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Various simulators (e.g., ns-2 and GloMoSim) are available to implement and study the behavior of the 
routing protocols for mobile ad hoc networks (MANETs). But, students and investigators who are new to 
this area often get perplexed in the complexity of these simulators and lose the focus in designing and 
analyzing the characteristics of the network and the protocol. Most of the time would be spent in 
learning the existing code modules of the simulator and the logical flow between the different code 
modules. The purpose of this paper would be to illustrate the applications of Graph Theory algorithms 
to study, analyze and simulate the behavior of routing protocols for MANETs. Specifically, we focus on 
the applications of Graph Theory algorithms to determine paths, trees and connected dominating sets 
for simulating and analyzing respectively unicast (single-path and multi-path), multicast and broadcast 
communication in mobile ad hoc networks (MANETs). We will discuss the (i) Dijkstra’s shortest path 
algorithm and its modifications for finding stable paths and bottleneck paths; (ii) Prim’s minimum 
spanning tree algorithm and its modification for finding all pairs smallest and largest bottleneck paths; 
(iii) Minimum Steiner tree algorithm to connect a source node to all the receivers of a multicast group; 
(iv) A node-degree based algorithm to construct an approximate minimum connected dominating set 
(CDS) for sending information from one node to all other nodes in the network; and (v) Algorithms to 
find a sequence of link-disjoint, node-disjoint and zone-disjoint multi-path routes in MANETs.

Povzetek: Prispevek opisuje algoritme za mobilna omrežja.

1 Introduction
A Mobile Ad hoc Network (MANET) is a dynamically 
changing infrastructureless and resource-constrained 
network of wireless nodes that may move arbitrarily, 
independent of each other. The transmission range of the 
wireless nodes is often limited, necessitating multi-hop 
routing to be a common phenomenon for communication 
between any two nodes in a MANET. Various routing 
protocols for unicast, multicast, multi-path and broadcast 
communication have been proposed for MANETs. The 
communication structures that are often determined 
include: a path (for unicast – single-path and multi-path 
routing), a tree (for multicast routing) and a connected 
dominating set – CDS (for broadcast routing). Within a 
particular class, it is almost impossible to find a single 
routing protocol that yields an optimal communication 
structure with respect to different route selection metrics 
and operating conditions. 

Various simulators such as ns-2 [5] and GloMoSim 
[20] are available to implement and study the behavior of 
the routing protocols. But, students and investigators who 
are new to this area often get perplexed in the complexity 
of these simulators and lose the focus in designing and 
analyzing the characteristics of the network and the 
protocol. Most of the time would be spent in learning the 
existing code modules of the simulator and the logical 
flow between the different code modules. The purpose of 

this paper would be to illustrate the applications of Graph 
Theory algorithms to study, analyze and simulate the 
behavior of routing protocols for MANETs. We will 
discuss the applications of Graph Theory algorithms for 
unicast (single-path and multi-path), multicast and 
broadcast communication in MANETs.

An ad hoc network is often approximated as a unit 
disk graph [10]. In this graph, the vertices represent the 
wireless nodes and an edge exists between two vertices u 
and v if the normalized Euclidean distance (i.e., the 
physical Euclidean distance divided by the transmission 
range) between u and v is at most 1. Two nodes can 
communicate only if each node lies within (or on the 
edge of) the unit disk of the other node. The unit disk 
graph model neatly captures the behavior of many 
practical ad hoc networks and would be used in the rest 
of this paper for discussing the algorithms to simulate the 
MANET routing protocols. 

Most of the contemporary routing protocols 
proposed in the MANET literature adopt a Least 
Overhead Routing Approach (LORA) according to 
which a communication structure (route, tree or CDS) 
discovered through a global flooding procedure would be 
used as long as the communication structure exist, 
irrespective of the structure becoming sub-optimal since 
the time of its discovery in the MANET. We will also 
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adopt a similar strategy and focus only on discovering a 
communication structure on a particular network graph 
taken as a snapshot during the functioning of the 
MANET. Such a graph snapshot would be hereafter 
referred to as a ‘Static Graph’ and a sequence of such 
static graphs over the duration of the MANET simulation 
session would be called a ‘Mobile Graph’. A 
communication structure determined on a particular 
static graph would be then validated for its existence in 
the subsequent static graphs and once the structure 
breaks, the appropriate graph algorithm can be invoked 
on the static graph corresponding to that particular time 
instant and the above procedure would be continued for 
the rest of the static graphs in the mobile graph. We use 
the big-O notation to express the theoretical worst-case 
run-time complexity of the algorithms discussed in this 
paper. Given a problem size x, where x is usually the 
number of items, we say f(x) = O(g(x)), when there 
exists positive constants c and k such that 0 ≤ f(x) ≤ 
cg(x), for all x ≥ k [4]. 

The rest of this paper is organized as follows: 
Section 2 reviews related work on unicast, multicast, 
broadcast and multi-path communication in MANETs. In 
the subsequent sections, we discuss graph theory 
algorithms for unicast communication (Section 3), the 
tree-based algorithms for multicast communication 
(Section 4), a maximum density-based CDS algorithm 
for broadcast communication (Section 5) and multi-path 
algorithms for determining link-disjoint, node-disjoint 
and zone-disjoint routes (Section 6) in MANETs. Section 
7 concludes the paper and Section 8 discuss future 
research directions in this area. Throughout the paper, the 
terms ‘route’ and ‘path’, ‘link’ and ‘edge’, ‘message’ and 
‘packet’ are used interchangeably. They mean the same.

2 Background Work

2.1 Unicast Communication in MANETs
There are two broad classifications of unicast routing 
protocols: minimum-weight based routing and stability-
based routing. Routing protocols under the minimum-
weight category have been primarily designed to 
optimize the hop count of source-destination (s-d) routes. 
Some of the well-known minimum-hop based routing 
protocols include the Dynamic Source Routing (DSR) 
protocol [8] and the Ad hoc On-demand Distance Vector 
(AODV) routing protocol [16]. The stability-based 
routing protocols aim to minimize the number of route 
failures and in turn reduce the number of flooding-based 
route discoveries. Some of the well-known stability-
based routing protocols include the Flow-Oriented 
Routing Protocol [18] and the Node Velocity-based 
Stable Path (NVSP) routing protocol [12]. In [13] and 
[14], it was observed that there exists a stability-hop 
count tradeoff and it is not possible to simultaneously 
optimize both the hop count as well as the number of 
route discoveries. 

The DSR protocol is a source routing protocol that 
requires the entire route information to be included in the 

header of every data packet. However, because of this 
feature, intermediate nodes do not need to store up-to-
date routing information in their routing tables. Route 
discovery is by means of the broadcast query-reply cycle. 
The Route Request (RREQ) packet reaching a node 
contains the list of intermediate nodes through which it 
has propagated from the source node. After receiving the 
first RREQ packet, the destination node waits for a short 
time period for any more RREQ packets, then chooses a 
path with the minimum hop count and sends a Route 
Reply (RREP) along the selected path. Later, if any new 
RREQ is received through a path with hop count less 
than that of the selected path, another RREP would be 
sent on the latest minimum hop path discovered. 

