
wireless nodes and an edge exists between two vertices u
and v if the normalized Euclidean distance (i.e., the
physical Euclidean distance divided by the transmission
range) between u and v is at most 1. Two nodes can
communicate only if each node lies within (or on the
edge of) the unit disk of the other node. The unit disk
graph model neatly captures the behavior of many
practical ad hoc networks and would be used in the rest
of this paper for discussing the algorithms to simulate the
MANET routing protocols.

Most of the contemporary routing protocols
proposed in the MANET literature adopt a Least
Overhead Routing Approach (LORA) according to
which a communication structure (route, tree or CDS)
discovered through a global flooding procedure would be
used as long as the communication structure exist,
irrespective of the structure becoming sub-optimal since
the time of its discovery in the MANET. We will also

186 Informatica 36 (2012) 185–200 N. Meghanathan

adopt a similar strategy and focus only on discovering a
communication structure on a particular network graph
taken as a snapshot during the functioning of the
MANET. Such a graph snapshot would be hereafter
referred to as a ‘Static Graph’ and a sequence of such
static graphs over the duration of the MANET simulation
session would be called a ‘Mobile Graph’. A
communication structure determined on a particular
static graph would be then validated for its existence in
the subsequent static graphs and once the structure
breaks, the appropriate graph algorithm can be invoked
on the static graph corresponding to that particular time
instant and the above procedure would be continued for
the rest of the static graphs in the mobile graph. We use
the big-O notation to express the theoretical worst-case
run-time complexity of the algorithms discussed in this
paper. Given a problem size x, where x is usually the
number of items, we say f(x) = O(g(x)), when there
exists positive constants c and k such that 0 ≤ f(x) ≤
cg(x), for all x ≥ k [4].

The rest of this paper is organized as follows:
Section 2 reviews related work on unicast, multicast,
broadcast and multi-path communication in MANETs. In
the subsequent sections, we discuss graph theory
algorithms for unicast communication (Section 3), the
tree-based algorithms for multicast communication
(Section 4), a maximum density-based CDS algorithm
for broadcast communication (Section 5) and multi-path
algorithms for determining link-disjoint, node-disjoint
and zone-disjoint routes (Section 6) in MANETs. Section
7 concludes the paper and Section 8 discuss future
research directions in this area. Throughout the paper, the
terms ‘route’ and ‘path’, ‘link’ and ‘edge’, ‘message’ and
‘packet’ are used interchangeably. They mean the same.

2 Background Work

2.1 Unicast Communication in MANETs
There are two broad classifications of unicast routing
protocols: minimum-weight based routing and stability-
based routing. Routing protocols under the minimum-
weight category have been primarily designed to
optimize the hop count of source-destination (s-d) routes.
Some of the well-known minimum-hop based routing
protocols include the Dynamic Source Routing (DSR)
protocol [8] and the Ad hoc On-demand Distance Vector
(AODV) routing protocol [16]. The stability-based
routing protocols aim to minimize the number of route
failures and in turn reduce the number of flooding-based
route discoveries. Some of the well-known stability-
based routing protocols include the Flow-Oriented
Routing Protocol [18] and the Node Velocity-based
Stable Path (NVSP) routing protocol [12]. In [13] and
[14], it was observed that there exists a stability-hop
count tradeoff and it is not possible to simultaneously
optimize both the hop count as well as the number of
route discoveries.

The DSR protocol is a source routing protocol that
requires the entire route information to be included in the

header of every data packet. However, because of this
feature, intermediate nodes do not need to store up-to-
date routing information in their routing tables. Route
discovery is by means of the broadcast query-reply cycle.
The Route Request (RREQ) packet reaching a node
contains the list of intermediate nodes through which it
has propagated from the source node. After receiving the
first RREQ packet, the destination node waits for a short
time period for any more RREQ packets, then chooses a
path with the minimum hop count and sends a Route
Reply (RREP) along the selected path. Later, if any new
RREQ is received through a path with hop count less
than that of the selected path, another RREP would be
sent on the latest minimum hop path discovered.

The AODV protocol, like DSR, is also a shortest
path based routing protocol. However, it is table-driven.
Upon receiving an unseen RREQ packet (with the
highest sequence number seen so far), an intermediate
node records the upstream node (sender) of the RREQ
packet in its routing table entry for the source-destination
route. The intermediate node then forwards the RREQ
packet by incrementing the hop count of the path from
the source node. The destination node receives RREQ
packets on several routes and selects that RREQ packet
that traversed on the minimum-hop path to the
destination node. The RREP packet is then sent on the
reverse of this minimum-hop path towards the source
node. The destination node includes the upstream node
from which the RREQ was received as the downstream
node on the path from the destination node to the source
node. An intermediate node upon receiving the RREP
packet will check whether it has been listed as the
downstream node ID. In that case, the intermediate node
processes the RREP packet and completes its routing
table by including the sender of the RREP packet as the
next hop node on the path from the source node towards
the destination node. The intermediate node then replaces
its own ID in the RREP downstream node entry with the
ID of the upstream node that it has in its routing table for
the path from the source node to the destination node.

The FORP protocol has been observed to discover
the sequence of most stable routes among the
contemporary stable path routing protocols [13]. FORP
utilizes the mobility and location information of the
nodes to approximately predict the expiration time (LET)
of a wireless link. The minimum of LET values of all
wireless links on a path is termed as the route expiration
time (RET). The route with the maximum RET value is
selected as the desired route. Each node is assumed to be
able to predict the LET values of the links with its
neighboring nodes based on the information regarding
the current position of the nodes, velocity, the direction
of movement, and transmission range. FORP assumes the
availability of location-update mechanisms like Global
Positioning System (GPS) [6] to identify the location of
the nodes and also requires each node to periodically
broadcast its location and mobility information to its
neighbors through beacons.

The NVSP protocol is the only beaconless routing
protocol that can discover long-living stable routes
without significant increase in the hop count per path.

GRAPH THEORY ALGHORITHMS FOR… Informatica 36 (2012) 185–200 187

FORP discovers routes that have a significantly larger
hop count than the minimum value. NVSP only requires
each intermediate node to include its velocity in the
RREQ packets propagated via flooding from the source
node to the destination node. With flooding, each
intermediate node forwards the RREQ packet exactly
once, the first time the node sees the packet as part of a
particular route discovery session. The destination node
receives the RREQ packets through several paths and
determines the bottleneck velocity of each of those paths.
The bottleneck velocity of a path is the maximum among
the velocities of the intermediate nodes on the path. The
destination node chooses the path with the minimum
bottleneck velocity and sends a RREP packet along that
path. In case of a tie, the destination node chooses the
path with the lowest hop count and if the tie could not be
still broken, the destination node chooses an arbitrary
path among the contending paths.

2.2 Multicast Communication in MANETs
The Multicast communication refers to sending messages
from one source node to a set of receiver nodes in a
network. The receiver nodes form the multicast group
and we typically find a tree that connects the source node
to the multicast group members such that there is exactly
one path from the source node to each receiver node. The
tree could be constructed based on either one of the
following two objectives: (i) Shortest path tree – the tree
would have the minimum hop count paths from the
source node to each receiver node and (ii) Steiner tree –
the tree would have the minimum number of links
spanning the source node and the multicast group
members. Both these trees cannot be simultaneously built
and there would always be a tradeoff between the above
two objectives [14]. The Multicast Extension of the Ad
hoc On-demand Distance Vector (MAODV) protocol
and the Bandwidth Efficient Multicast Routing Protocol
(BEMRP) are respectively examples of the minimum hop
and minimum link based multicast protocols.

