
Informatica 36 (2012) 177-183 177

Analysis of a Single-Agent Search

Aleš Tavčar
Department of Intelligent Systems
Jozef Stefan Institute, Ljubljana, Slovenia
E-mail: ales.tavcar@ijs.si

Keywords: minimin, LRTS, pathology, game tree, single-agent search

Received: February 12, 2012

Game playing is one of the first areas of artificial intelligence that was studied by AI researchers. The
developed algorithms and heuristics combined with an ever-increasing computer speed efficiently
searched large game trees and thus effectively competed with the best human players. The key
advantage comes from the generally accepted notion that a deeper search produces better results.
However, while trying to provide a mathematical explanation, researchers have discovered that under
certain conditions the opposite situation occurs, i.e., a deeper search results in worse decisions. In this
paper we analyse single-agent search algorithms and the influence of three properties of the search
trees on the quality of the search. The analysis was performed on one-player search models and in the
maze-path-finding problem.

Povzetek: Na modelu enoagentnega preiskovanja in iskanja poti v zemljevidu analiziramo vpliv
različnih faktorjev na kvaliteto preiskovanja dveh algoritmov.

1 Introduction
A common way of solving search problems is to
represent the problem with a directed search graph. The
nodes of the graph correspond to states, e.g., the tiles of a
map, and the edges are the moves leading from one state
to the other. Moreover, the problem definition includes
special states: one initial state and one or several goal
states. The solution to the problem is a path leading from
the initial to the most appropriate goal node.

Smaller problems can be solved by completely
searching the state space [6]. Unfortunately, the search
trees of most real-world problems are too large to be
searched completely in a reasonable amount of time.
Korf introduced an incomplete search method called real-
time A* [8] that tackles this problem. Real-time A*
expands the game tree to a certain depth, and using a
heuristic function it evaluates the quality of the nodes at
that depth; it then backs the computed values to the
current state. The action leading to the node with the
optimal value is then selected. Another algorithm is
minimin [8]. Figure 1 demonstrates how the minimin
algorithm determines the next action.

Figure 1: Minimin search.

The nodes of the tree contain utility values, i.e., the
quality of a node. For each node the minimum value of
its successors is selected and backed-up. Finally, the
action leading from the root to the node with the value 3
is selected.

Common sense dictates that a deeper search should
provide better decisions, and this can indeed be observed
in practice. Evaluating many moves ahead leads to better
decisions since obtaining better estimates of the possible
strategies can help with selecting the appropriate
responses in the current situation. However, while trying
to provide a mathematical explanation of this principle,
researchers have discovered the opposite: looking ahead
does not always provide better decisions. This
phenomenon was termed a lookahead pathology [10] and
it occurs when the quality of a shallower heuristic search
is higher than the quality of a deeper one. This property
makes the pathology suitable for measuring the
performance of search algorithms at certain depths.

In this paper we study the pathological situations of
search algorithms where a deeper search does not
guarantee better decisions. On synthetic search-tree
models we explore the influence of three important
factors on the occurrence of pathological behaviour: the
granularity g of the heuristic, the branching factor b of
the game tree and the similarity s of the nearby nodes.
Next, we perform experimental tests to determine
whether these factors have the same influence on the
maze-path-finding problem.

This paper is organized as follows. First, we provide
a brief literature review of related works in Section 2. In
Section 3 we present the game-tree models used during
the analysis and we describe the three observed factors.
Section 4 explores the influence of these factors in the

178 Informatica 36 (2012) 177–183 A. Tavčar

real-life domain of maze-path finding. Section 5
concludes this article.

2 Related Work
The pathology measure used in this paper was first
discovered independently by Nau [10] and Beal [1] in the
minimax algorithm [17]. Since then, extensive research
and many explanations of the minimax pathology
[1,2,7,10,11,12] have broadened our understanding of the
principles behind the occurrence of pathological
behaviour. Three factors have been identified that greatly
contribute to the pathological behaviour in the minimax
algorithm: the independence or low similarity of the
sibling nodes, the low granularity of the selected
heuristic function and the large branching factors of the
search trees.

