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Game playing is one of the first areas of artificial intelligence that was studied by AI researchers. The 
developed algorithms and heuristics combined with an ever-increasing computer speed efficiently 
searched large game trees and thus effectively competed with the best human players. The key 
advantage comes from the generally accepted notion that a deeper search produces better results.
However, while trying to provide a mathematical explanation, researchers have discovered that under 
certain conditions the opposite situation occurs, i.e., a deeper search results in worse decisions. In this 
paper we analyse single-agent search algorithms and the influence of three properties of the search 
trees on the quality of the search. The analysis was performed on one-player search models and in the
maze-path-finding problem.

Povzetek: Na modelu enoagentnega preiskovanja in iskanja poti v zemljevidu analiziramo vpliv
različnih faktorjev na kvaliteto preiskovanja dveh algoritmov.

1 Introduction
A common way of solving search problems is to 
represent the problem with a directed search graph. The 
nodes of the graph correspond to states, e.g., the tiles of a 
map, and the edges are the moves leading from one state 
to the other. Moreover, the problem definition includes 
special states: one initial state and one or several goal
states. The solution to the problem is a path leading from 
the initial to the most appropriate goal node.

Smaller problems can be solved by completely 
searching the state space [6]. Unfortunately, the search 
trees of most real-world problems are too large to be 
searched completely in a reasonable amount of time.
Korf introduced an incomplete search method called real-
time A* [8] that tackles this problem. Real-time A* 
expands the game tree to a certain depth, and using a 
heuristic function it evaluates the quality of the nodes at 
that depth; it then backs the computed values to the 
current state. The action leading to the node with the 
optimal value is then selected. Another algorithm is 
minimin [8]. Figure 1 demonstrates how the minimin
algorithm determines the next action.

Figure 1: Minimin search.

The nodes of the tree contain utility values, i.e., the 
quality of a node. For each node the minimum value of 
its successors is selected and backed-up. Finally, the 
action leading from the root to the node with the value 3 
is selected.

Common sense dictates that a deeper search should 
provide better decisions, and this can indeed be observed 
in practice. Evaluating many moves ahead leads to better 
decisions since obtaining better estimates of the possible 
strategies can help with selecting the appropriate 
responses in the current situation. However, while trying 
to provide a mathematical explanation of this principle, 
researchers have discovered the opposite: looking ahead 
does not always provide better decisions. This 
phenomenon was termed a lookahead pathology [10] and 
it occurs when the quality of a shallower heuristic search 
is higher than the quality of a deeper one. This property 
makes the pathology suitable for measuring the 
performance of search algorithms at certain depths.

In this paper we study the pathological situations of 
search algorithms where a deeper search does not 
guarantee better decisions. On synthetic search-tree 
models we explore the influence of three important 
factors on the occurrence of pathological behaviour: the
granularity g of the heuristic, the branching factor b of 
the game tree and the similarity s of the nearby nodes. 
Next, we perform experimental tests to determine 
whether these factors have the same influence on the 
maze-path-finding problem.

This paper is organized as follows. First, we provide
a brief literature review of related works in Section 2. In 
Section 3 we present the game-tree models used during
the analysis and we describe the three observed factors. 
Section 4 explores the influence of these factors in the 
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real-life domain of maze-path finding. Section 5 
concludes this article.

2 Related Work
The pathology measure used in this paper was first 
discovered independently by Nau [10] and Beal [1] in the 
minimax algorithm [17]. Since then, extensive research 
and many explanations of the minimax pathology 
[1,2,7,10,11,12] have broadened our understanding of the 
principles behind the occurrence of pathological 
behaviour. Three factors have been identified that greatly 
contribute to the pathological behaviour in the minimax 
algorithm: the independence or low similarity of the 
sibling nodes, the low granularity of the selected 
heuristic function and the large branching factors of the 
search trees.  