The AODV protocol, like DSR, is also a shortest 
path based routing protocol. However, it is table-driven. 
Upon receiving an unseen RREQ packet (with the 
highest sequence number seen so far), an intermediate 
node records the upstream node (sender) of the RREQ 
packet in its routing table entry for the source-destination 
route. The intermediate node then forwards the RREQ 
packet by incrementing the hop count of the path from 
the source node. The destination node receives RREQ 
packets on several routes and selects that RREQ packet 
that traversed on the minimum-hop path to the 
destination node. The RREP packet is then sent on the 
reverse of this minimum-hop path towards the source 
node. The destination node includes the upstream node 
from which the RREQ was received as the downstream 
node on the path from the destination node to the source 
node. An intermediate node upon receiving the RREP 
packet will check whether it has been listed as the 
downstream node ID. In that case, the intermediate node 
processes the RREP packet and completes its routing 
table by including the sender of the RREP packet as the 
next hop node on the path from the source node towards 
the destination node. The intermediate node then replaces 
its own ID in the RREP downstream node entry with the 
ID of the upstream node that it has in its routing table for 
the path from the source node to the destination node.

The FORP protocol has been observed to discover 
the sequence of most stable routes among the 
contemporary stable path routing protocols [13]. FORP 
utilizes the mobility and location information of the 
nodes to approximately predict the expiration time (LET) 
of a wireless link. The minimum of LET values of all 
wireless links on a path is termed as the route expiration 
time (RET). The route with the maximum RET value is 
selected as the desired route. Each node is assumed to be 
able to predict the LET values of the links with its 
neighboring nodes based on the information regarding 
the current position of the nodes, velocity, the direction 
of movement, and transmission range. FORP assumes the 
availability of location-update mechanisms like Global 
Positioning System (GPS) [6] to identify the location of 
the nodes and also requires each node to periodically 
broadcast its location and mobility information to its 
neighbors through beacons.

The NVSP protocol is the only beaconless routing 
protocol that can discover long-living stable routes 
without significant increase in the hop count per path. 
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FORP discovers routes that have a significantly larger 
hop count than the minimum value. NVSP only requires 
each intermediate node to include its velocity in the 
RREQ packets propagated via flooding from the source 
node to the destination node. With flooding, each 
intermediate node forwards the RREQ packet exactly 
once, the first time the node sees the packet as part of a 
particular route discovery session. The destination node 
receives the RREQ packets through several paths and 
determines the bottleneck velocity of each of those paths. 
The bottleneck velocity of a path is the maximum among 
the velocities of the intermediate nodes on the path. The 
destination node chooses the path with the minimum 
bottleneck velocity and sends a RREP packet along that 
path. In case of a tie, the destination node chooses the 
path with the lowest hop count and if the tie could not be 
still broken, the destination node chooses an arbitrary 
path among the contending paths.

2.2 Multicast Communication in MANETs
The Multicast communication refers to sending messages 
from one source node to a set of receiver nodes in a 
network. The receiver nodes form the multicast group 
and we typically find a tree that connects the source node 
to the multicast group members such that there is exactly 
one path from the source node to each receiver node. The 
tree could be constructed based on either one of the 
following two objectives: (i) Shortest path tree – the tree 
would have the minimum hop count paths from the 
source node to each receiver node and (ii) Steiner tree –
the tree would have the minimum number of links 
spanning the source node and the multicast group 
members. Both these trees cannot be simultaneously built 
and there would always be a tradeoff between the above 
two objectives [14]. The Multicast Extension of the Ad 
hoc On-demand Distance Vector (MAODV) protocol 
and the Bandwidth Efficient Multicast Routing Protocol 
(BEMRP) are respectively examples of the minimum hop 
and minimum link based multicast protocols.

MAODV [15] is the multicast extension of the 
AODV unicast routing protocol. Here, a receiver node 
joins the multicast tree through a member node that lies 
on the minimum-hop path to the source node. A potential 
receiver node wishing to join the multicast group 
broadcasts a RREQ message. If a node receives the 
RREQ message and is not part of the multicast tree, the 
node broadcasts the message in its neighborhood and 
also establishes the reverse path by storing the state 
information consisting of the group address, requesting 
node id and the sender node id in a temporary cache. If a 
node receiving the RREQ message is a member of the 
multicast tree and has not seen the RREQ message 
earlier, the node waits to receive several RREQ messages 
and sends back a RREP message on the shortest path to
the receiver node. The member node also informs in the 
RREP message, the number of hops from itself to the 
source node. The potential receiver node receives several 
RREP messages and selects the member node which lies 
on the shortest path to the source node. The receiver node 
sends a Multicast Activation (MACT) message to the 

selected member node along the chosen route. The route 
from the source node to the receiver node is set up when 
the member node and all the intermediate nodes in the 
chosen path update their multicast table with state 
information from the temporary cache. 

According to BEMRP [17], a newly joining node to 
the multicast group opts for the nearest forwarding node 
in the existing tree, rather than choosing a minimum-hop 
count path from the source node of the multicast group. 
As a result, the number of links in the multicast tree is 
reduced leading to savings in the network bandwidth. 
Multicast tree construction is receiver-initiated. When a 
node wishes to join the multicast group as a receiver 
node, it initiates the flooding of Join control packets 
targeted towards the nodes that are currently members of 
the multicast tree. On receiving the first Join control 
packet, the member node waits for a certain time before 
sending a Reply packet. The member node sends a Reply 
packet on the path, traversed by the Join control packet, 
with the minimum number of intermediate forwarding 
nodes. The newly joining receiver node collects the 
Reply packets from different member nodes and would 
send a Reserve packet on the path that has the minimum 
number of forwarding nodes from the member node to 
itself.

2.3 Broadcast Communication in 
MANETs

Broadcast communication refers to sending a message 
from one node to all the other nodes in the network. 
Since MANET topology is not fully connected as nodes 
operate with a limited transmission range, multi-hop 
communication is a common phenomenon in routing. As 
a result, a message has to be broadcast by more than one 
node (in its neighborhood) so that the message can reach 
all the nodes in the network. An extreme case of 
broadcasting is called flooding wherein each node 
broadcasts the message among its neighbors, exactly 
once, when the message is seen for the first time. This 
ensures that the message is received by all the nodes in 
the network. However, flooding would cause 
unnecessary retransmissions, exhausting the network 
bandwidth and the energy reserves at the nodes. 