On the other hand, the pathology of a single-agent
search has been much less investigated. It was first
discovered in 2003 by Bulitko et al. [3], and it was first
demonstrated on a synthetic, two-level search tree.
Bulitko only demonstrated that the tree is pathological,
but he did not provide an adequate explanation. Luštrek
[9] continued the research on synthetic search trees and
he provided two key factors influencing the pathology.
The first of these are certain domain and search-tree
properties, with the most important being the difference
between the values of the sibling nodes. This is given by
the domain and therefore, cannot be altered. The second
of these are the factors related to the heuristic function:
he showed that consistent and admissible heuristics
prevent the pathology. On the other hand, Sadikov and
Bratko [14] determined the opposite: pessimistic
heuristic functions perform better in the eight-puzzle
game. They analysed the influence of several heuristic
functions on the number of non-optimal nodes and the
quality of the final solutions at greater search depths.
Additionally, Bulitko [5] observed that the type of the
heuristic function used affects the number of search-tree
nodes expanded at greater depths. Their research was
limited to the occurrence of pathological behaviour and
no insights into the underlying reasons were given.

Piltaver et al. [13] analysed the influence of various
properties of the search tree and the heuristic function on
the gain and pathology in the eight-puzzle game. They
extended the original puzzle to allow additional diagonal
moves and thus obtain a different branching factor for the
search trees. Next, they analysed the similarity of the
sibling nodes and the effect on the pathology. Even
though the similarity is given by the domain and
therefore cannot be modified at will, they were able to
observe that a greater similarity decreases the degree of
pathology. Experimentations with heuristic functions
included the granularity of the function, the amount of
heuristic error and the type of heuristic function
(optimistic, pessimistic and uniform).

Nau et al. [12] presented a unifying view of the
pathology in the minimax and single-agent searches. The
paper shows the interplay between the lookahead
pathology and three factors that affect it: the dependence
of the sibling nodes in the search tree, the branching

factor and the granularity of the heuristic function. The
experiments were performed on synthetic trees, the 8-
puzzle, two chess endgames and kalah. The content of
their paper is related to our work; however, in this paper
additional findings relating to the one-player model, as
well as an analysis of the maze-path-finding problem, are
presented.

3 One-Player Model
In the following section we investigate the influence of
three factors on the quality of the search in synthetic
search trees: the granularity g of the heuristic function
(the number of possible heuristic values returned), the
branching factor b of the search tree (the number of
successors of each node), and the similarity s of the
search tree (the similarity among values of sibling
nodes). First, we start with some basic definitions of the
model.

3.1 Definitions
Any one- or two-player game can be represented by a
game tree in which the nodes are the states and the edges
are moves leading from the current to the next state. The
goal is to find a path from the initial node to one of the
terminal nodes. The quality of a terminal node x is
denoted by the utility function u(x). If the overall
objective of the search problem is to maximize the cost
of reaching a goal, then the player selects the successor
with the highest utility score. To each node of the tree a
unique value v(n) can be assigned, i.e., the utility value
obtained if the player always selects the action leading
to the node with the maximum cost:









 otherwise,),(),(max

 {}suc(n)if v(n)
)(

suc(n)m mvmnc
nv

where suc(n) is the set of n`s successors. The player
following this concept would always select the optimal
move. Unfortunately, most search trees are too large to
compute v(n) in a reasonable time. Therefore, an
approximation of v(n) can be computed using the
maximax algorithm, which is the same as the minimin
algorithm where the objective is to maximize the gain:















 otherwisedmvmnc

difnh

nsucifnv

dnv

hnsucm

h

),1,(),(max

,0),(

{})(),(

),(

)(

where h(n) is a heuristic evaluation function used to
compute an approximation of v(n) at a certain search
depth d. The computed value vh(n,d)is called a heuristic
value, since it is an approximation obtained using a
heuristic function. Since the heuristic function is not
completely accurate, an error is introduced in the
estimation of the utility value. In practice, maximax
performs well; therefore, while backing-up values to the
root of the search tree it should reduce the error
introduced with the heuristic function. Pathology occurs
when maximax amplifies the error of the heuristic
function. In this paper we will focus on the decision

ANALYSIS OF A SINGLE-AGENT… Informatica 36 (2012) 177–183 179

error, which is the probability of selecting an action that
does not lead to a successor with the optimal utility
value. The decision error at a certain search depth d and
heuristic function h is denoted as E(h,d).