On the other hand, the pathology of a single-agent
search has been much less investigated. It was first 
discovered in 2003 by Bulitko et al. [3], and it was first 
demonstrated on a synthetic, two-level search tree.
Bulitko only demonstrated that the tree is pathological, 
but he did not provide an adequate explanation. Luštrek 
[9] continued the research on synthetic search trees and 
he provided two key factors influencing the pathology. 
The first of these are certain domain and search-tree 
properties, with the most important being the difference 
between the values of the sibling nodes. This is given by 
the domain and therefore, cannot be altered. The second
of these are the factors related to the heuristic function:
he showed that consistent and admissible heuristics 
prevent the pathology. On the other hand, Sadikov and 
Bratko [14] determined the opposite: pessimistic 
heuristic functions perform better in the eight-puzzle 
game. They analysed the influence of several heuristic 
functions on the number of non-optimal nodes and the 
quality of the final solutions at greater search depths. 
Additionally, Bulitko [5] observed that the type of the 
heuristic function used affects the number of search-tree 
nodes expanded at greater depths. Their research was 
limited to the occurrence of pathological behaviour and 
no insights into the underlying reasons were given.

Piltaver et al. [13] analysed the influence of various 
properties of the search tree and the heuristic function on 
the gain and pathology in the eight-puzzle game. They 
extended the original puzzle to allow additional diagonal 
moves and thus obtain a different branching factor for the 
search trees. Next, they analysed the similarity of the 
sibling nodes and the effect on the pathology. Even 
though the similarity is given by the domain and 
therefore cannot be modified at will, they were able to 
observe that a greater similarity decreases the degree of 
pathology. Experimentations with heuristic functions 
included the granularity of the function, the amount of 
heuristic error and the type of heuristic function 
(optimistic, pessimistic and uniform).

Nau et al. [12] presented a unifying view of the 
pathology in the minimax and single-agent searches. The 
paper shows the interplay between the lookahead 
pathology and three factors that affect it: the dependence 
of the sibling nodes in the search tree, the branching 

factor and the granularity of the heuristic function. The 
experiments were performed on synthetic trees, the 8-
puzzle, two chess endgames and kalah. The content of 
their paper is related to our work; however, in this paper 
additional findings relating to the one-player model, as 
well as an analysis of the maze-path-finding problem, are 
presented.

3 One-Player Model
In the following section we investigate the influence of 
three factors on the quality of the search in synthetic 
search trees: the granularity g of the heuristic function
(the number of possible heuristic values returned), the 
branching factor b of the search tree (the number of 
successors of each node), and the similarity s of the 
search tree (the similarity among values of sibling 
nodes). First, we start with some basic definitions of the 
model.

3.1 Definitions
Any one- or two-player game can be represented by a 
game tree in which the nodes are the states and the edges 
are moves leading from the current to the next state. The 
goal is to find a path from the initial node to one of the 
terminal nodes. The quality of a terminal node x is 
denoted by the utility function u(x). If the overall 
objective of the search problem is to maximize the cost 
of reaching a goal, then the player selects the successor 
with the highest utility score. To each node of the tree a 
unique value v(n) can be assigned, i.e., the utility value 
obtained if the player always  selects the action leading 
to the node with the maximum cost:
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where suc(n) is the set of n`s successors. The player 
following this concept would always select the optimal 
move. Unfortunately, most search trees are too large to 
compute v(n) in a reasonable time. Therefore, an 
approximation of v(n) can be computed using the 
maximax algorithm, which is the same as the minimin 
algorithm where the objective is to maximize the gain:
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where h(n) is a heuristic evaluation function used to 
compute an approximation of v(n) at a certain search 
depth d. The computed value vh(n,d)is called a heuristic 
value, since it is an approximation obtained using a 
heuristic function. Since the heuristic function is not 
completely accurate, an error is introduced in the 
estimation of the utility value. In practice, maximax
performs well; therefore, while backing-up values to the 
root of the search tree it should reduce the error 
introduced with the heuristic function. Pathology occurs 
when maximax amplifies the error of the heuristic 
function. In this paper we will focus on the decision 
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error, which is the probability of selecting an action that 
does not lead to a successor with the optimal utility 
value. The decision error at a certain search depth d and 
heuristic function h is denoted as E(h,d).

Next, we define the pathology p as:
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Pathological behaviour occurs when an error at a deeper 
level is greater than an error at a shallower level:
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When this happens the values of p(h,d1,d2) > 1 indicate
that the search algorithm performs poorly, while
p(h,d1,d2) < 1 indicates the absence of pathology,
meaning that searching deeper is worthwhile. In order to 
evaluate whether a problem is pathological we have run 
several experiments with the Monte Carlo method and 
compared the averaged p with 1.