MAODV [15] is the multicast extension of the
AODV unicast routing protocol. Here, a receiver node
joins the multicast tree through a member node that lies
on the minimum-hop path to the source node. A potential
receiver node wishing to join the multicast group
broadcasts a RREQ message. If a node receives the
RREQ message and is not part of the multicast tree, the
node broadcasts the message in its neighborhood and
also establishes the reverse path by storing the state
information consisting of the group address, requesting
node id and the sender node id in a temporary cache. If a
node receiving the RREQ message is a member of the
multicast tree and has not seen the RREQ message
earlier, the node waits to receive several RREQ messages
and sends back a RREP message on the shortest path to
the receiver node. The member node also informs in the
RREP message, the number of hops from itself to the
source node. The potential receiver node receives several
RREP messages and selects the member node which lies
on the shortest path to the source node. The receiver node
sends a Multicast Activation (MACT) message to the

selected member node along the chosen route. The route
from the source node to the receiver node is set up when
the member node and all the intermediate nodes in the
chosen path update their multicast table with state
information from the temporary cache.

According to BEMRP [17], a newly joining node to
the multicast group opts for the nearest forwarding node
in the existing tree, rather than choosing a minimum-hop
count path from the source node of the multicast group.
As a result, the number of links in the multicast tree is
reduced leading to savings in the network bandwidth.
Multicast tree construction is receiver-initiated. When a
node wishes to join the multicast group as a receiver
node, it initiates the flooding of Join control packets
targeted towards the nodes that are currently members of
the multicast tree. On receiving the first Join control
packet, the member node waits for a certain time before
sending a Reply packet. The member node sends a Reply
packet on the path, traversed by the Join control packet,
with the minimum number of intermediate forwarding
nodes. The newly joining receiver node collects the
Reply packets from different member nodes and would
send a Reserve packet on the path that has the minimum
number of forwarding nodes from the member node to
itself.

2.3 Broadcast Communication in
MANETs

Broadcast communication refers to sending a message
from one node to all the other nodes in the network.
Since MANET topology is not fully connected as nodes
operate with a limited transmission range, multi-hop
communication is a common phenomenon in routing. As
a result, a message has to be broadcast by more than one
node (in its neighborhood) so that the message can reach
all the nodes in the network. An extreme case of
broadcasting is called flooding wherein each node
broadcasts the message among its neighbors, exactly
once, when the message is seen for the first time. This
ensures that the message is received by all the nodes in
the network. However, flooding would cause
unnecessary retransmissions, exhausting the network
bandwidth and the energy reserves at the nodes.

Connected Dominating Sets (CDS) are considered to
be very efficient for broadcasting a message from one
node to all the nodes in the network. A CDS is a sub
graph of a given undirected connected graph such that all
nodes in the graph are included in the CDS or directly
attached to a node (i.e., covered by a node) in the CDS.
A Minimum Connected Dominating Set (MCDS) is the
smallest CDS (in terms of the number of nodes in the
CDS) for the entire graph. For a virtual backbone-based
route discovery, the smaller the size of the CDS, the
smaller is the number of unnecessary retransmissions. If
the RREQ packets of a broadcast route discovery process
get forwarded only by the nodes in the MCDS, we will
have the minimum number of retransmissions.
Unfortunately, the problem of determining the MCDS in
an undirected graph, like that of the unit disk graph
considered for modeling MANETs, is NP-complete. In

188 Informatica 36 (2012) 185–200 N. Meghanathan

[1], [2] and [3], efficient algorithms have been proposed
to approximate the MCDS for wireless ad hoc networks.
A common thread among these algorithms is to give
preference to nodes with high neighborhood density (i.e.,
a larger number of uncovered neighbors) for inclusion in
the MCDS.

2.4 Multi-path Communication in
MANETs

MANET routing protocols incur high route discovery
latency and also incur frequent route discoveries in the
presence of a dynamically changing topology. Recent
research has started to focus on multi-path routing
protocols for fault tolerance and load balancing. Multi-
path on-demand routing protocols tend to compute
multiple paths, at both the traffic sources as well as at
intermediary nodes, in a single route discovery attempt.
This reduces both the route discovery latency and the
control overhead as a route discovery is needed only
when all the discovered paths fail. Spreading the traffic
along several routes could alleviate congestion and
bottlenecks. Multi-path routing also provides a higher
aggregate bandwidth and effective load balancing as the
data forwarding load can be distributed over all the paths.

Multi-paths can be of three types: link-disjoint, node-
disjoint and zone-disjoint. For a given source node s and
destination node d, the set of link-disjoint s-d routes
comprises of paths that have no link present in more than
one constituent s-d path. Similarly, the set of node-
disjoint s-d routes comprises of paths that have no node
(other than the source node and destination node) present
in more than one constituent s-d path. A set of zone-
disjoint s-d routes comprises of paths such that an
intermediate node in one path is not a neighbor node of
an intermediate node in another path. Multi-path on-
demand routing protocols tend to compute multiple paths
between a source-destination (s-d) pair, in a single route
discovery attempt. A new network-wide route discovery
operation is initiated only when all the s-d paths fail. The
Split Multi-path Routing (SMR) protocol [11], the
AODV-Multi-path (AODVM) protocol [19] and the
Zone-Disjoint multi-path extension to the DSR (ZD-
DSR) protocol [7] are respectively well-known examples
for link-disjoint, node-disjoint and zone-disjoint multi-
path routing protocols.

In SMR, the intermediate nodes forward RREQs that
are received along a different link and with a hop count
not larger than the first received RREQ. The destination
node selects the route on which it received the first
RREQ packet (which will be a shortest delay path), and
then waits to receive more RREQs. The destination node
then selects the path which is maximally disjoint from
the shortest delay path. If more than one maximally
disjoint path exists, the tie is broken by choosing the path
with the shortest hop count.

In AODVM, an intermediate node does not discard
duplicate RREQ packets and records them in a RREQ
table. The destination node responds with an RREP for
each RREQ packet received. An intermediate node, on
receiving the RREP, checks its RREQ table and forwards

the packet to the neighbor that lies on the shortest path to
the source node. The neighbor entry is then removed
from the RREQ table. Also, whenever a node hears a
neighbor node forwarding the RREP packet, the node
removes the entry for the neighbor node in its RREQ
table.