Next, we define the pathology p as:

max21
1

2
21 1,

),(

),(
),,(ddd

dhE

dhE
ddhp 

Pathological behaviour occurs when an error at a deeper
level is greater than an error at a shallower level:

 ),(),(: 2121 dhEdhEdd 

When this happens the values of p(h,d1,d2) > 1 indicate
that the search algorithm performs poorly, while
p(h,d1,d2) < 1 indicates the absence of pathology,
meaning that searching deeper is worthwhile. In order to
evaluate whether a problem is pathological we have run
several experiments with the Monte Carlo method and
compared the averaged p with 1.

3.2 Independent game-tree model
This section describes the experiments with synthetic,
independent game trees. Namely, we constructed game
trees where the sibling nodes are selected randomly and
are thus independent of each other.

We start building the game-tree models by assigning
utility values to the terminal nodes from a uniform
distribution over the interval [0,1]. These values are real;
however, we wanted to examine the influence that the
number of possible heuristic values has on the search
gains. This is called the granularity of the heuristic
function. In order to adapt the heuristic function to the
desired granularity g, the original values are grouped into
g intervals of equal size. Each interval contains values
from a certain range from the interval [0,1] and each
interval is represented by the mean value of the lower
and upper interval bounds. In the one-player model, at
small granularities there is a tendency for the values
towards the root to converge to a single value: the
maximum utility. Due to the nature of the backing-up
procedure this phenomenon occurs as soon as every sub
tree of the root node contains at least one terminal node
with the maximum utility. We solve this by limiting the
probability that a maximum utility is reached at the root
to at most 50%. In the majority of cases, only half of the
values at the root will be the maximum utility. A direct
descendant of the root x does not have the maximum
utility, except when none of the terminal nodes in this
sub tree have the maximum utility. Therefore, we have
introduced the following equations that describe the
relation between the probability of a direct successor of
the root having the maximum utility (Pmax(x)) and the
probability of a terminal node having the maximum
utility (Pmax(t)):

dbtPxP


))(1()(1 maxmax ,
db xPtP

 )(11)(maxmax ,

where b is the branching factor of the tree and Δd is
the depth from the node x to the terminal node t. The

second equation provides the size of the last interval
containing the largest utilities. The boundaries of all the
intervals are shifted until the lower boundary of the last
interval reaches 1-Pmax(t).

 Next, the values from the terminal nodes are
propagated throughout the tree using the maximax
principle.

3.3 Dependent model
The next task was to introduce a local similarity or a

dependence of the sibling nodes into the one-player
model.

A search tree has a high dependence or similarity of
the sibling nodes when the utility values of the
descendants of a node have similar values. In this case, a
deeper search is beneficial when the similarity of the
sibling nodes increases. The opposite also holds true: the
deeper search is becoming less efficient when the
similarity of the sibling nodes decreases.

In our model, the dependence is expressed as a
parameter s ϵ [0,1], where s = 0 denotes independence
between the sibling nodes and s = 1 corresponds to the
maximum similarity between the sibling nodes. Models
with similarity s = 1 are constructed by generating bh

random numbers in the interval [0,1] and the values are
mapped into granular classes to obtain the desired
granularity. Next, the mapped numbers are sorted in
increasing order and assigned to the terminal nodes from
left to right. The lowest value is assigned to the left-most
node, continuing through the inner nodes and finishing
with the highest number assigned to the right-most node.

Intermediate similarities for the models (0 < s < 1)
are created by randomly mixing the terminal nodes from
the independent and completely dependent trees. All the
sibling terminal nodes in the independent tree are
replaced with terminal nodes from the dependent tree
with the probability s.

The introduced measure of similarity is useful when
we are dealing with game-tree models; however, local
similarity in an arbitrary game is expressed in a different
way. If we want to compare results from the models and
the game trees we need a common similarity measure.
For this purpose the clustering factor f was used.
Roughly, it is the ratio between the standard deviation of
the utility values of the sibling nodes averaged across all
the possible parent nodes, and the standard deviation of
the utilities in the entire search tree [15]. When f is low,
then the sibling nodes are similar, and vice versa. We
calculated the clustering factor for every similarity s.