3.2 Independent game-tree model
This section describes the experiments with synthetic,
independent game trees. Namely, we constructed game 
trees where the sibling nodes are selected randomly and 
are thus independent of each other. 

We start building the game-tree models by assigning 
utility values to the terminal nodes from a uniform 
distribution over the interval [0,1]. These values are real; 
however, we wanted to examine the influence that the 
number of possible heuristic values has on the search 
gains. This is called the granularity of the heuristic 
function. In order to adapt the heuristic function to the 
desired granularity g, the original values are grouped into 
g intervals of equal size. Each interval contains values 
from a certain range from the interval [0,1] and each 
interval is represented by the mean value of the lower 
and upper interval bounds. In the one-player model, at 
small granularities there is a tendency for the values 
towards the root to converge to a single value: the 
maximum utility. Due to the nature of the backing-up 
procedure this phenomenon occurs as soon as every sub 
tree of the root node contains at least one terminal node 
with the maximum utility. We solve this by limiting the 
probability that a maximum utility is reached at the root 
to at most 50%. In the majority of cases, only half of the 
values at the root will be the maximum utility. A direct 
descendant of the root x does not have the maximum 
utility, except when none of the terminal nodes in this 
sub tree have the maximum utility. Therefore, we have 
introduced the following equations that describe the 
relation between the probability of a direct successor of 
the root having the maximum utility (Pmax(x)) and the 
probability of a terminal node having the maximum
utility (Pmax(t)):
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where b is the branching factor of the tree and Δd is 
the depth from the node x to the terminal node t. The 

second equation provides the size of the last interval 
containing the largest utilities. The boundaries of all the 
intervals are shifted until the lower boundary of the last 
interval reaches 1-Pmax(t).

  Next, the values from the terminal nodes are 
propagated throughout the tree using the maximax 
principle.

3.3 Dependent model
The next task was to introduce a local similarity or a 

dependence of the sibling nodes into the one-player 
model. 

A search tree has a high dependence or similarity of 
the sibling nodes when the utility values of the 
descendants of a node have similar values. In this case, a 
deeper search is beneficial when the similarity of the 
sibling nodes increases. The opposite also holds true: the 
deeper search is becoming less efficient when the 
similarity of the sibling nodes decreases.

In our model, the dependence is expressed as a 
parameter s ϵ [0,1], where s = 0 denotes independence 
between the sibling nodes and s = 1 corresponds to the 
maximum similarity between the sibling nodes. Models 
with similarity s = 1 are constructed by generating bh

random numbers in the interval [0,1] and the values are 
mapped into granular classes to obtain the desired 
granularity. Next, the mapped numbers are sorted in 
increasing order and assigned to the terminal nodes from 
left to right. The lowest value is assigned to the left-most 
node, continuing through the inner nodes and finishing 
with the highest number assigned to the right-most node. 

Intermediate similarities for the models (0 < s < 1) 
are created by randomly mixing the terminal nodes from 
the independent and completely dependent trees. All the 
sibling terminal nodes in the independent tree are 
replaced with terminal nodes from the dependent tree 
with the probability s.

The introduced measure of similarity is useful when 
we are dealing with game-tree models; however, local 
similarity in an arbitrary game is expressed in a different 
way. If we want to compare results from the models and 
the game trees we need a common similarity measure. 
For this purpose the clustering factor f was used. 
Roughly, it is the ratio between the standard deviation of 
the utility values of the sibling nodes averaged across all 
the possible parent nodes, and the standard deviation of 
the utilities in the entire search tree [15]. When f is low, 
then the sibling nodes are similar, and vice versa. We 
calculated the clustering factor for every similarity s.

3.4 Evaluation
This section describes experiments with the one-player 
models. The performance of the maximax algorithm was 
estimated by observing how the degree of pathology is 
influenced by three factors: the branching factor b, the 
granularity g, and the similarity s. For each combination 
of values for the three observed factors 10,000 synthetic 
trees were generated using the one-player model. The 
following values were systematically used for each of the 
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three factors: b = 2,3,…,10; g = 2,3,…,300; and s = 
0.0,0.1,…, 1.0.

In the first experiment we observed how the quality 
of the search is influenced by the branching factor and 
the granularity in independent trees. Figure 2 shows the 
pathology p in relation to the granularity g and the 
similarity s in the results of the experiment. On one hand
the search is inefficient at lower granularities and as the 
branching factor increases. On the other hand, a deeper 
search becomes worthwhile with an increased granularity
and at lower branching factors.