The Zone-Disjoint Multi-path extension of the
Dynamic Source Routing (ZD-MPDSR) protocol
proposed for an omni-directional system works as
follows: Whenever a source node has no route to send
data to a destination node, the source node initiates
broadcast of the RREQ messages. The number of active
neighbors for a node indicates the number of neighbor
nodes that have received and forwarded the RREQ
message during a route discovery process. The RREQ
message has an ActiveNeighborCount field and it is
updated by each intermediate node before broadcasting
the message in the neighborhood. When an intermediate
node receives the RREQ message, it broadcasts a 1-hop
RREQ-query message in its neighborhood to determine
the number of neighbors who have also seen the RREQ
message. The number of RREQ-query-replies received
from the nodes in the neighborhood is the value of the
ActiveNeighborCount field updated by a node in the
RREQ message. The destination node receives several
RREQ messages and selects the node-disjoint paths with
lower ActiveNeighborCount values and sends the RREP
messages to the source node along these paths. Even
though the selection of the zone-disjoint paths with lower
number of active neighbors will lead to reduction in the
end-to-end delay per data packet, the route acquisition
phase will incur a significantly longer delay as RREQ-
query messages are broadcast at every hop (in addition to
the regular RREQ message) and the intermediate nodes
have to wait to receive the RREQ-query and reply
messages from their neighbors. This will significantly
increase the control overhead in the network.

3 Graph Theory Algorithms for
Unicast Communication in
MANETs

In a graph theoretic context, we illustrate that the
minimum-weight (minimum-hop) based routing
protocols could be simulated by running the shortest-path
Dijkstra algorithm [4] on a mobile graph (i.e. a sequence
of static graphs). We then illustrate that the NVSP and
FORP protocols could be simulated by respectively
solving the smallest bottleneck and the largest bottleneck
path problems – each of which could be implemented as
a slight variation of the shortest path Dijkstra algorithm.
In addition, we also illustrate that the Prim’s minimum
spanning tree algorithm and its modification to compute
the maximum spanning tree can be respectively used to
determine the ‘All Pairs Smallest Bottleneck Paths’ and
‘All Pairs Largest Bottleneck Paths’ in a weighted
network graph.

GRAPH THEORY ALGHORITHMS FOR… Informatica 36 (2012) 185–200 189

3.1 Shortest Path Problem
Given a weighted graph G = (V, E), where V is the set of
vertices and E is the set of weighted edges, the shortest
path problem is to determine a minimum-weight path
between any two nodes (identified as source node s and
destination node d) in the graph. The execution of the
Dijkstra algorithm (pseudo code in Figure 1) on a
weighted graph starting at the source node s results in a
shortest path tree rooted at s. In other words, the Dijkstra
algorithm will actually return the minimum-weight paths
from the source vertex s to every other vertex in the
weighted graph. If all the edge weights are 1, then the
minimum-weight paths are nothing but minimum-hop
paths.

Begin Algorithm Dijkstra-Shortest-Path (G, s)
1 For each vertex v Є V
2 weight [v] ← ∞ // an estimate of the minimum-
 weight path from s to v
3 End For
4 weight [s] ← 0
5 S ← Φ // set of nodes for which we know the
 minimum-weight path from s
6 Q ← V // set of nodes for which we know estimate of
 the minimum-weight path from s
7 While Q ≠ Φ
8 u ← EXTRACT-MIN (Q)
9 S ← S U {u}
10 For each vertex v such that (u, v) Є E
11 If weight [v] > weight [u] + weight (u, v) then
12 weight [v] ← weight [u] + weight (u, v)
13 Predecessor (v) ← u
14 End If
15 End For
16 End While
17 End Dijkstra-Shortest-Path

Figure 1: Pseudo Code for Dijkstra’s Shortest Path
Algorithm.

Dijkstra algorithm proceeds in iterations. To begin with,
the weights of the minimum-weight paths from the
source vertex to every other vertex is assumed to be +∞
(as estimate value, indicating that the paths are actually
not known) and from the source vertex to itself is
assumed to be 0. During each iteration, we determine the
shortest path from the source vertex s to a particular
vertex u, which would be the vertex with the minimum
weight among the vertices that have been not yet
optimized (i.e. for which the shortest path has not been
yet determined). We then explore the neighbors of u and
determine whether we can reach any of the neighbor
vertices, say v, from s through u on a path with weight
less than the estimated weight of the current path we
know from s to v. If we could find such a neighbor v,
then we set the predecessor of v to be vertex u on the
shortest path from s to v. This step is called the relaxation
step and is repeated over all iterations. The darkened

edges shown in the working example of Figure 2 are the
edges that are part of the shortest-path tree rooted at the
source vertex s. The run-time complexity of the
Dijkstra’s shortest path algorithm is O(|V|2).

Figure 2: Example to Illustrate the Working of the
Dijsktra’s Shortest Path Algorithm.

3.2 Smallest Bottleneck Path Problem
In the context of the smallest bottleneck path

problem, we define the bottleneck weight of a path p to
be the maximum of the weights of the constituent edges,
ep. Given the set of all loop-free paths P between a
source node s and destination node d, the smallest
bottleneck path is the path with the smallest bottleneck
weight. We can express this mathematically

as  






eweightMaxMin

pePp
(.

The

 Begin Algorithm Modified-Dijkstra-Smallest-
 Bottleneck-Path (G, s)

1 For each vertex v Є V
2 weight [v] ← +∞ // an estimate of the smallest
 bottleneck weight path from s to v
3 End For
4 weight [s] ← - ∞
5 S ← Φ // set of nodes for which we know the
 smallest bottleneck weight path from s

190 Informatica 36 (2012) 185–200 N. Meghanathan

6 Q ← V // set of nodes for which we know an
 estimate of the smallest bottleneck weight
 path from s
7 While Q ≠ Φ
8 u ← EXTRACT-MIN (Q)
9 S ← S U {u}
10 For each vertex v such that (u, v) Є E
11 If weight[v] > Max(weight [u], weight (u, v)) then
12 weight [v] ← Max (weight [u], weight (u, v))
13 Predecessor (v) ← u
14 End If
15 End For
16 End While
17 End Modified-Dijkstra-Smallest-Bottleneck-Path

Figure 3: Pseudo Code for the Modified Dijkstra
Smallest Bottleneck Path Algorithm.

Figure 4: Example for the Smallest Bottleneck Path
Problem.

NVSP protocol can be implemented in a graph theoretic
context through a modified version of the Dijkstra’s
algorithm (pseudo code in Figure 3) that solves the
smallest bottleneck path problem. Accordingly, the
weight of a link from node u to node v is the velocity of
the downstream node v. To start with, the weight of the
smallest bottleneck path from the source vertex s to every
other vertex is estimated to be +∞; whereas the weight of
the smallest bottleneck path from the source vertex s to
itself is set to - ∞. At the beginning of an iteration, the

vertex (say u) with the smallest bottleneck weight among
the vertices that have been not yet optimized is now
considered to be optimized. As part of the relaxation
step, we check whether the current weight of the smallest
bottleneck path to any non-optimized neighbor v, i.e.
weight[v], is greater than the maximum of the weight of
the recently optimized largest bottleneck path from s to
u, i.e. weight[u] and the weight of the edge (u, v). If this
relaxation condition evaluates to true, then the bottleneck
weight of the path from s to v is correspondingly updated
(i.e., weight[v] = Max (weight[u], weight(u, v)) and the
predecessor of v is set to be u for the path from s to v.
This step is repeated over all iterations. A working
example is presented in Figure 4. The run-time
complexity of the modified Dijkstra algorithm for the
smallest bottleneck path problem is the same as that of
the original Dijkstra algorithm.