3.4 Evaluation
This section describes experiments with the one-player
models. The performance of the maximax algorithm was
estimated by observing how the degree of pathology is
influenced by three factors: the branching factor b, the
granularity g, and the similarity s. For each combination
of values for the three observed factors 10,000 synthetic
trees were generated using the one-player model. The
following values were systematically used for each of the

180 Informatica 36 (2012) 177–183 A. Tavčar

three factors: b = 2,3,…,10; g = 2,3,…,300; and s =
0.0,0.1,…, 1.0.

In the first experiment we observed how the quality
of the search is influenced by the branching factor and
the granularity in independent trees. Figure 2 shows the
pathology p in relation to the granularity g and the
similarity s in the results of the experiment. On one hand
the search is inefficient at lower granularities and as the
branching factor increases. On the other hand, a deeper
search becomes worthwhile with an increased granularity
and at lower branching factors.

Figure 2: The degree of pathology for independent search
trees.

In the next experiment we computed the required
granularity to avoid situations where a deeper search is
inefficient, as a function of the branching factor b and the
local similarity s. The surface in Figure 3 represents the
border between pathological and non-pathological
behaviour where p = 1. The area below the surface is
pathological, while the area above the surface is non-
pathological. The results are as expected: higher

similarity decreases the granularity needed to avoid
search inefficiency, while a higher branching factor
increases the needed granularity.
The unified influence of the branching factor, the local
similarity and the granularity on the quality of the search
is presented in Figure 4. Again, the pathology was used
to estimate the performance of the maximax algorithm.
Darker dots denote a slightly weak performance
(1<=p<1.5) and an extremely weak performance
(p>1.5), respectively. The dots in light grey denote the
parameter settings where a deeper search is worthwhile.

The observed relations among the factors are the
same as presented in the previous figures. The degree of
pathology decreases with the increased granularity g and
the local similarity s and increases with the branching
factor b. Moreover, one can see that the similarity of the
sibling nodes affects the degree of pathology the most. In
a high-similarity search tree the influence of the
granularity and the branching factor on the pathology is
diminished. This can be clearly observed when
comparing independent and completely dependent trees.
The pathological behaviour is present for most
granularities and branching factors in the independent
trees, while the pathology is mostly eliminated in the
completely dependent trees. In addition, the degree of
pathology is not noticeably increasing with higher
branching factors. Another effect that can be observed in
Figure 4 is that large values of b decrease the difference
in the degree of pathology between values near the
pathological and non-pathological border. For example,
at lower branching factors, values transit from a high
pathology degree (p >= 1.5) to a low pathology degree (p
< 0.5) relatively quickly.

The next experiment investigated how well the
synthetic trees model the 8-puzzle, a real-world game.

Figure 3: Granularity values needed to avoid pathology in a deeper search.

ANALYSIS OF A SINGLE-AGENT… Informatica 36 (2012) 177–183 181

From [13] we obtained the degree of pathology for two
heuristic functions, with a branching factor of 2 and a
similarity of 0.4. The similarity in the 8-puzzle was
measured with the clustering factor; therefore, we had to
map the value of the clustering factor to the similarity
used in the models as described in Subsection 3.3. The
comparison between the model and the 8-puzzle is
shown in Figure 5. Qualitatively, the performance of the
model is similar to the 8-puzzle. Quantitatively, the
minimax algorithm from the model performs worse at
lower granularities (g < 20), but performs very similarly
at higher granularities. The granularity needed to avoid
inefficiency in a deeper search is higher in the model
than in the 8-puzzle. The reason that the synthetic model
performs worse than the Manhattan distance is probably
related to the specific properties of the function, e.g., the
Manhattan function is exact for distances less than eight
moves to the finish.

4 Pathology in the Maze Search
This section presents experimental tests on a real-world
problem, i.e., maze path finding, and an analysis of the
Learning Real-Time Search (LRTS) algorithm [4] The
algorithm conducts a lookahead search centred on the
current state and generates all the states up to d moves
away from the current state.

The analysis of LRTS consisted of determining if the
algorithm selects the optimal first move from the initial
node. First, we computed the shortest path from the
initial to the goal node of the maze to determine the
correct move from the initial node. Next, we run one
basic step of the LRTS algorithm with different
lookahead depths (d=1 and d=5). Finally, we compared
the move computed with the two LRTS runs with the
computed optimal move. If the move selected with LRTS
differs from the optimal then this is a decision error for a
certain lookahead depth.

As in the single-player model, the measure of the
search quality is the pathology p. In addition we compare
the performance of the LRTS algorithm and the minimin
algorithm used in the model.