Connected Dominating Sets (CDS) are considered to 
be very efficient for broadcasting a message from one 
node to all the nodes in the network. A CDS is a sub 
graph of a given undirected connected graph such that all 
nodes in the graph are included in the CDS or directly 
attached to a node (i.e., covered by a node) in the CDS. 
A Minimum Connected Dominating Set (MCDS) is the 
smallest CDS (in terms of the number of nodes in the 
CDS) for the entire graph. For a virtual backbone-based 
route discovery, the smaller the size of the CDS, the 
smaller is the number of unnecessary retransmissions. If 
the RREQ packets of a broadcast route discovery process 
get forwarded only by the nodes in the MCDS, we will 
have the minimum number of retransmissions. 
Unfortunately, the problem of determining the MCDS in 
an undirected graph, like that of the unit disk graph 
considered for modeling MANETs, is NP-complete. In 
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[1], [2] and [3], efficient algorithms have been proposed 
to approximate the MCDS for wireless ad hoc networks. 
A common thread among these algorithms is to give 
preference to nodes with high neighborhood density (i.e., 
a larger number of uncovered neighbors) for inclusion in 
the MCDS.  

2.4 Multi-path Communication in 
MANETs

MANET routing protocols incur high route discovery 
latency and also incur frequent route discoveries in the 
presence of a dynamically changing topology. Recent 
research has started to focus on multi-path routing 
protocols for fault tolerance and load balancing. Multi-
path on-demand routing protocols tend to compute 
multiple paths, at both the traffic sources as well as at 
intermediary nodes, in a single route discovery attempt. 
This reduces both the route discovery latency and the 
control overhead as a route discovery is needed only 
when all the discovered paths fail. Spreading the traffic 
along several routes could alleviate congestion and 
bottlenecks. Multi-path routing also provides a higher 
aggregate bandwidth and effective load balancing as the 
data forwarding load can be distributed over all the paths.

Multi-paths can be of three types: link-disjoint, node-
disjoint and zone-disjoint. For a given source node s and 
destination node d, the set of link-disjoint s-d routes 
comprises of paths that have no link present in more than 
one constituent s-d path. Similarly, the set of node-
disjoint s-d routes comprises of paths that have no node 
(other than the source node and destination node) present 
in more than one constituent s-d path. A set of zone-
disjoint s-d routes comprises of paths such that an 
intermediate node in one path is not a neighbor node of 
an intermediate node in another path. Multi-path on-
demand routing protocols tend to compute multiple paths 
between a source-destination (s-d) pair, in a single route 
discovery attempt. A new network-wide route discovery 
operation is initiated only when all the s-d paths fail. The 
Split Multi-path Routing (SMR) protocol [11], the 
AODV-Multi-path (AODVM) protocol [19] and the 
Zone-Disjoint multi-path extension to the DSR (ZD-
DSR) protocol [7] are respectively well-known examples 
for link-disjoint, node-disjoint and zone-disjoint multi-
path routing protocols.

In SMR, the intermediate nodes forward RREQs that 
are received along a different link and with a hop count 
not larger than the first received RREQ. The destination 
node selects the route on which it received the first 
RREQ packet (which will be a shortest delay path), and 
then waits to receive more RREQs. The destination node 
then selects the path which is maximally disjoint from 
the shortest delay path. If more than one maximally 
disjoint path exists, the tie is broken by choosing the path 
with the shortest hop count. 

In AODVM, an intermediate node does not discard 
duplicate RREQ packets and records them in a RREQ 
table. The destination node responds with an RREP for 
each RREQ packet received. An intermediate node, on 
receiving the RREP, checks its RREQ table and forwards 

the packet to the neighbor that lies on the shortest path to 
the source node. The neighbor entry is then removed 
from the RREQ table. Also, whenever a node hears a 
neighbor node forwarding the RREP packet, the node 
removes the entry for the neighbor node in its RREQ 
table. 

The Zone-Disjoint Multi-path extension of the 
Dynamic Source Routing (ZD-MPDSR) protocol 
proposed for an omni-directional system works as 
follows: Whenever a source node has no route to send 
data to a destination node, the source node initiates 
broadcast of the RREQ messages. The number of active 
neighbors for a node indicates the number of neighbor 
nodes that have received and forwarded the RREQ 
message during a route discovery process. The RREQ 
message has an ActiveNeighborCount field and it is 
updated by each intermediate node before broadcasting 
the message in the neighborhood. When an intermediate 
node receives the RREQ message, it broadcasts a 1-hop 
RREQ-query message in its neighborhood to determine 
the number of neighbors who have also seen the RREQ 
message. The number of RREQ-query-replies received 
from the nodes in the neighborhood is the value of the 
ActiveNeighborCount field updated by a node in the 
RREQ message. The destination node receives several 
RREQ messages and selects the node-disjoint paths with 
lower ActiveNeighborCount values and sends the RREP 
messages to the source node along these paths. Even 
though the selection of the zone-disjoint paths with lower 
number of active neighbors will lead to reduction in the
end-to-end delay per data packet, the route acquisition 
phase will incur a significantly longer delay as RREQ-
query messages are broadcast at every hop (in addition to 
the regular RREQ message) and the intermediate nodes 
have to wait to receive the RREQ-query and reply 
messages from their neighbors. This will significantly 
increase the control overhead in the network.

3 Graph Theory Algorithms for 
Unicast Communication in 
MANETs

In a graph theoretic context, we illustrate that the 
minimum-weight (minimum-hop) based routing 
protocols could be simulated by running the shortest-path 
Dijkstra algorithm [4] on a mobile graph (i.e. a sequence 
of static graphs). We then illustrate that the NVSP and 
FORP protocols could be simulated by respectively 
solving the smallest bottleneck and the largest bottleneck 
path problems – each of which could be implemented as 
a slight variation of the shortest path Dijkstra algorithm. 
In addition, we also illustrate that the Prim’s minimum 
spanning tree algorithm and its modification to compute 
the maximum spanning tree can be respectively used to 
determine the ‘All Pairs Smallest Bottleneck Paths’ and 
‘All Pairs Largest Bottleneck Paths’ in a weighted 
network graph.
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3.1 Shortest Path Problem
Given a weighted graph G = (V, E), where V is the set of 
vertices and E is the set of weighted edges, the shortest 
path problem is to determine a minimum-weight path 
between any two nodes (identified as source node s and 
destination node d) in the graph. The execution of the 
Dijkstra algorithm (pseudo code in Figure 1) on a 
weighted graph starting at the source node s results in a 
shortest path tree rooted at s. In other words, the Dijkstra 
algorithm will actually return the minimum-weight paths 
from the source vertex s to every other vertex in the 
weighted graph. If all the edge weights are 1, then the 
minimum-weight paths are nothing but minimum-hop 
paths.

Begin Algorithm Dijkstra-Shortest-Path (G, s)
1     For each vertex v Є V
2      weight [v] ← ∞ // an estimate of the minimum-
                                     weight path from s to v
3     End For
4     weight [s] ← 0
5     S ← Φ // set of nodes for which we know the 
                      minimum-weight path from s
6     Q ← V // set of nodes for which we know estimate of 
                      the minimum-weight path from s
7    While Q ≠ Φ
8          u ← EXTRACT-MIN (Q) 
9          S ← S U {u}
10         For each vertex v such that (u, v) Є E
11            If weight [v] > weight [u] + weight (u, v) then
12              weight [v] ← weight [u] + weight (u, v)
13              Predecessor (v) ← u
14             End If
15         End For
16     End While
17  End Dijkstra-Shortest-Path

Figure 1: Pseudo Code for Dijkstra’s Shortest Path 
Algorithm.