3.3 All Pairs Smallest Bottleneck Paths
Problem

In this section, we show that the smallest bottleneck path
between any two vertices u and v V in an undirected
weighted graph G = (V, E) is the path between u and v in
the minimum spanning tree of G. The Prim’s algorithm
[4] is a well-known algorithm to determine the minimum
spanning tree of weighted graphs and its pseudo code is
illustrated in Figure 5. The Prim’s algorithm is very
similar to the Dijkstra algorithm – the major difference is
in the relaxation step.

Begin Algorithm Prim (G, s); s – is any arbitrarily
 chosen starting vertex
1 For each vertex v Є V
2 weight [v] ← ∞
3 End For
4 weight [s] ← 0
5 S ← Φ // set of nodes whose bottleneck weights will
 not change further
6 Q ← V // set of nodes whose bottleneck weights are
 only estimates; final weight could change
7 While Q ≠ Φ
8 u ← EXTRACT-MIN (Q)
9 S ← S U {u}
10 For each vertex v such that (u, v) Є E
11 If weight [v] > weight (u, v) then
12 weight [v] ← weight (u, v)
13 Predecessor (v) ← u
14 End If
15 End For
16 End While
17 End Prim

Figure 5: Pseudo Code for the Prim’s Algorithm to
Determine a Minimum Spanning Tree.

GRAPH THEORY ALGHORITHMS FOR… Informatica 36 (2012) 185–200 191

Figure 6: Example for the Minimum Spanning Tree – All
Pairs Smallest Bottleneck Paths.

The Prim’s algorithm work as follows: The starting
vertex is any arbitrarily chosen vertex (say s) in the given
undirected weighted graph G. To begin with, the weights
of the smallest bottleneck paths from the starting vertex
to every other vertex is assumed to be +∞ (as estimate
value, indicating that the paths are actually not known)
and the path from the starting vertex to itself is assumed
to be 0. During every iteration, we determine the smallest
bottleneck path from the starting vertex s to a particular
vertex u, which would be the vertex with the minimum
weight among the vertices that have been not yet
optimized (i.e. for which the smallest bottleneck path has
not been yet determined). We then explore the neighbors
of u and determine whether we can reach any of the
neighbor vertex, say v, from s through u on a path with
weight less than the estimated bottleneck weight of the
current path we know from s to v. If we could find such a
neighbor v as part of the relaxation step, we set the new
estimated bottleneck weight of vertex v to the weight of
the edge (u, v) and also set the predecessor of v to be
vertex u on the smallest bottleneck path from s to v. The
darkened edges shown in the working example of Figure
6 are the edges that are part of the smallest bottleneck
path tree rooted at the starting vertex s. The path between
any two vertices in this smallest bottleneck path tree is
the smallest bottleneck path between the two vertices in
the original graph. The run-time complexity of the Prim’s
minimum spanning tree algorithm is O(|V|2).

Note that in both Figures 4 and 6, we start with the
same initial graph. Since, the relaxation step of the
modified Dijkstra algorithm and the Prim’s algorithm are
different, the sequence of vertices that are optimized in
each algorithm is different from one another. However,
the final tree rooted at the starting vertex s is the same in
both the figures. This example vindicates our argument
that the minimum spanning tree contains the smallest
bottleneck paths between any two vertices in the original
graph. We now formally prove this argument (refer
Figure 7 for an illustration of the example) below
through the method of Proof by Contradiction.

Figure 7: Proof by Contradiction: Minimum Spanning
Tree with All Pairs Smallest Bottleneck Paths.

Let there be a pair of vertices uV1 and vV2 in G =
(V, E) such that the edge (u, v) E, V1V2 = V and
V1V2 = Φ. Assume the edge (u, v) belongs to the
minimum spanning tree T of G; but the edge is not part of
the smallest bottleneck path from u to v. Let there exist an
alternate path from u to v that is the smallest bottleneck
path. Since u and v are in two disjoint vertex partitions,
there should be at least one edge (call it e) in the path
from u to v with endpoint vertices in each partition. But,
by definition of a minimum spanning tree, the weight(u,
v) ≤ weight(edge e); otherwise, a cheaper tree could be
obtained by replacing (u, v) with the edge e and T
containing (u, v) would not be a minimum spanning tree.
Hence, edge e could be replaced by edge (u, v) without
increasing the weight of any smallest bottleneck path.
Likewise, we can prove that every edge in T would be
part of a smallest bottleneck path. Since T is a minimum
spanning tree, all its edges constitute the all pairs smallest
bottleneck paths for the entire graph.

3.4 Largest Bottleneck Paths Problem
In the context of the largest bottleneck path problem, we
define the bottleneck weight of a path p to be the
minimum of the weights of the constituent edges, ep.
Given the set of all loop-free paths P between a source
node s and destination node d, the largest bottleneck path
is the path with the largest bottleneck weight. We can

express this mathematically as  






eweightMinMax

pePp
(.

192 Informatica 36 (2012) 185–200 N. Meghanathan

Begin Algorithm Modified-Dijkstra-Largest-Bottleneck-
 Path (G, s)
1 For each vertex v Є V
2 weight [v] ← - ∞ // an estimate of the largest
 bottleneck weight path from s to v
3 End For
4 weight [s] ← + ∞
5 S ← Φ // set of nodes for which we know the largest
 bottleneck weight path from s
6 Q ← V // set of nodes for which we know an
 estimate of the largest bottleneck weight
 path from s
7 While Q ≠ Φ
8 u ← EXTRACT-MAX (Q)
9 S ← S U {u}
10 For each vertex v such that (u, v) Є E
11 If weight[v] < Min (weight [u], weight (u, v)) then
12 weight [v] ← Min (weight [u], weight (u, v))
13 Predecessor (v) ← u
14 End If
15 End For
16 End While
17 End Modified-Dijkstra-Largest-Bottleneck-Path

Figure 8: Pseudo Code for the Modified Dijkstra’s
Algorithm for the Largest Bottleneck Path Problem.

Figure 9: Example for the Largest Bottleneck Path
Problem.

The FORP protocol can be simulated using a modified
version of the Dijsktra’s algorithm (pseudo code in
Figure 8) that solves the Largest Bottleneck Path
problem on a static graph. The edge weights correspond
to the predicted LET values for the corresponding links.
To start with, the weight of the largest bottleneck path
from the source vertex s to every other vertex is
estimated to be - ∞; whereas the weight of the largest
bottleneck path from the source vertex s to itself is set to
+∞. At the beginning of an iteration, the vertex (say u)
with the largest bottleneck weight among the vertices
that have been not yet optimized is now considered to be
optimized (i.e., the largest bottleneck path from the
source vertex s to the vertex u is considered to have been
determined by now). As part of the relaxation step, we
check whether the current weight of the largest
bottleneck path to any non-optimized neighbor v, i.e.
weight[v], is lower than the minimum of the weight of
the recently optimized largest bottleneck path from s to
u, i.e. weight[u] and the weight of the edge (u, v). If this
relaxation condition evaluates to true, then the bottleneck
weight of the path from s to v is correspondingly updated
(i.e., weight[v] = Min(weight[u], weight(u, v)) and the
predecessor of v is set to be u for the path from s to v.
This step is repeated over all iterations. A working
example is presented in Figure 9. The run-time
complexity of the modified Dijkstra algorithm for the
largest bottleneck path problem is the same as that of the
original algorithm for the shortest path problem.