Using the Randomized Kruskal's algorithm we
created mazes of different sizes and structures. In the
generated mazes it is possible to vary only the granularity
g of the utility and the heuristic function since in real-
world problems the branching factor b and the local
similarity s are part of the problem. However, we were
still able to generate mazes with different local
similarities and calculate the corresponding degree of
pathology. In Figure 6 it is clear that the degree of
pathology decreases with the similarity of the sibling
nodes. The similarity is measured with the clustering
factor; therefore, a smaller clustering factor means a
larger similarity. The similarities in the figure range from
0.03 to 0.67, i.e., game trees that are almost completely
dependent to games trees with a smaller dependence. The
same cannot be achieved for the branching factor since
the average branching factor in an arbitrary maze is 2.

The experiments thus analyse the influence of the
amount of granularity and type of heuristic function on
the performance of the LRTS algorithm. The first step of
the experiments is to compute the utilities for all the
positions of the maze. The utility of a given position is
equal to the minimum number of moves needed to reach

Figure 4: Degree of pathology in the minimin search model.

Figure 5: Search efficiency of three single-agent search
problems.

182 Informatica 36 (2012) 177–183 A. Tavčar

the exit of the maze from that position. Using the
retrograde analysis [16] we start at the goal position and
while moving towards the start we assign to each
position the number of moves currently traversed. Next,
the heuristic values are computed from the utility values
using the generic heuristic evaluation function h. The
error of the heuristic function is the difference between
the utility and the heuristic values and is modelled using
Gaussian noise. The advantage of such an approach is
the ability to adjust the noise distribution and thus
approximate any heuristic function used in practice. In
our experiments the heuristic values were computed by
adding the Gaussian noise with a standard deviation σ =
2.5 to the utility values. The selected standard deviation
is the same as the standard deviation of the Manhattan-
distance heuristic function.

The desired granularity g of the utility and the
heuristic values is obtained by creating g intervals of
equal size. We start by limiting the heuristic values to the
[0,N] interval, where N = maxn{h*(n)}+   +1. If any

values are lower than 0, it is set to 0, and if it is greater
than N, it is set to N. Next, all the heuristic values are
multiplied by g/N to further reduce the interval of
possible heuristic values to [0,g].

The second property of the heuristic function that we
investigated is how the heuristic error is applied to the
utility values. We considered the influence of three
heuristic functions: balanced, pessimistic and optimistic
heuristic functions. Optimistic heuristic functions always
underestimate the utility value, i.e., the heuristic estimate
is smaller than the utility value. On the other hand,
pessimistic heuristic functions always overestimate the
utility value, and balanced heuristic functions are a
combination of both. Optimistic and pessimistic heuristic
functions were obtained by subtracting or adding the
absolute value of the Gaussian noise to the utility values.

Pessimistic functions were found to be less prone to

a lookahead pathology [14]; therefore, the use of this
heuristic function should improve the performance of the
LRTS algorithm.

The last step is to analyse the influence of the
selected factors on the performance of the algorithm.
Using Monte Carlo simulations we generated 10,000
mazes for different granularities and heuristic functions.
The results of the analysis are presented in Figure 7. The
figure shows how the three heuristic functions and the
granularity contribute to the LRTS algorithm`s quality of
search. For all three functions it is clear that an increased
granularity increases the quality of the search, i.e.,
decreases the degree of pathology. Moreover, the
obtained results confirm that pessimistic heuristic
functions perform better than optimistic ones. At
granularities higher than 5, a deeper search is beneficial
and the degree of pathology stabilizes around 0.75 at
g>13. The performance of the balanced, generic,
heuristic function is worse than that of the pessimistic

Figure 7: Performance of the three heuristic functions and the reference model.

Figure 6: The influence of the similarity on the degree of
pathology.

ANALYSIS OF A SINGLE-AGENT… Informatica 36 (2012) 177–183 183

heuristic function, but better than that of the optimistic
heuristic function. For comparison, we added the
performance of the minimin algorithm from the one-
player model with the appropriate local similarity. The
model behaves in a similar way to the LRTS algorithm
with the pessimistic heuristic function.