Dijkstra algorithm proceeds in iterations. To begin with, 
the weights of the minimum-weight paths from the 
source vertex to every other vertex is assumed to be +∞ 
(as estimate value, indicating that the paths are actually 
not known) and from the source vertex to itself is 
assumed to be 0. During each iteration, we determine the 
shortest path from the source vertex s to a particular 
vertex u, which would be the vertex with the minimum 
weight among the vertices that have been not yet 
optimized (i.e. for which the shortest path has not been 
yet determined). We then explore the neighbors of u and 
determine whether we can reach any of the neighbor 
vertices, say v, from s through u on a path with weight 
less than the estimated weight of the current path we 
know from s to v. If we could find such a neighbor v, 
then we set the predecessor of v to be vertex u on the 
shortest path from s to v. This step is called the relaxation 
step and is repeated over all iterations. The darkened 

edges shown in the working example of Figure 2 are the 
edges that are part of the shortest-path tree rooted at the 
source vertex s. The run-time complexity of the 
Dijkstra’s shortest path algorithm is O(|V|2).

Figure 2: Example to Illustrate the Working of the 
Dijsktra’s Shortest Path Algorithm.

3.2 Smallest Bottleneck Path Problem
In the context of the smallest bottleneck path 

problem, we define the bottleneck weight of a path p to 
be the maximum of the weights of the constituent edges, 
ep. Given the set of all loop-free paths P between a 
source node s and destination node d, the smallest 
bottleneck path is the path with the smallest bottleneck 
weight. We can express this mathematically 

as  






eweightMaxMin

pePp
( . 

The 

   Begin Algorithm Modified-Dijkstra-Smallest-
                            Bottleneck-Path (G, s)

1     For each vertex v Є V
2         weight [v] ← +∞ // an estimate of the smallest 
                                    bottleneck weight path from s to v
3     End For
4     weight [s] ← - ∞
5   S ← Φ // set of nodes for which we know the 
                     smallest bottleneck weight path from s
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6     Q ← V // set of nodes for which we know an 
                      estimate of the smallest bottleneck weight 
                      path from s
7    While Q ≠ Φ
8       u ← EXTRACT-MIN (Q) 
9      S ← S U {u}
10      For each vertex v such that (u, v) Є E
11    If weight[v] > Max(weight [u], weight (u, v)) then
12              weight [v] ← Max (weight [u], weight (u, v))
13              Predecessor (v) ← u
14        End If
15      End For
16     End While
17  End Modified-Dijkstra-Smallest-Bottleneck-Path

Figure 3: Pseudo Code for the Modified Dijkstra 
Smallest Bottleneck Path Algorithm.

    

   

Figure 4: Example for the Smallest Bottleneck Path 
Problem.

NVSP protocol can be implemented in a graph theoretic 
context through a modified version of the Dijkstra’s 
algorithm (pseudo code in Figure 3) that solves the 
smallest bottleneck path problem. Accordingly, the 
weight of a link from node u to node v is the velocity of 
the downstream node v. To start with, the weight of the 
smallest bottleneck path from the source vertex s to every 
other vertex is estimated to be +∞; whereas the weight of 
the smallest bottleneck path from the source vertex s to 
itself is set to - ∞. At the beginning of an iteration, the 

vertex (say u) with the smallest bottleneck weight among 
the vertices that have been not yet optimized is now 
considered to be optimized. As part of the relaxation 
step, we check whether the current weight of the smallest 
bottleneck path to any non-optimized neighbor v, i.e. 
weight[v], is greater than the maximum of the weight of 
the recently optimized largest bottleneck path from s to 
u, i.e. weight[u] and the weight of the edge (u, v). If this 
relaxation condition evaluates to true, then the bottleneck 
weight of the path from s to v is correspondingly updated 
(i.e., weight[v] = Max (weight[u], weight(u, v)) and the 
predecessor of v is set to be u for the path from s to v. 
This step is repeated over all iterations. A working 
example is presented in Figure 4. The run-time 
complexity of the modified Dijkstra algorithm for the 
smallest bottleneck path problem is the same as that of 
the original Dijkstra algorithm.

3.3 All Pairs Smallest Bottleneck Paths 
Problem

In this section, we show that the smallest bottleneck path 
between any two vertices u and v V in an undirected 
weighted graph G = (V, E) is the path between u and v in 
the minimum spanning tree of G. The Prim’s algorithm 
[4] is a well-known algorithm to determine the minimum 
spanning tree of weighted graphs and its pseudo code is 
illustrated in Figure 5. The Prim’s algorithm is very 
similar to the Dijkstra algorithm – the major difference is 
in the relaxation step. 

Begin Algorithm Prim (G, s); s – is any arbitrarily 
                                              chosen starting vertex
1     For each vertex v Є V
2           weight [v] ← ∞ 
3     End For
4     weight [s] ← 0
5     S ← Φ // set of nodes whose bottleneck weights will 
                      not change further
6     Q ← V // set of nodes whose bottleneck weights are 
                       only estimates; final weight could change
7    While Q ≠ Φ
8          u ← EXTRACT-MIN (Q) 
9          S ← S U {u}
10         For each vertex v such that (u, v) Є E
11            If weight [v] > weight (u, v) then
12             weight [v] ← weight (u, v)
13             Predecessor (v) ← u
14             End If
15         End For
16     End While
17  End Prim

Figure 5: Pseudo Code for the Prim’s Algorithm to 
Determine a Minimum Spanning Tree.
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Figure 6: Example for the Minimum Spanning Tree – All 
Pairs Smallest Bottleneck Paths.

The Prim’s algorithm work as follows: The starting 
vertex is any arbitrarily chosen vertex (say s) in the given 
undirected weighted graph G. To begin with, the weights 
of the smallest bottleneck paths from the starting vertex 
to every other vertex is assumed to be +∞ (as estimate 
value, indicating that the paths are actually not known) 
and the path from the starting vertex to itself is assumed 
to be 0. During every iteration, we determine the smallest 
bottleneck path from the starting vertex s to a particular 
vertex u, which would be the vertex with the minimum 
weight among the vertices that have been not yet 
optimized (i.e. for which the smallest bottleneck path has 
not been yet determined). We then explore the neighbors 
of u and determine whether we can reach any of the 
neighbor vertex, say v, from s through u on a path with 
weight less than the estimated bottleneck weight of the 
current path we know from s to v. If we could find such a 
neighbor v as part of the relaxation step, we set the new 
estimated bottleneck weight of vertex v to the weight of 
the edge (u, v) and also set the predecessor of v to be 
vertex u on the smallest bottleneck path from s to v. The 
darkened edges shown in the working example of Figure 
6 are the edges that are part of the smallest bottleneck 
path tree rooted at the starting vertex s. The path between 
any two vertices in this smallest bottleneck path tree is 
the smallest bottleneck path between the two vertices in 
the original graph. The run-time complexity of the Prim’s 
minimum spanning tree algorithm is O(|V|2). 