3.5 All Pairs Largest Bottleneck Paths
Problem

In this section, we show that the largest bottleneck path
between any two vertices u and v V in an undirected
weighted graph G = (V, E) is the path between u and v in
the maximum spanning tree of G. The maximum
spanning tree of a graph can be determined using a
slightly modified version of the Prim’s algorithm – the
modification is in the initialization step and the
relaxation condition. In the original Prim’s algorithm, the
initial weight of all the vertices other than the starting
vertex is set to +∞; whereas in the modified Prim’s
algorithm for the all pairs largest bottleneck path
problem, the initial weight of all the vertices other than
the starting vertex is set to – ∞ (an initial estimate for the
largest bottleneck paths, which are actually not know to
start with). The weight of the starting vertex, s, in both
algorithms is 0. The pseudo code of the modified Prim’s
algorithm is given in Figure 10.

Begin Algorithm Modified-Prim (G, s); s – is any
 arbitrarily chosen starting vertex
1 For each vertex v Є V
2 weight [v] ← – ∞
3 End For
4 weight [s] ← 0
5 S ← Φ // set of nodes whose bottleneck weights
 will not change further
6 Q ← V // set of nodes whose bottleneck weights

GRAPH THEORY ALGHORITHMS FOR… Informatica 36 (2012) 185–200 193

 are only estimates and the final weight
 could change
7 While Q ≠ Φ
8 u ← EXTRACT-MAX (Q)
9 S ← S U {u}
10 For each vertex v such that (u, v) Є E
11 If weight [v] < weight (u, v) then
12 weight [v] ← weight (u, v)
13 Predecessor (v) ← u
14 End If
15 End For
16 End While
17 End Modified-Prim

Figure 10: Pseudo Code for the Modified Prim’s
Algorithm to Determine a Maximum Spanning Tree

Figure 11: Example for the Maximum Spanning Tree –
All Pairs Largest Bottleneck Paths.

During every iteration, we determine the largest
bottleneck path from the starting vertex s to a particular
vertex u, which would be the vertex with the maximum
weight among the vertices that have been not yet
optimized (i.e. for which the largest bottleneck path has
not been yet determined). We then explore the neighbors
of u and determine whether we can reach any of the
neighbor vertices, say v, from s through u on a path with
weight greater than the estimated bottleneck weight of
the current path we know from s to v. If we could find
such a neighbor v as part of the relaxation step, we set the

new estimated bottleneck weight of vertex v to the
weight of the edge (u, v) and also set the predecessor of v
to be vertex u on the largest bottleneck path from s to v.
The darkened edges shown in the working example of
Figure 11 are the edges that are part of the largest
bottleneck path tree rooted at the starting vertex s. The
path between any two vertices in this largest bottleneck
path tree is the largest bottleneck path between the two
vertices in the original graph. The run-time complexity of
the modified Prim’s algorithm to determine maximum
spanning tree is O(|V|2), the same as the original Prim’s
algorithm for minimum spanning trees. The correctness
of the modified Prim’s algorithm for the all pairs largest
bottleneck path problem can be proved using the same
logic used to prove the correctness of the Prim’s
algorithm for the all pairs smallest bottleneck path
problem.

4 Graph Theory Algorithms for
Multicast Communication in
MANETs

The original Dijkstra shortest path algorithm described
previously can be used to determine shortest path trees
with minimum hop count per source-receiver path. The
problem of determining a multicast tree with the
minimum number of links is a NP-complete problem for
which there is no polynomial-time algorithm yielding an
optimistic solution. Hence, algorithms have been
proposed in the literature to approximate such multicast
trees. The Steiner tree algorithm is the best-known
algorithm in the literature to approximate multicast trees
with the minimum number of links connecting a source
node to the receiver nodes of the multicast group.

Given a static graph, G = (V, E), where V is the set of
vertices, E is the set of edges and a subset of vertices
(called the multicast group or Steiner points) MG  V,
the multicast Steiner tree is the tree with the least number
of edges required to connect all the vertices in MG. In
this paper, we use a well-known O(|V||MG|2) algorithm
of Kou et al [9], where |V| is the number of nodes in the
network graph and |MG| is the size of the multicast group
comprising of the source nodes and the receiver nodes, to
approximate the minimum edge Steiner tree in graphs
representing snapshots of the network topology. In unit
disk graphs such as the static graphs used in our research,
Step 5 of the algorithm (pseudo code in Figure 12) is not
needed and the minimal spanning tree TMG obtained at
the end of Step 4 could be considered as the minimum
edge Steiner tree. One could use the Prim’s algorithm to
find the minimum spanning trees.

Input: A Static Graph G = (V, E)
 Multicast Group MG  V
Output: A MG-Steiner-tree for the set MG  V

Begin Kou et al Algorithm (G, MG)

194 Informatica 36 (2012) 185–200 N. Meghanathan

Step 1: Construct a complete undirected weighted
graph GC = (MG, EC) from G and MG where (vi, vj)
 EC, vi and vj are in MG, and the weight of edge (vi,
vj) is the length of the shortest path from vi to vj in G.
Step 2: Find the minimum weight spanning tree TC in
GC (If more than one minimal spanning tree exists,
pick an arbitrary one).
Step 3: Construct the sub graph GMG of G, by
replacing each edge in TC with the corresponding
shortest path from G (In case of any tie, between an
arbitrary shortest path between the two vertices).
Step 4: Find the minimal spanning tree TMG in GMG

with unit edge weights. If more than one minimal
spanning tree exists, pick an arbitrary one).

 return TMG as the MG-Steiner-tree

End Kou et al Algorithm

Figure 12: Kou et al’s Algorithm to Find an Approximate
Minimum Edge Steiner Tree.

Figure 13: Construction of a Minimum Steiner Tree
using Kou et al.’s Algorithm.

We now illustrate the working of the Kou et al’s
algorithm through an example in Figure 13. The vertices
{D, G, E, M, N, P} form the multicast group in the
vertex set {A, B … P}. As observed in the example, the
sub graph GMG obtained in Step 3 is nothing but the
minimal spanning tree TMG, which is the output of Step 4.
In general, for unit disk graphs, like the static graphs we
are working with, the outputs of both Steps 3 and 4 are
the same and it is enough that we stop at Step 3 and
output the MG-Steiner-tree.

5 Graph Theory Algorithms for
Broadcast Communication in
MANETs

In this section, we describe a maximum-density based
CDS (MaxD-CDS) graph theoretic algorithm to
approximate a Minimum Connected Dominating Set
(MCDS) in a static graph, taken as a snapshot of a
MANET topology.

5.1 Data Structures used by the MaxD-
CDS Algorithm and Breadth First
Search

We use the following principal data structures for the
MaxD-CDS algorithm:

(i) CDS-Node-List – includes all nodes that are
members of the CDS

(ii) Covered-Nodes-List – includes all nodes that are
in the CDS-Node-List and all nodes that are
adjacent to at least one member of the CDS-
Node-List.