Figure 2: The degree of pathology for independent search 
trees.

In the next experiment we computed the required
granularity to avoid situations where a deeper search is 
inefficient, as a function of the branching factor b and the 
local similarity s. The surface in Figure 3 represents the 
border between pathological and non-pathological 
behaviour where p = 1. The area below the surface is 
pathological, while the area above the surface is non-
pathological. The results are as expected: higher 

similarity decreases the granularity needed to avoid 
search inefficiency, while a higher branching factor 
increases the needed granularity.
The unified influence of the branching factor, the local 
similarity and the granularity on the quality of the search 
is presented in Figure 4. Again, the pathology was used 
to estimate the performance of the maximax algorithm. 
Darker dots denote a slightly weak performance 
(1<=p<1.5) and an extremely weak performance 
(p>1.5), respectively. The dots in light grey denote the 
parameter settings where a deeper search is worthwhile.

The observed relations among the factors are the 
same as presented in the previous figures. The degree of 
pathology decreases with the increased granularity g and 
the local similarity s and increases with the branching 
factor b. Moreover, one can see that the similarity of the 
sibling nodes affects the degree of pathology the most. In 
a high-similarity search tree the influence of the 
granularity and the branching factor on the pathology is 
diminished. This can be clearly observed when 
comparing independent and completely dependent trees. 
The pathological behaviour is present for most 
granularities and branching factors in the independent 
trees, while the pathology is mostly eliminated in the 
completely dependent trees. In addition, the degree of 
pathology is not noticeably increasing with higher 
branching factors. Another effect that can be observed in 
Figure 4 is that large values of b decrease the difference 
in the degree of pathology between values near the 
pathological and non-pathological border. For example, 
at lower branching factors, values transit from a high 
pathology degree (p >= 1.5) to a low pathology degree (p 
< 0.5) relatively quickly.

The next experiment investigated how well the 
synthetic trees model the 8-puzzle, a real-world game. 

Figure 3: Granularity values needed to avoid pathology in a deeper search.



ANALYSIS OF A SINGLE-AGENT… Informatica 36 (2012) 177–183 181

From [13] we obtained the degree of pathology for two 
heuristic functions, with a branching factor of 2 and a 
similarity of 0.4. The similarity in the 8-puzzle was 
measured with the clustering factor; therefore, we had to 
map the value of the clustering factor to the similarity 
used in the models as described in Subsection 3.3. The 
comparison between the model and the 8-puzzle is 
shown in Figure 5. Qualitatively, the performance of the 
model is similar to the 8-puzzle. Quantitatively, the 
minimax algorithm from the model performs worse at 
lower granularities (g < 20), but performs very similarly 
at higher granularities. The granularity needed to avoid 
inefficiency in a deeper search is higher in the model 
than in the 8-puzzle. The reason that the synthetic model 
performs worse than the Manhattan distance is probably 
related to the specific properties of the function, e.g., the 
Manhattan function is exact for distances less than eight 
moves to the finish.

4 Pathology in the Maze Search
This section presents experimental tests on a real-world 
problem, i.e., maze path finding, and an analysis of the 
Learning Real-Time Search (LRTS) algorithm [4] The 
algorithm conducts a lookahead search centred on the 
current state and generates all the states up to d moves 
away from the current state.

The analysis of LRTS consisted of determining if the 
algorithm selects the optimal first move from the initial 
node. First, we computed the shortest path from the 
initial to the goal node of the maze to determine the 
correct move from the initial node. Next, we run one 
basic step of the LRTS algorithm with different 
lookahead depths (d=1 and d=5). Finally, we compared 
the move computed with the two LRTS runs with the 
computed optimal move. If the move selected with LRTS 
differs from the optimal then this is a decision error for a 
certain lookahead depth.

As in the single-player model, the measure of the 
search quality is the pathology p. In addition we compare
the performance of the LRTS algorithm and the minimin 
algorithm used in the model.