Note that in both Figures 4 and 6, we start with the 
same initial graph. Since, the relaxation step of the 
modified Dijkstra algorithm and the Prim’s algorithm are 
different, the sequence of vertices that are optimized in 
each algorithm is different from one another. However, 
the final tree rooted at the starting vertex s is the same in 
both the figures. This example vindicates our argument 
that the minimum spanning tree contains the smallest 
bottleneck paths between any two vertices in the original 
graph. We now formally prove this argument (refer 
Figure 7 for an illustration of the example) below 
through the method of Proof by Contradiction.

Figure 7: Proof by Contradiction: Minimum Spanning
Tree with All Pairs Smallest Bottleneck Paths.

Let there be a pair of vertices uV1 and vV2 in G = 
(V, E) such that the edge (u, v) E, V1V2 = V and 
V1V2 = Φ. Assume the edge (u, v) belongs to the 
minimum spanning tree T of G; but the edge is not part of 
the smallest bottleneck path from u to v. Let there exist an 
alternate path from u to v that is the smallest bottleneck 
path. Since u and v are in two disjoint vertex partitions, 
there should be at least one edge (call it e) in the path 
from u to v with endpoint vertices in each partition. But, 
by definition of a minimum spanning tree, the weight(u, 
v) ≤ weight(edge e); otherwise, a cheaper tree could be 
obtained by replacing (u, v) with the edge e and T 
containing (u, v) would not be a minimum spanning tree. 
Hence, edge e could be replaced by edge (u, v) without 
increasing the weight of any smallest bottleneck path. 
Likewise, we can prove that every edge in T would be 
part of a smallest bottleneck path. Since T is a minimum 
spanning tree, all its edges constitute the all pairs smallest 
bottleneck paths for the entire graph.

3.4 Largest Bottleneck Paths Problem
In the context of the largest bottleneck path problem, we 
define the bottleneck weight of a path p to be the 
minimum of the weights of the constituent edges, ep. 
Given the set of all loop-free paths P between a source 
node s and destination node d, the largest bottleneck path 
is the path with the largest bottleneck weight. We can 

express this mathematically as  






eweightMinMax

pePp
( . 
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Begin Algorithm Modified-Dijkstra-Largest-Bottleneck-
                            Path (G, s)
1     For each vertex v Є V
2           weight [v] ← - ∞ // an estimate of the largest
                                   bottleneck weight path from s to v
3     End For
4     weight [s] ← + ∞
5     S ← Φ // set of nodes for which we know the largest 
                      bottleneck weight path from s
6     Q ← V // set of nodes for which we know an 
                       estimate of the largest bottleneck weight 
                       path from s
7    While Q ≠ Φ
8        u ← EXTRACT-MAX (Q) 
9        S ← S U {u}
10      For each vertex v such that (u, v) Є E
11        If weight[v] < Min (weight [u], weight (u, v)) then
12              weight [v] ← Min (weight [u], weight (u, v))
13              Predecessor (v) ← u
14             End If
15         End For
16     End While
17  End Modified-Dijkstra-Largest-Bottleneck-Path

Figure 8: Pseudo Code for the Modified Dijkstra’s 
Algorithm for the Largest Bottleneck Path Problem.

Figure 9: Example for the Largest Bottleneck Path 
Problem.

The FORP protocol can be simulated using a modified 
version of the Dijsktra’s algorithm (pseudo code in 
Figure 8) that solves the Largest Bottleneck Path 
problem on a static graph. The edge weights correspond 
to the predicted LET values for the corresponding links. 
To start with, the weight of the largest bottleneck path 
from the source vertex s to every other vertex is 
estimated to be - ∞; whereas the weight of the largest 
bottleneck path from the source vertex s to itself is set to 
+∞. At the beginning of an iteration, the vertex (say u) 
with the largest bottleneck weight among the vertices 
that have been not yet optimized is now considered to be 
optimized (i.e., the largest bottleneck path from the 
source vertex s to the vertex u is considered to have been 
determined by now). As part of the relaxation step, we 
check whether the current weight of the largest 
bottleneck path to any non-optimized neighbor v, i.e. 
weight[v], is lower than the minimum of the weight of 
the recently optimized largest bottleneck path from s to 
u, i.e. weight[u] and the weight of the edge (u, v). If this 
relaxation condition evaluates to true, then the bottleneck 
weight of the path from s to v is correspondingly updated 
(i.e., weight[v] = Min(weight[u], weight(u, v)) and the 
predecessor of v is set to be u for the path from s to v. 
This step is repeated over all iterations. A working 
example is presented in Figure 9. The run-time 
complexity of the modified Dijkstra algorithm for the 
largest bottleneck path problem is the same as that of the 
original algorithm for the shortest path problem. 

3.5 All Pairs Largest Bottleneck Paths 
Problem 

In this section, we show that the largest bottleneck path 
between any two vertices u and v V in an undirected 
weighted graph G = (V, E) is the path between u and v in 
the maximum spanning tree of G. The maximum 
spanning tree of a graph can be determined using a 
slightly modified version of the Prim’s algorithm – the 
modification is in the initialization step and the 
relaxation condition. In the original Prim’s algorithm, the 
initial weight of all the vertices other than the starting 
vertex is set to +∞; whereas in the modified Prim’s 
algorithm for the all pairs largest bottleneck path 
problem, the initial weight of all the vertices other than 
the starting vertex is set to – ∞ (an initial estimate for the 
largest bottleneck paths, which are actually not know to 
start with). The weight of the starting vertex, s, in both 
algorithms is 0. The pseudo code of the modified Prim’s 
algorithm is given in Figure 10. 

Begin Algorithm Modified-Prim (G, s); s – is any 
                             arbitrarily chosen starting vertex
1     For each vertex v Є V
2           weight [v] ← – ∞ 
3     End For
4     weight [s] ← 0
5     S ← Φ // set of nodes whose bottleneck weights
                      will not change further
6     Q ← V // set of nodes whose bottleneck weights 
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                       are only estimates and the final weight 
                       could change
7    While Q ≠ Φ
8          u ← EXTRACT-MAX (Q) 
9          S ← S U {u}
10         For each vertex v such that (u, v) Є E
11            If weight [v] < weight (u, v) then
12             weight [v] ← weight (u, v)
13             Predecessor (v) ← u
14             End If
15         End For
16     End While
17  End Modified-Prim

Figure 10: Pseudo Code for the Modified Prim’s 
Algorithm to Determine a Maximum Spanning Tree

Figure 11: Example for the Maximum Spanning Tree –
All Pairs Largest Bottleneck Paths.