Before we run the CDS formation algorithm, we make
sure the underlying network graph is connected by
running the Breadth First Search (BFS) algorithm [4];
because, if the underlying network graph is not
connected, we would not be able to find a CDS that will
cover all the nodes in the network. We run BFS, starting
with an arbitrarily chosen node in the network graph. If
we are able to visit all the vertices in the graph, then the
corresponding network is said to be connected. If the
graph is not connected, we simply continue with the
static graph (snapshot of the network topology) collected
at the next time instant and start with the BFS test. The
pseudo code for BFS is shown in Figure 14. The run-time
complexity of BFS is O(|V|+|E|).

Input: Graph G = (V, E)
Auxiliary Variables/Initialization:
 Nodes-Explored = Φ, FIFO-Queue = Φ
Begin Algorithm BFS (G, s)
 root-node = randomly chosen vertex in V
 Nodes-Explored = Nodes-Explored U {root-node}
 FIFO-Queue = FIFO-Queue U {root-node}
 while (|FIFO-Queue| > 0) do
 front-node u = Dequeue(FIFO-Queue) // extract
 the first node
 for (every edge (u, v)) do // i.e. every neighbor
 v of node u
 if (vNodes-Explored) then
 Nodes-Explored = Nodes-Explored U {v}
 FIFO-Queue = FIFO-Queue U {v}
 Parent (v) = u
 end if
 end for
 end while
 if (| Nodes-Explored | = | V |) then
 return Connected Graph - true
 else return Connected Graph - false
 end if
End Algorithm BFS

Figure 14: Pseudo Code for the BFS Algorithm to
Determine Network Connectivity.

GRAPH THEORY ALGHORITHMS FOR… Informatica 36 (2012) 185–200 195

5.2 Maximum Density-based Algorithm to
Approximate a MCDS

The idea of the maximum density (MaxD)-based CDS
formation algorithm is to select nodes with larger number
of uncovered neighbors for inclusion in the CDS. The
algorithm forms and outputs a CDS based on a given
input graph representing a snapshot of the MANET at a
particular time instant. Specifically, the algorithm
outputs a list (CDS-Node-List) of all nodes that are part
of the CDS formed based on the given MANET. The first
node to be included in the CDS-Node-List is the node
with the maximum number of uncovered neighbors (any
ties are broken arbitrarily). A CDS member is considered
to be “covered”, so a CDS member is additionally added
to the Covered-Nodes-List when it is included in the
CDS-Node-List. All nodes that are adjacent to a CDS
member are also said to be covered, so the uncovered
neighbors of a CDS member are also added to the
Covered-Nodes-List as the member is added to the CDS-
Node-List. To determine the next node to be added to the
CDS-Node-List, we must select the node with the largest
density amongst the nodes that meet the criteria for
inclusion into the CDS.

Input: Graph G = (V, E), where V is the vertex set and
 E is the edge set.
 Source vertex, s – vertex with the largest
 number of uncovered neighbors in V.
Auxiliary Variables and Functions: CDS-Node-List,
Covered-Nodes-List, Neighbors(v), v V.
Output: CDS-Node-List
Initialization: Covered-Nodes-List = {s},
 CDS-Node-List = Φ
Begin Construction of MaxD-CDS
 while (|Covered-Nodes-List| < |V|) do
 Select a vertex rCovered-Nodes-List and
 rCDS-Node-List such that r has the largest
 number of uncovered neighbors that are not
 in Covered-Nodes-List

 CDS-Node-List = CDS-Node-List U {r}

 for all uNeighbors(r) and
 uCovered-Nodes-List
 Covered-Nodes-List = Covered-Nodes-List U {u}
 end for
end while
return CDS-Node-List
End Construction of MaxD-CDS

Figure 15: Pseudo Code for the Algorithm to Construct
the Maximum Density (MaxD)-based CDS.

The criteria for CDS membership selection are the
following: the node should not already be a part of the
CDS (CDS-Node-List), the node must be in the Covered-
Nodes-List, and the node must have at least one
uncovered neighbor (at least one neighbor that is not in
the Covered-Nodes-List). Amongst the nodes that meet
these criteria for CDS membership inclusion, we select
the node with the largest density (i.e., the largest number
of uncovered neighbors) to be the next member of the
CDS. Ties are broken arbitrarily. This process is repeated
until all nodes in the network are included in the
Covered-Nodes-List. Once all nodes in the network are
considered to be “covered”, the CDS is formed and the
algorithm returns a list of nodes in the resulting MaxD-
CDS (nodes in the CDS-Node-List). The run-time
complexity of the MaxD-CDS algorithm is O(|V|2+|E|)
since there would be at most |V| iterations – it would take
O(|V|) time to determine the node with the largest number
of uncovered neighbors in each iteration and across all
these iterations, we would be visiting |E| edges totally.
The pseudo code for the MaxD-CDS algorithm is given
in Figure 15 and a working example of the algorithm is
illustrated in Figure 16.

Figure 16: Example to Illustrate the Construction of a
Maximum Density (MaxD)-based CDS

Figure 17: Legend for Figure 16

196 Informatica 36 (2012) 185–200 N. Meghanathan

6 Graph Theory Algorithms for
Multi-path Communication in
MANETs

Let PL, PN and PZ be the set of link-disjoint, node-disjoint
and zone-disjoint s-d routes respectively. We use the
Dijkstra O(|V|2) algorithm to determine the minimum hop
s-d path in a graph of n nodes. We assume the s-d routes
in a multi-path set are used in the increasing order of the
hop count. In other words, the s-d route with the least
hop count is used as long as it exists, then the s-d route
with the next highest hop count is used as long as it
exists and so on. We thus persist with the determined
multi-path set of s-d routes as long as at least one path in
the set exists.

6.1 Algorithm to Determine Link-Disjoint
Paths

To determine the set of link-disjoint paths, PL, (refer
Figure 18), we remove all the links that were part of p
from the graph G to obtain a modified graph GL (V, EL).
We then determine the minimum hop s-d path in the
modified graph G’, add it to the set PL and remove the
links that were part of this path to get a new updated GL

(V, EL). We repeat this procedure until there exists no
more s-d paths in the network. The set PL is now said to
have the link-disjoint s-d paths in the original network
graph G at the given time instant. Figure 20 illustrates a
working-example of the algorithm to find the set of link-
disjoint paths on a static graph.

Input: Graph G (V, E), source vertex s and
 destination vertex d
Output: Set of link-disjoint paths PL

Auxiliary Variables: Graph GL (V, EL)
Initialization: GL (V, EL) G (V, E), PL  Ф
Begin Algorithm Link-Disjoint-Paths
1 while ( at least one s-d path in GL)
2 p Minimum hop s-d path in GL.
3 PL PL U {p}

4 
edge e p,

GL (V, EL)  GL (V, EL -{e})

5 end While
6 return PL

End Algorithm Link-Disjoint-Paths

Figure 18: Algorithm to Determine the Set of Link-
Disjoint s-d Paths in a Network Graph.