Using the Randomized Kruskal's algorithm we 
created mazes of different sizes and structures. In the 
generated mazes it is possible to vary only the granularity 
g of the utility and the heuristic function since in real-
world problems the branching factor b and the local
similarity s are part of the problem. However, we were 
still able to generate mazes with different local 
similarities and calculate the corresponding degree of 
pathology. In Figure 6 it is clear that the degree of 
pathology decreases with the similarity of the sibling 
nodes. The similarity is measured with the clustering 
factor; therefore, a smaller clustering factor means a 
larger similarity. The similarities in the figure range from 
0.03 to 0.67, i.e., game trees that are almost completely 
dependent to games trees with a smaller dependence. The 
same cannot be achieved for the branching factor since 
the average branching factor in an arbitrary maze is 2.

The experiments thus analyse the influence of the 
amount of granularity and type of heuristic function on 
the performance of the LRTS algorithm. The first step of 
the experiments is to compute the utilities for all the 
positions of the maze. The utility of a given position is 
equal to the minimum number of moves needed to reach 

Figure 4: Degree of pathology in the minimin search model.

Figure 5: Search efficiency of three single-agent search 
problems.
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the exit of the maze from that position. Using the 
retrograde analysis [16] we start at the goal position and 
while moving towards the start we assign to each 
position the number of moves currently traversed. Next, 
the heuristic values are computed from the utility values 
using the generic heuristic evaluation function h. The 
error of the heuristic function is the difference between 
the utility and the heuristic values and is modelled using 
Gaussian noise.  The advantage of such an approach is 
the ability to adjust the noise distribution and thus 
approximate any heuristic function used in practice. In 
our experiments the heuristic values were computed by 
adding the Gaussian noise with a standard deviation σ = 
2.5 to the utility values. The selected standard deviation 
is the same as the standard deviation of the Manhattan-
distance heuristic function. 

The desired granularity g of the utility and the 
heuristic values is obtained by creating g intervals of 
equal size. We start by limiting the heuristic values to the 
[0,N] interval, where N = maxn{h*(n)}+   +1. If any 

values are lower than 0, it is set to 0, and if it is greater 
than N, it is set to N. Next, all the heuristic values are 
multiplied by g/N to further reduce the interval of 
possible heuristic values to [0,g].

The second property of the heuristic function that we 
investigated is how the heuristic error is applied to the 
utility values. We considered the influence of three 
heuristic functions: balanced, pessimistic and optimistic 
heuristic functions. Optimistic heuristic functions always 
underestimate the utility value, i.e., the heuristic estimate 
is smaller than the utility value. On the other hand, 
pessimistic heuristic functions always overestimate the 
utility value, and balanced heuristic functions are a 
combination of both. Optimistic and pessimistic heuristic 
functions were obtained by subtracting or adding the 
absolute value of the Gaussian noise to the utility values. 

Pessimistic functions were found to be less prone to 

a lookahead pathology [14]; therefore, the use of this 
heuristic function should improve the performance of the 
LRTS algorithm.

The last step is to analyse the influence of the 
selected factors on the performance of the algorithm. 
Using Monte Carlo simulations we generated 10,000
mazes for different granularities and heuristic functions.
The results of the analysis are presented in Figure 7. The 
figure shows how the three heuristic functions and the 
granularity contribute to the LRTS algorithm`s quality of 
search. For all three functions it is clear that an increased 
granularity increases the quality of the search, i.e., 
decreases the degree of pathology. Moreover, the 
obtained results confirm that pessimistic heuristic 
functions perform better than optimistic ones. At 
granularities higher than 5, a deeper search is beneficial 
and the degree of pathology stabilizes around 0.75 at 
g>13. The performance of the balanced, generic,
heuristic function is worse than that of the pessimistic 

Figure 7: Performance of the three heuristic functions and the reference model.

Figure 6: The influence of the similarity on the degree of 
pathology.
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heuristic function, but better than that of the optimistic 
heuristic function. For comparison, we added the 
performance of the minimin algorithm from the one-
player model with the appropriate local similarity. The 
model behaves in a similar way to the LRTS algorithm 
with the pessimistic heuristic function. 

5 Discussion
In this paper we analysed the performance of two one-
player search algorithms, i.e., maximax and LRTS, under 
particularly demanding conditions. The analysis was 
performed on a model for one-player games and in the
maze-path-finding problem. Three factors were 
considered during the analysis of the quality of the search
for both algorithms: the granularity of the heuristic 
function, the local similarity of the sibling nodes and the 
branching factor of the game tree. We were unable to 
study the influence of the last factor in the maze domain 
since the branching factor is usually fixed in real-world 
domains.