During every iteration, we determine the largest 
bottleneck path from the starting vertex s to a particular 
vertex u, which would be the vertex with the maximum 
weight among the vertices that have been not yet 
optimized (i.e. for which the largest bottleneck path has 
not been yet determined). We then explore the neighbors 
of u and determine whether we can reach any of the 
neighbor vertices, say v, from s through u on a path with 
weight greater than the estimated bottleneck weight of 
the current path we know from s to v. If we could find 
such a neighbor v as part of the relaxation step, we set the 

new estimated bottleneck weight of vertex v to the 
weight of the edge (u, v) and also set the predecessor of v
to be vertex u on the largest bottleneck path from s to v. 
The darkened edges shown in the working example of 
Figure 11 are the edges that are part of the largest 
bottleneck path tree rooted at the starting vertex s. The 
path between any two vertices in this largest bottleneck 
path tree is the largest bottleneck path between the two 
vertices in the original graph. The run-time complexity of 
the modified Prim’s algorithm to determine maximum 
spanning tree is O(|V|2), the same as the original Prim’s 
algorithm for minimum spanning trees. The correctness 
of the modified Prim’s algorithm for the all pairs largest 
bottleneck path problem can be proved using the same 
logic used to prove the correctness of the Prim’s 
algorithm for the all pairs smallest bottleneck path 
problem. 

4 Graph Theory Algorithms for 
Multicast Communication in 
MANETs

The original Dijkstra shortest path algorithm described 
previously can be used to determine shortest path trees 
with minimum hop count per source-receiver path. The 
problem of determining a multicast tree with the 
minimum number of links is a NP-complete problem for 
which there is no polynomial-time algorithm yielding an 
optimistic solution. Hence, algorithms have been 
proposed in the literature to approximate such multicast 
trees. The Steiner tree algorithm is the best-known 
algorithm in the literature to approximate multicast trees 
with the minimum number of links connecting a source 
node to the receiver nodes of the multicast group.

Given a static graph, G = (V, E), where V is the set of 
vertices, E is the set of edges and a subset of vertices 
(called the multicast group or Steiner points) MG  V, 
the multicast Steiner tree is the tree with the least number 
of edges required to connect all the vertices in MG.  In 
this paper, we use a well-known O(|V||MG|2) algorithm 
of Kou et al [9], where |V| is the number of nodes in the 
network graph and |MG| is the size of the multicast group 
comprising of the source nodes and the receiver nodes, to 
approximate the minimum edge Steiner tree in graphs 
representing snapshots of the network topology. In unit 
disk graphs such as the static graphs used in our research, 
Step 5 of the algorithm (pseudo code in Figure 12) is not 
needed and the minimal spanning tree TMG obtained at 
the end of Step 4 could be considered as the minimum 
edge Steiner tree. One could use the Prim’s algorithm to 
find the minimum spanning trees.

Input:   A Static Graph G = (V, E)
              Multicast Group MG  V
Output: A MG-Steiner-tree for the set MG  V

Begin Kou et al Algorithm (G, MG)
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Step 1: Construct a complete undirected weighted 
graph GC = (MG, EC) from G and MG where (vi, vj) 
 EC, vi and vj are in MG, and the weight of edge (vi, 
vj) is the length of the shortest path from vi  to vj in G. 
Step 2: Find the minimum weight spanning tree TC in 
GC (If more than one minimal spanning tree exists, 
pick an arbitrary one).
Step 3: Construct the sub graph GMG of G, by 
replacing each edge in TC with the corresponding 
shortest path from G (In case of any tie, between an 
arbitrary shortest path between the two vertices). 
Step 4: Find the minimal spanning tree TMG in GMG

with unit edge weights. If more than one minimal 
spanning tree exists, pick an arbitrary one). 

    return TMG as the MG-Steiner-tree

End Kou et al Algorithm

Figure 12: Kou et al’s Algorithm to Find an Approximate 
Minimum Edge Steiner Tree.
  

Figure 13: Construction of a Minimum Steiner Tree 
using Kou et al.’s Algorithm.

We now illustrate the working of the Kou et al’s 
algorithm through an example in Figure 13. The vertices 
{D, G, E, M, N, P} form the multicast group in the 
vertex set {A, B … P}. As observed in the example, the 
sub graph GMG obtained in Step 3 is nothing but the 
minimal spanning tree TMG, which is the output of Step 4. 
In general, for unit disk graphs, like the static graphs we 
are working with, the outputs of both Steps 3 and 4 are 
the same and it is enough that we stop at Step 3 and 
output the MG-Steiner-tree.

5 Graph Theory Algorithms for 
Broadcast Communication in 
MANETs

In this section, we describe a maximum-density based 
CDS (MaxD-CDS) graph theoretic algorithm to 
approximate a Minimum Connected Dominating Set 
(MCDS) in a static graph, taken as a snapshot of a 
MANET topology.

5.1 Data Structures used by the MaxD-
CDS Algorithm and Breadth First 
Search

We use the following principal data structures for the 
MaxD-CDS algorithm:

(i) CDS-Node-List – includes all nodes that are 
members of the CDS

(ii) Covered-Nodes-List – includes all nodes that are 
in the CDS-Node-List and all nodes that are 
adjacent to at least one member of the CDS-
Node-List.

Before we run the CDS formation algorithm, we make 
sure the underlying network graph is connected by 
running the Breadth First Search (BFS) algorithm [4]; 
because, if the underlying network graph is not 
connected, we would not be able to find a CDS that will 
cover all the nodes in the network. We run BFS, starting 
with an arbitrarily chosen node in the network graph. If 
we are able to visit all the vertices in the graph, then the 
corresponding network is said to be connected. If the 
graph is not connected, we simply continue with the 
static graph (snapshot of the network topology) collected 
at the next time instant and start with the BFS test. The 
pseudo code for BFS is shown in Figure 14. The run-time 
complexity of BFS is O(|V|+|E|).

Input: Graph G = (V, E)
Auxiliary Variables/Initialization:
      Nodes-Explored = Φ, FIFO-Queue = Φ
Begin Algorithm BFS (G, s)
    root-node = randomly chosen vertex in V
    Nodes-Explored = Nodes-Explored U {root-node}
    FIFO-Queue = FIFO-Queue U {root-node}
    while ( |FIFO-Queue| > 0 ) do
        front-node u = Dequeue(FIFO-Queue) // extract 
                                                  the first node
        for (every edge (u, v) ) do // i.e. every neighbor 
                                                       v of node u
             if (vNodes-Explored) then
                  Nodes-Explored = Nodes-Explored U {v}
                  FIFO-Queue = FIFO-Queue U {v}
                  Parent (v) = u
            end if
        end for
   end while
   if (| Nodes-Explored | = | V | ) then 
          return Connected Graph - true
   else return Connected Graph - false
   end if
End Algorithm BFS

Figure 14: Pseudo Code for the BFS Algorithm to 
Determine Network Connectivity.
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5.2 Maximum Density-based Algorithm to 
Approximate a MCDS

The idea of the maximum density (MaxD)-based CDS 
formation algorithm is to select nodes with larger number 
of uncovered neighbors for inclusion in the CDS. The 
algorithm forms and outputs a CDS based on a given 
input graph representing a snapshot of the MANET at a 
particular time instant. Specifically, the algorithm 
outputs a list (CDS-Node-List) of all nodes that are part 
of the CDS formed based on the given MANET. The first 
node to be included in the CDS-Node-List is the node 
with the maximum number of uncovered neighbors (any 
ties are broken arbitrarily). A CDS member is considered 
to be “covered”, so a CDS member is additionally added 
to the Covered-Nodes-List when it is included in the 
CDS-Node-List. All nodes that are adjacent to a CDS 
member are also said to be covered, so the uncovered 
neighbors of a CDS member are also added to the 
Covered-Nodes-List as the member is added to the CDS-
Node-List. To determine the next node to be added to the 
CDS-Node-List, we must select the node with the largest 
density amongst the nodes that meet the criteria for 
inclusion into the CDS. 