6.2 Algorithm to Determine Node-Disjoint
Paths

To determine the set of node-disjoint paths, PN, (refer
Figure 19), we remove all the intermediate nodes (nodes
other than the source vertex s and destination vertex d)
that were part of the minimum hop s-d path p in the
original graph G to obtain the modified graph, GN (VN,

EN). We determine the minimum hop s-d path in the
modified graph GN (VN, EN), add it to the set PN and
remove the intermediate nodes that were part of this s-d
path to get a new updated GN (VN, EN). We then repeat
this procedure until there exists no more s-d paths in the
network. The set PN is now said to contain the node-
disjoint s-d paths in the original network graph G. Figure
21 illustrates a working example of the algorithm to find
the set of node-disjoint paths on a static graph.

Input: Graph G (V, E), source vertex s and
 destination vertex d
Output: Set of node-disjoint paths PN

Auxiliary Variables: Graph GN (VN, EN)
Initialization: GN (VN, EN)  G (V, E), PN  Ф
Begin Algorithm Node-Disjoint-Paths
1 While ( at least one s-d path in GN)
2 p Minimum hop s-d path in GN.
3 PN PN U {p}

4 



 

vertex v p
v s d
edge e Adj list v

,
,
, ()

GN (VN, EN)  GN (VN–{v}, EN–{e})

5 end While
6 return PN

End Algorithm Node-Disjoint-Paths

Figure 19: Algorithm to Determine the Set of Node-
Disjoint s-d Paths in a Network Graph.

 Initial Graph Iteration 1

 Iteration 2 Iteration 3

 Iteration 4 Link-Disjoint Paths

Figure 20: Example to Illustrate the Working of the
Algorithm to Find Link-Disjoint Paths.

GRAPH THEORY ALGHORITHMS FOR… Informatica 36 (2012) 185–200 197

 Initial Graph Iteration 1

 Iteration 2 Iteration 3

Node-Disjoint Paths

Figure 21: Example to Illustrate the Working of the
Algorithm to Find Node-Disjoint Paths.

6.3 Algorithm to Determine Zone-Disjoint
Paths

To determine the set of zone-disjoint paths, PZ, (refer
Figure 22), we remove all the intermediate nodes (nodes
other than the source vertex s and destination vertex d)
that were part of the minimum hop s-d path p and also all
their neighbor nodes from the original graph G to obtain
the modified graph GZ (VZ, EZ). We determine the
minimum hop s-d path in the modified graph GZ, add it to
the set PZ and remove the intermediate nodes that were
part of this s-d path and all their neighbor nodes to obtain
a new updated graph GZ (VZ, EZ). We then repeat this
procedure until there exists no more s-d paths in the
network. The set PZ is now said to contain the set of
zone-disjoint s-d paths in the original network graph G.
Note that when we remove a node v from a network
graph, we also remove all the links associated with the
node (i.e., links belonging to the adjacency list Adj-
list(v)) whereas when we remove a link from a graph, no
change occurs in the vertex set of the graph. Figure 23
illustrates a working example of the algorithm to find the
set of zone-disjoint paths on a static graph.

Input: Graph G (V, E), Source vertex s and
 Destination vertex d
Output: Set of Zone-Disjoint Paths PZ

Auxiliary Variables: Graph GZ (VZ, EZ)
Initialization: GZ (VZ, EZ)  G (V, E), PZ  Ф
Begin Algorithm Zone-Disjoint-Paths
1 While ( at least one s-d path in GZ)
2 p Minimum hop s-d path in GZ

3 PZ PZ U {p}

4 
 

 
vertex u p u s d
edge e Adj list u

, , ,
, ()

GZ (VZ, EZ) GZ (VZ – {u}, EZ – {e})

5 
 

 
 

vertex u p u s d
v Neighbor u v s d
edge e Adj list v

, , ,
(), ,

, ' ()

GZ (VZ, EZ)GZ(VZ–{v}, EZ– {e’})

6 end While
7 return PZ

End Algorithm Zone-Disjoint-Paths

Figure 22: Algorithm to Determine the Set of Zone-
Disjoint s-d Paths in a Network Graph.

 Initial Graph Iteration 1

 Iteration 2 Zone-Disjoint Paths

Figure 23: Example to Illustrate the Working of the
Algorithm to Find Zone-Disjoint Paths

7 Conclusions
The high-level contribution of this paper is the idea of
using traditional graph theory algorithms, which have
been taught in academic institutions at undergraduate and
graduate level, to simulate and study the behavior of the
complex routing protocols for unicast, multicast,
broadcast and multi-path communication in MANETs. In
the Section on Background work, we provided an
exhaustive set of background information on the routing
protocols that have been proposed for the above different
communication problems. In the subsequent sections, we
described one or more graph theoretic algorithms for
studying each of these communication problems. We
chose the Dijkstra algorithm for shortest path routing as
the core algorithm and meticulously modified it and/or
adopted it to (i) find a solution for the largest bottleneck
path and smallest bottleneck path problems, which could
be used to determine a sequence of stable routes as well
as to (ii) find a set of link-disjoint, node-disjoint or zone-
disjoint routes for multi-path communication. We
illustrate the use of Prim’s algorithm for minimum
spanning tree to determine the ‘All Pairs Smallest
Bottleneck Paths’ and also show how the modified
version of the Prim’s algorithm to determine maximum
spanning tree can be used to solve the ‘All Pairs Largest
Bottleneck Paths’ problem. We prove that the path

198 Informatica 36 (2012) 185–200 N. Meghanathan

between any two nodes in the minimum spanning tree is
the smallest bottleneck path between those two nodes in
the original graph. We also discussed a maximum
density-based algorithm to approximate minimum
connected dominating sets (MCDS) for MANETs such
that the MCDS could be used as a backbone towards
broadcast communication for route discoveries and other
global communication needs. In addition, we discussed
the Steiner tree problem and the Kou et al.’s algorithm to
approximate a multicast tree that has the minimum
number of links connecting the source nodes to the
members of a multicast group. Each of the graph
theoretic algorithms discussed in this paper presents the
optimal solutions or the best approximations for the
appropriate problems they have been suggested for and
all of them could be implemented in the most efficient
manner using the pseudo code presented and executed in
a polynomial run-time.

As a concluding remark, we would like to state that
the proposed idea could go a long way in avoiding the
significant loss of time faced by student researchers to
understand and modify the simulation code for even
conducting simple experimental studies. This idea could
be adopted to facilitate undergraduate student research in
the area of MANETs without requiring the students to
directly work on the complex discrete-event simulators.
A successful implementation of this idea is the Research
Experiences for Undergraduates (REU) site in the areas
of Wireless Ad hoc Networks and Sensor Networks,
hosted by the Department of Computer Science at
Jackson State University, Jackson, MS, USA. The REU
site is currently being funded by the U.S. National
Science Foundation (NSF) and is accessible through
http://www.jsums.edu/cms/reu.