5 Discussion
In this paper we analysed the performance of two one-
player search algorithms, i.e., maximax and LRTS, under
particularly demanding conditions. The analysis was
performed on a model for one-player games and in the
maze-path-finding problem. Three factors were
considered during the analysis of the quality of the search
for both algorithms: the granularity of the heuristic
function, the local similarity of the sibling nodes and the
branching factor of the game tree. We were unable to
study the influence of the last factor in the maze domain
since the branching factor is usually fixed in real-world
domains.

Based on the experimental results several
observations can be made. First, an increased granularity
of the heuristic function increases the search gain of both
algorithms. Second, in the one-player model an increased
branching factor of the game tree reduces the search gain.
Third, pessimistic heuristic functions have higher search
gains than optimistic ones in the maze domain. Finally,
the similarity of the sibling nodes is the single most
important factor to improve the search gain: a higher
similarity improves the search results.

We confirmed that under the specific, demanding
conditions, both search algorithms perform poorly: a
deeper search in these conditions produces worse results
than a shallow search. The results are consistent with
recent publications, but a certain amount of novelty is
demonstrated by the analysis of the search-path finding
and analyses of the LRTS algorithm.

References
[1] Beal, D. F. (1980). An Analysis of Minimax. In

Advances in Computer Chess 2, M.R.B. Clarke
(Ed.), pp. 103-109.

[2] Bratko, I., Gams, M. (1982). Error analysis of the
minimax principle, In Advances in Computer Chess
3 M. Clarke (Ed.), Pergamon Press, pp. 1-15.

[3] Bulitko, V. (2003). Lookahead Pathologies and
Meta-level Control in Real-time Heuristic Search.
Proceedings of 15th Euromicro Conference on
Real-Time Systems, Porto, Portugal, pp. 13-16.

[4] Bulitko, V., Lee, G. (2006). Learning in real time
search:A unifying framework. JAIR 25:119–157.

[5] Bulitko, V., Li, L., Greiner, R. and Levner, I.
(2003). Lookahead Pathologies for Single Agent
Search. Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI),
Acapulco, Mexico, pp. 1531-1533.

[6] Hart, P.E., Nilsson, N.J. and Raphael, B. (1968). A
Formal Basis for the Heuristic Determination of

Minimum Cost Paths. IEEE Transactions on
Systems Science and Cybernetics 4(2), pp. 100-107.

[7] Kaluža, B., Luštrek, M., Gams, M., Tavčar, A.
(2007). Pathology in Minimax Searching.
Proceedings of the 16th International
Electrotechnical and Computer Science Conference,
pp. 111-114.

[8] Korf, R. E. (1990). Real-Time Heuristic Search.
Artificial Intelligence 42(2, 3), pp. 189-211.

[9] Luštrek, M. (2005). Pathology in Single-agent
Search. Proceedings of the 8th International
Multiconference Information Society, Slovenia,
Ljubljana, pp. 345-348.

[10] Luštrek, M., Gams, M., Bratko, I. (2006). Is real-
valued minimax pathological. Artifcial Intelligence
170 (6-7), pp. 620-642.

[11] Nau, D. S. (1979). Quality of Decision versus
Depth of Search on Game Trees. Ph. D. thesis,
Duke University.

[12] Nau, D. S., Luštrek, M., Parker, A., Bratko, I., and
Gams, M. (2010). When is it Better not to Look
Ahead?, Artificial Intelligence, 174, pp. 1323-1338.

[13] Piltaver, R., Luštrek, M., Gams, M. The pathology
of heuristic search in the 8-puzzle. Journal of
Experimental & Theoretical Artificial Intelligence,
DOI:10.1080/0952813X.2010.545997.

[14] Sadikov, A., Bratko, I. (2006). Pessimistic
Heuristics Beat Optimistic Ones in Real-time
Search. Proceedings of the European Conference on
Artificial Intelligence, Italy, Riva del Garda, pp.
148-152.

[15] Sadikov, A., Bratko, I., Kononenko, I. (2005). Bias
and pathology in minimax search. Theoretical
Computer Science 349(2), pp. 261-281.

[16] Thompson, K. (1986). Retrograde Analysis of
Certain Endgames. ICCA Journal,3, pp. 131-139.

[17] Von Neumann, J. (1928). Zur Theorie der
Gesellschaftsspiele. Mathematische Annalen, 100,
pp. 295-320.

184 Informatica 36 (2012) 177–183 A. Tavčar