Input:  Graph G = (V, E), where V is the vertex set and 
             E is the edge set.
             Source vertex, s – vertex with the largest 
             number of uncovered neighbors in V.
Auxiliary Variables and Functions: CDS-Node-List, 
Covered-Nodes-List, Neighbors(v), v V.  
Output: CDS-Node-List           
Initialization: Covered-Nodes-List = {s}, 
                        CDS-Node-List = Φ                          
Begin Construction of MaxD-CDS       
     while ( |Covered-Nodes-List| < |V| ) do
         Select a vertex rCovered-Nodes-List and 
         rCDS-Node-List such that r has the largest 
         number of uncovered neighbors that are not 
         in Covered-Nodes-List       

            
         CDS-Node-List = CDS-Node-List U {r}
  
        for all uNeighbors(r) and 
                   uCovered-Nodes-List                                   
         Covered-Nodes-List = Covered-Nodes-List U {u}
       end for
end while
return CDS-Node-List
End Construction of MaxD-CDS

Figure 15: Pseudo Code for the Algorithm to Construct 
the Maximum Density (MaxD)-based CDS.

The criteria for CDS membership selection are the 
following: the node should not already be a part of the 
CDS (CDS-Node-List), the node must be in the Covered-
Nodes-List, and the node must have at least one 
uncovered neighbor (at least one neighbor that is not in 
the Covered-Nodes-List). Amongst the nodes that meet 
these criteria for CDS membership inclusion, we select 
the node with the largest density (i.e., the largest number 
of uncovered neighbors) to be the next member of the 
CDS. Ties are broken arbitrarily. This process is repeated 
until all nodes in the network are included in the 
Covered-Nodes-List. Once all nodes in the network are 
considered to be “covered”, the CDS is formed and the 
algorithm returns a list of nodes in the resulting MaxD-
CDS (nodes in the CDS-Node-List). The run-time 
complexity of the MaxD-CDS algorithm is O(|V|2+|E|) 
since there would be at most |V| iterations – it would take 
O(|V|) time to determine the node with the largest number 
of uncovered neighbors in each iteration and across all 
these iterations, we would be visiting |E| edges totally. 
The pseudo code for the MaxD-CDS algorithm is given 
in Figure 15 and a working example of the algorithm is 
illustrated in Figure 16.

Figure 16: Example to Illustrate the Construction of a 
Maximum Density (MaxD)-based CDS

Figure 17: Legend for Figure 16
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6 Graph Theory Algorithms for 
Multi-path Communication in 
MANETs

Let PL, PN and PZ be the set of link-disjoint, node-disjoint 
and zone-disjoint s-d routes respectively. We use the 
Dijkstra O(|V|2) algorithm to determine the minimum hop 
s-d path in a graph of n nodes. We assume the s-d routes 
in a multi-path set are used in the increasing order of the 
hop count. In other words, the s-d route with the least 
hop count is used as long as it exists, then the s-d route 
with the next highest hop count is used as long as it 
exists and so on. We thus persist with the determined 
multi-path set of s-d routes as long as at least one path in 
the set exists. 

6.1 Algorithm to Determine Link-Disjoint 
Paths

To determine the set of link-disjoint paths, PL, (refer 
Figure 18), we remove all the links that were part of p
from the graph G to obtain a modified graph GL (V, EL). 
We then determine the minimum hop s-d path in the 
modified graph G’, add it to the set PL and remove the 
links that were part of this path to get a new updated GL

(V, EL). We repeat this procedure until there exists no 
more s-d paths in the network. The set PL is now said to 
have the link-disjoint s-d paths in the original network 
graph G at the given time instant. Figure 20 illustrates a 
working-example of the algorithm to find the set of link-
disjoint paths on a static graph.

Input: Graph G (V, E), source vertex s and 
                                      destination vertex d
Output: Set of link-disjoint paths PL

Auxiliary Variables: Graph GL (V, EL)
Initialization: GL (V, EL) G (V, E), PL  Ф
Begin Algorithm Link-Disjoint-Paths
1 while (  at least one s-d path in GL)
2       p Minimum hop s-d path in GL.
3       PL PL U {p}

4       
edge e p,

GL (V, EL)  GL (V, EL -{e})

5 end While 
6 return PL

End Algorithm Link-Disjoint-Paths

Figure 18: Algorithm to Determine the Set of Link-
Disjoint s-d Paths in a Network Graph.

6.2 Algorithm to Determine Node-Disjoint 
Paths

To determine the set of node-disjoint paths, PN, (refer 
Figure 19), we remove all the intermediate nodes (nodes 
other than the source vertex s and destination vertex d) 
that were part of the minimum hop s-d path p in the 
original graph G to obtain the modified graph, GN (VN, 

EN). We determine the minimum hop s-d path in the 
modified graph GN (VN, EN), add it to the set PN and 
remove the intermediate nodes that were part of this s-d
path to get a new updated GN (VN, EN). We then repeat 
this procedure until there exists no more s-d paths in the 
network. The set PN is now said to contain the node-
disjoint s-d paths in the original network graph G. Figure 
21 illustrates a working example of the algorithm to find 
the set of node-disjoint paths on a static graph.

Input: Graph G (V, E), source vertex s and 
                                      destination vertex d
Output: Set of node-disjoint paths PN

Auxiliary Variables: Graph GN (VN, EN)
Initialization: GN (VN, EN)  G (V, E), PN  Ф
Begin Algorithm Node-Disjoint-Paths
1 While (  at least one s-d path in GN)
2       p Minimum hop s-d path in GN.
3       PN PN U {p}

4 



 

vertex v p
v s d
edge e Adj list v

,
,
, ( )

GN (VN, EN)  GN (VN–{v}, EN–{e})

5 end While 
6 return PN

End Algorithm Node-Disjoint-Paths

Figure 19: Algorithm to Determine the Set of Node-
Disjoint s-d Paths in a Network Graph.

      Initial Graph                        Iteration 1

        Iteration 2                         Iteration 3

        Iteration 4                       Link-Disjoint Paths

Figure 20: Example to Illustrate the Working of the 
Algorithm to Find Link-Disjoint Paths.
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      Initial Graph                         Iteration 1

  

       Iteration 2                             Iteration 3

Node-Disjoint Paths

Figure 21: Example to Illustrate the Working of the 
Algorithm to Find Node-Disjoint Paths.