8 Future Research Directions
Graph theory algorithms form the backbone for research
on communication protocols for wireless ad hoc
networks and sensor networks. This paper lays the
foundation for use of several simplistic graph theoretic
algorithms (taught at the undergraduate and graduate
level) to simulate the behavior of the complex MANET
routing protocols. The next step of research in this
direction would involve implementing these graph
theoretic algorithms in a centralized environment using
offline traces of the mobility profiles of the nodes (under
a particular mobility model) to generate the mobile graph
(i.e., sequence of static graphs representing snapshots of
the network topology at different time instants) and
compare the performance metrics obtained for the
communication structures with that of those obtained for
the actual routing protocols when simulated in a discrete-
event simulator such as ns-2, GloMoSim and etc. Some
of the performance metrics that could be directly
compared are the hop count per source-destination path
(for unicasting), hop count per source-receiver path (for
multicasting), number of links per multicast tree, lifetime
per path, lifetime per multicast tree, time between two
consecutive route discoveries for link-disjoint, node-
disjoint and zone-disjoint routes, number of nodes per

CDS, hop count of a source-destination path per CDS
and etc. We conjecture that the results obtained for the
above performance metrics from the centralized graph
theory implementations will serve as the optimal
benchmarks to which the results obtained from the actual
routing protocols in a discrete-event simulator
environment would be actually bounded under. This is
because the centralized implementations would assume
an ideal medium-access control (MAC) layer that would
not offer any interference to constrain the
communication.

If the simulations could be conducted in more than
one discrete-event simulator, then the results for the
performance metrics obtained from the different
simulators could be compared to the optimal benchmarks
obtained with our theoretical algorithms and could be
helpful in identifying the simulator that gives
performance closest to the optimum for a particular
communication problem (unicast, multicast, broadcast,
multi-path) under specific operating conditions. Our
proposed approach of using graph theory algorithms to
study the MANET routing protocols could also be
extended to wireless sensor networks, wherein we can
use the tree and CDS construction algorithms to study the
data gathering protocols.

Acknowledgments
Research was sponsored by the U. S. National Science
Foundation grant (CNS-0851646) entitled: “REU Site:
Undergraduate Research Program in Wireless Ad hoc
Networks and Sensor Networks. The material for this
journal paper evolved from the tutorial slides developed
by the author to simulate the routing protocols for mobile
ad hoc networks with centralized and distributed
implementations of the appropriate graph theory
algorithms. The views and conclusions in this document
are those of the author and should not be interpreted as
representing the official policies, either expressed or
implied, of the funding agency.

References
[1] K. M. Alzoubi, P.-J Wan and O. Frieder,

“Distributed Heuristics for Connected Dominating
Set in Wireless Ad Hoc Networks,” IEEE / KICS
Journal on Communication Networks, Vol. 4, No.
1, pp. 22-29, 2002.

[2] S. Butenko, X. Cheng, D.-Z. Du and P. M.
Paradlos, “On the Construction of Virtual Backbone
for Ad Hoc Wireless Networks,” Cooperative
Control: Models, Applications and Algorithms, pp.
43-54, Kluwer Academic Publishers, 2002.

[3] S. Butenko, X. Cheng, C. Oliviera and P. M.
Paradlos, “A New Heuristic for the Minimum
Connected Dominating Set Problem on Ad Hoc
Wireless Networks,” Recent Developments in
Cooperative Control and Optimization, pp. 61-73,
Kluwer Academic Publishers, 2004.

GRAPH THEORY ALGHORITHMS FOR… Informatica 36 (2012) 185–200 199

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C.
Stein, “Introduction to Algorithms,” 2nd Edition,
MIT Press/ McGraw-Hill, September 2001.

[5] K. Fall and K. Varadhan, “ns notes and
documentation,” The VINT Project at LBL, Xerox
PARC, UCB, and USC/ISI,
http://www.isi.edu/nsnam/ns, August 2001.

[6] B. Hofmann-Wellenhof, H. Lichtenegger and J.
Collins, Global Positioning System: Theory and
Practice, 5th ed., Springer, September 2004.

[7] N. T. Javan and M. Dehghan, “Reducing End-to-
End Delay in Multi-path Routing Algorithms for
Mobile Ad hoc Networks,” Proceedings of the
International Conference on Mobile Ad hoc and
Sensor Networks (MSN 2007), Lecture Notes in
Computer Science (LNCS) 4864, pp. 703 – 712,
December 2007.

[8] D. B. Johnson, D. A. Maltz and J. Broch, “DSR:
The Dynamic Source Routing Protocol for
Multihop Wireless Ad Hoc Networks,” Ad Hoc
Networking, edited by Charles E. Perkins, Chapter
5, pp. 139 – 172, Addison Wesley, 2001.

[9] L. Kou, G. Markowsky and L. Berman, “A Fast
Algorithm for Steiner Trees,” Acta Informatica, vol.
15, no. 2, pp. 141-145, 1981.

[10] F. Kuhn, T. Moscibroda and R. Wattenhofer, “Unit
Disk Graph Approximation,” Proceedings of the
Joint Workshop on Foundations of Mobile
Computing, pp. 17-23, October 2004.

[11] S. Lee and M. Gerla, “Split Multipath Routing with
Maximally Disjoint Paths in Ad Hoc Networks,”
Proceedings of the IEEE International Conference
on Communications, Vol. 10, pp. 3201-3205, 2001.

[12] N. Meghanathan, “A Beaconless Node Velocity-
based Stable Path Routing Protocol for Mobile Ad
hoc Networks,” Proceedings of the IEEE Sarnoff
Symposium Conference, Princeton, NJ, March 30-
April 1, 2009.

[13] N. Meghanathan, “Exploring the Stability-Energy
Consumption-Delay-Network Lifetime Tradeoff of
Mobile Ad Hoc Network Routing Protocols,”
Journal of Networks, vol. 3, no. 2, pp. 17 – 28,
February 2008.

[14] N. Meghanathan, “Benchmarks and Tradeoffs for
Minimum Hop, Minimum Edge and Maximum
Lifetime per Multicast Tree in Mobile Ad hoc
Networks,” International Journal of Advancements
in Technology, vol. 1, no. 2, pp. 234-251, October
2010.

[15] E. Royer and C. E. Perkins, “Multicast Operation of
the Ad-hoc On-demand Distance Vector Routing
Protocol,” Proceedings of the 5th ACM/IEEE
Annual Conference on Mobile Computing and
Networking, pp. 207-218, Seattle, USA, August
1999.

[16] C. E. Perkins and E. M. Royer, “Ad Hoc On-
demand Distance Vector Routing,” Proceedings of
the 2nd Annual IEEE International Workshop on
Mobile Computing Systems and Applications, pp.
90 – 100, February 1999.

[17] T. Ozaki, J-B. Kim and T. Suda, “Bandwidth-
Efficient Multicast Routing for Multihop, Ad hoc
Wireless Networks,” Proceedings of the IEEE
INFOCOM Conference, vol. 2, pp. 1182-1192,
Anchorage, USA, April 2001.

[18] W. Su, S-J. Lee and M. Gerla, “Mobility Prediction
and Routing in Ad hoc Wireless Networks,”
International Journal of Network Management, vol.
11, no. 1, pp. 3-30, 2001.

[19] Z. Ye, S. V. Krishnamurthy and S. K. Tripathi, “A
Framework for Reliable Routing in Mobile Ad Hoc
Networks,” Proceedings of the IEEE International
Conference on Computer Communications, 2003.

[20] X. Zeng, R. Bagrodia and M. Gerla, “GloMoSim: A
Library for Parallel Simulation of Large-Scale
Wireless Networks,” Proceedings of the 12th

Workshop on Parallel and Distributed Simulations,
Banff, Alberta, Canada, May 26-29, 1998.

200 Informatica 36 (2012) 185–200 N. Meghanathan