Based on the experimental results several
observations can be made. First, an increased granularity 
of the heuristic function increases the search gain of both 
algorithms. Second, in the one-player model an increased 
branching factor of the game tree reduces the search gain. 
Third, pessimistic heuristic functions have higher search 
gains than optimistic ones in the maze domain. Finally, 
the similarity of the sibling nodes is the single most 
important factor to improve the search gain: a higher 
similarity improves the search results.

We confirmed that under the specific, demanding
conditions, both search algorithms perform poorly: a 
deeper search in these conditions produces worse results 
than a shallow search. The results are consistent with 
recent publications, but a certain amount of novelty is 
demonstrated by the analysis of the search-path finding
and analyses of the LRTS algorithm.

References
[1] Beal, D. F. (1980). An Analysis of Minimax. In 

Advances in Computer Chess 2, M.R.B. Clarke 
(Ed.), pp. 103-109.

[2] Bratko, I., Gams, M. (1982). Error analysis of the 
minimax principle, In Advances in Computer Chess 
3 M. Clarke (Ed.), Pergamon Press, pp. 1-15.

[3] Bulitko, V. (2003). Lookahead Pathologies and 
Meta-level Control in Real-time Heuristic Search. 
Proceedings of 15th Euromicro Conference on 
Real-Time Systems, Porto, Portugal, pp. 13-16.

[4] Bulitko, V., Lee, G. (2006). Learning in real time 
search:A unifying framework. JAIR 25:119–157.

[5] Bulitko, V., Li, L., Greiner, R. and Levner, I. 
(2003). Lookahead Pathologies for Single Agent 
Search. Proceedings of International Joint 
Conference on Artificial Intelligence (IJCAI), 
Acapulco, Mexico, pp. 1531-1533.

[6] Hart, P.E., Nilsson, N.J. and Raphael, B. (1968). A 
Formal Basis for the Heuristic Determination of 

Minimum Cost Paths. IEEE Transactions on 
Systems Science and Cybernetics 4(2), pp. 100-107.

[7] Kaluža, B., Luštrek, M., Gams, M., Tavčar, A. 
(2007). Pathology in Minimax Searching.
Proceedings of the 16th International 
Electrotechnical and Computer Science Conference,
pp. 111-114.

[8] Korf, R. E. (1990). Real-Time Heuristic Search. 
Artificial Intelligence 42(2, 3), pp. 189-211.

[9] Luštrek, M. (2005). Pathology in Single-agent 
Search. Proceedings of the 8th International 
Multiconference Information Society, Slovenia, 
Ljubljana, pp. 345-348.

[10] Luštrek, M., Gams, M., Bratko, I. (2006). Is real-
valued minimax pathological. Artifcial Intelligence 
170 (6-7), pp. 620-642.

[11] Nau, D. S. (1979). Quality of Decision versus 
Depth of Search on Game Trees. Ph. D. thesis, 
Duke University.

[12] Nau, D. S., Luštrek, M., Parker, A., Bratko, I., and 
Gams, M. (2010). When is it Better not to Look 
Ahead?, Artificial Intelligence, 174, pp. 1323-1338.

[13] Piltaver, R., Luštrek, M., Gams, M. The pathology 
of heuristic search in the 8-puzzle. Journal of 
Experimental & Theoretical Artificial Intelligence, 
DOI:10.1080/0952813X.2010.545997.

[14] Sadikov, A., Bratko, I. (2006). Pessimistic 
Heuristics Beat Optimistic Ones in Real-time 
Search. Proceedings of the European Conference on 
Artificial Intelligence, Italy, Riva del Garda, pp. 
148-152.

[15] Sadikov, A., Bratko, I., Kononenko, I. (2005). Bias 
and pathology in minimax search. Theoretical 
Computer Science 349(2), pp. 261-281.

[16] Thompson, K. (1986). Retrograde Analysis of 
Certain Endgames. ICCA Journal,3, pp. 131-139.

[17] Von Neumann, J. (1928). Zur Theorie der 
Gesellschaftsspiele. Mathematische Annalen, 100, 
pp. 295-320.



184 Informatica 36 (2012) 177–183 A. Tavčar