6.3 Algorithm to Determine Zone-Disjoint 
Paths

To determine the set of zone-disjoint paths, PZ, (refer 
Figure 22), we remove all the intermediate nodes (nodes 
other than the source vertex s and destination vertex d) 
that were part of the minimum hop s-d path p and also all 
their neighbor nodes from the original graph G to obtain 
the modified graph GZ (VZ, EZ). We determine the 
minimum hop s-d path in the modified graph GZ, add it to 
the set PZ and remove the intermediate nodes that were 
part of this s-d path and all their neighbor nodes to obtain 
a new updated graph GZ (VZ, EZ). We then repeat this 
procedure until there exists no more s-d paths in the 
network. The set PZ is now said to contain the set of 
zone-disjoint s-d paths in the original network graph G. 
Note that when we remove a node v from a network 
graph, we also remove all the links associated with the 
node (i.e., links belonging to the adjacency list Adj-
list(v)) whereas when we remove a link from a graph, no 
change occurs in the vertex set of the graph. Figure 23 
illustrates a working example of the algorithm to find the 
set of zone-disjoint paths on a static graph.

Input: Graph G (V, E), Source vertex s and
                                      Destination vertex d
Output: Set of Zone-Disjoint Paths PZ

Auxiliary Variables: Graph GZ (VZ, EZ)
Initialization: GZ (VZ, EZ)  G (V, E), PZ  Ф
Begin Algorithm Zone-Disjoint-Paths
1 While (  at least one s-d path in GZ)
2       p Minimum hop s-d path in GZ

3      PZ PZ U {p}

4 
 

 
vertex u p u s d
edge e Adj list u

, , ,
, ( )

GZ (VZ, EZ) GZ (VZ – {u}, EZ – {e})

5 
 

 
 

vertex u p u s d
v Neighbor u v s d
edge e Adj list v

, , ,
( ), ,

, ' ( )

GZ (VZ, EZ)GZ(VZ–{v}, EZ– {e’})

6 end While 
7 return PZ

End Algorithm Zone-Disjoint-Paths

Figure 22: Algorithm to Determine the Set of Zone-
Disjoint s-d Paths in a Network Graph.

  

             Initial Graph                          Iteration 1

        Iteration 2                      Zone-Disjoint Paths                                     

Figure 23: Example to Illustrate the Working of the 
Algorithm to Find Zone-Disjoint Paths

7 Conclusions
The high-level contribution of this paper is the idea of 
using traditional graph theory algorithms, which have 
been taught in academic institutions at undergraduate and 
graduate level, to simulate and study the behavior of the 
complex routing protocols for unicast, multicast, 
broadcast and multi-path communication in MANETs. In 
the Section on Background work, we provided an 
exhaustive set of background information on the routing 
protocols that have been proposed for the above different 
communication problems. In the subsequent sections, we 
described one or more graph theoretic algorithms for 
studying each of these communication problems. We 
chose the Dijkstra algorithm for shortest path routing as 
the core algorithm and meticulously modified it and/or 
adopted it to (i) find a solution for the largest bottleneck 
path and smallest bottleneck path problems, which could 
be used to determine a sequence of stable routes as well 
as to (ii) find a set of link-disjoint, node-disjoint or zone-
disjoint routes for multi-path communication. We 
illustrate the use of Prim’s algorithm for minimum 
spanning tree to determine the ‘All Pairs Smallest 
Bottleneck Paths’ and also show how the modified 
version of the Prim’s algorithm to determine maximum 
spanning tree can be used to solve the ‘All Pairs Largest 
Bottleneck Paths’ problem. We prove that the path 
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between any two nodes in the minimum spanning tree is 
the smallest bottleneck path between those two nodes in 
the original graph. We also discussed a maximum 
density-based algorithm to approximate minimum 
connected dominating sets (MCDS) for MANETs such 
that the MCDS could be used as a backbone towards 
broadcast communication for route discoveries and other 
global communication needs. In addition, we discussed 
the Steiner tree problem and the Kou et al.’s algorithm to 
approximate a multicast tree that has the minimum 
number of links connecting the source nodes to the 
members of a multicast group. Each of the graph 
theoretic algorithms discussed in this paper presents the 
optimal solutions or the best approximations for the 
appropriate problems they have been suggested for and 
all of them could be implemented in the most efficient 
manner using the pseudo code presented and executed in 
a polynomial run-time.

As a concluding remark, we would like to state that 
the proposed idea could go a long way in avoiding the 
significant loss of time faced by student researchers to 
understand and modify the simulation code for even 
conducting simple experimental studies. This idea could 
be adopted to facilitate undergraduate student research in 
the area of MANETs without requiring the students to 
directly work on the complex discrete-event simulators. 
A successful implementation of this idea is the Research 
Experiences for Undergraduates (REU) site in the areas 
of Wireless Ad hoc Networks and Sensor Networks, 
hosted by the Department of Computer Science at 
Jackson State University, Jackson, MS, USA. The REU 
site is currently being funded by the U.S. National 
Science Foundation (NSF) and is accessible through 
http://www.jsums.edu/cms/reu.

8 Future Research Directions
Graph theory algorithms form the backbone for research 
on communication protocols for wireless ad hoc 
networks and sensor networks. This paper lays the 
foundation for use of several simplistic graph theoretic 
algorithms (taught at the undergraduate and graduate 
level) to simulate the behavior of the complex MANET 
routing protocols. The next step of research in this 
direction would involve implementing these graph 
theoretic algorithms in a centralized environment using 
offline traces of the mobility profiles of the nodes (under 
a particular mobility model) to generate the mobile graph 
(i.e., sequence of static graphs representing snapshots of 
the network topology at different time instants) and 
compare the performance metrics obtained for the 
communication structures with that of those obtained for 
the actual routing protocols when simulated in a discrete-
event simulator such as ns-2, GloMoSim and etc. Some 
of the performance metrics that could be directly 
compared are the hop count per source-destination path 
(for unicasting), hop count per source-receiver path (for 
multicasting), number of links per multicast tree, lifetime 
per path, lifetime per multicast tree, time between two 
consecutive route discoveries for link-disjoint, node-
disjoint and zone-disjoint routes, number of nodes per 

CDS, hop count of a source-destination path per CDS 
and etc. We conjecture that the results obtained for the 
above performance metrics from the centralized graph 
theory implementations will serve as the optimal 
benchmarks to which the results obtained from the actual 
routing protocols in a discrete-event simulator 
environment would be actually bounded under. This is 
because the centralized implementations would assume 
an ideal medium-access control (MAC) layer that would 
not offer any interference to constrain the 
communication. 

If the simulations could be conducted in more than 
one discrete-event simulator, then the results for the 
performance metrics obtained from the different 
simulators could be compared to the optimal benchmarks 
obtained with our theoretical algorithms and could be 
helpful in identifying the simulator that gives 
performance closest to the optimum for a particular 
communication problem (unicast, multicast, broadcast, 
multi-path) under specific operating conditions. Our 
proposed approach of using graph theory algorithms to 
study the MANET routing protocols could also be 
extended to wireless sensor networks, wherein we can 
use the tree and CDS construction algorithms to study the 
data gathering protocols.
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