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The paper studies a market based approach for sensor resources allocation in sensor enabled grid 
computing environment. The paper presents an efficient mechanism to assign sensor resources to 
appropriate sensor grid users on the basis of negotiation results among participants. We model the 
sensor allocation problem by introducing the sensor utility function. The goal is to find a sensor 
resource allocation that maximizes the total profit. The paper proposes a distributed optimal sensor 
resource allocation algorithm. The performance evaluation of proposed algorithm is evaluated and 
compared with other resource allocation algorithm for sensor grid.

Povzetek: Predstavljena ja postavitev senzorjev v omrežje na osnovi pogajanj med udeleženci.

1 Introduction
Grid computing is based on the concept of the 
coordinated sharing of distributed and heterogeneous 
resources to solve large-scale problems in dynamic 
virtual organizations. The grid computing paradigm can 
be extended to include the sharing of sensor resources in 
sensor networks. Integrating sensor networks and grid 
computing in sensor-grid computing is like giving ‘eyes’ 
and ‘ears’ to the computational grid. Real-time 
information about phenomena in the physical world can 
be processed, modeled, correlated and mined to permit 
on-the-fly decisions and actions to be taken on a large 
scale [1, 16]. Sensor grids extend the grid computing 
paradigm to the sharing of sensor resources in wireless 
sensor networks. By combining the complementary 
strengths of sensor networks and grid computing, sensor 
grids can support applications that require real-time 
information from the physical environment and vast 
amount of computational and storage resources. 
Examples include environment monitoring with 
prediction and early warning of natural disasters, and 
missile detection, tracking and interception [3]. 

However, sensor enabled grid is a widespread 
distributed system and maybe consists of many sensors 
belonging to individual user who does not know with 
other users at all. They would like to do the things that 
benefit themselves most, which means they are rational 
and selfish. Therefore, sensor grid needs to provide 
incentives to encourage every user to contribute their 
resources to other users. Sensor grids being a relatively 
new area of research, there are many issues left 
unaddressed regarding their design. One of the major 
challenges in the design of sensor enabled grid is how to 
efficiently schedule sensor resource to user jobs across 
the collection of sensor resources. Due to the energy 
limitation and also to prolong the lifetime of the sensor 

grid, conservation of energy consumed is an important 
consideration in managing sensor grids. Making 
decisions on how best to utilize limited sensor resources 
in order to satisfy grid users’ demands without conflict
and without wasting resources is the key issue in sensor
grid. The resource allocation in grid computing systems 
has been extensively studied in the past. There are some 
important differences between sensor resource and 
computational resource. Thus, existing allocation 
algorithms for traditional grid environment may not work 
well in sensor enabled grids.

In this paper, we present a market based approach 
for sensor resources allocation in sensor enabled grid 
computing environment. Since sensor users’ tasks might 
compete for the exclusive usage of the same sensing
resource we need to allocate individual sensors to sensor 
users’ tasks. Sensor grid tasks are usually characterized 
by an uncertain demand for sensing resource capabilities. 
We model this allocation problem by introducing the 
sensor utility function. The goal is to find a sensor 
resource allocation that maximizes the total profit. The
paper proposes a distributed optimal sensor resource 
allocation algorithm. The performance evaluation of 
proposed algorithm is evaluated and compared with other 
resource allocation algorithm in sensor grid. The paper 
also gives the application example of proposed approach.

The rest of the paper is structured as followings. 
Section 2 discusses the related works. Section 3 presents
a market based approach for sensor resource allocation in
the grid. Section 4 describes sensor resources allocation
algorithm. In section 5 the experiments are conducted
and discussed. Section 6 gives the conclusions to the 
paper.
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2 Related Works
There are certain researches aiming to combining grid
environments with wireless sensor network [1~17], 
which incorporate sensors into the existing grid systems
as the consumers of grid resources and provide sensor 
services to other grid nodes. Peter Komisarczuk et al. [1]
discusses research direction in an Internet sensor grid for 
malicious behavior detection, analysis and 
countermeasures. They outline some experiences with 
these sensors and analyzing network telescope data 
through Grid computing as part of an “intelligence layer” 
within the Internet. M. Pallikonda Rajasekaran et al. [2] 
propose a wireless sensor grid architecture for 
monitoring the health status of different groups of 
patients to provide a platform for physicians and 
researchers to share information with distributed 
database and computational resources to facilitate 
analysis, diagnosis, prognosis and drug delivery. Hock 
Beng Lim et al. [3] design an integrated and flexible 
scheduler for a sensor grid testbed based on the SPRING 
framework. Several scheduling and load balancing 
algorithms were implemented within this scheduler to 
suit the unique characteristics of sensor jobs. The 
scheduler can use an appropriate scheduling or load 
balancing algorithm to suit the requirements of the 
resource owner and users. Nikolaos Preve et al. [4]
proposed the sensor grid enhancement data management 
system, called SEGEDMA ensuring the integration of 
different network technologies and the continuous data 
access to system users. The main contribution is to 
achieve the interoperability of both technologies through 
a novel network architecture. Huang-Chen Lee et al. [5]
discuss the considerations of designing a low-cost WSN-
based rain gauge grid, which provides high resolution 
mapping of precipitation. Preliminary experimental 
results are presented. Fox, G. et al. [6] propose a 
collaborative sensor grid framework to support the 
integration of a sensor grid with collaboration and other 
grids. The framework includes a grid builder tool for 
discovering and managing grid services and remote, 
distributed sensors. It provides a real-time collaborative 
client to enable distributed stakeholders to have a 
consistent view of displayed sensor streams. They 
illustrate the versatility of the framework by constructing 
a robot based customizable application for shared 
situational awareness. Hock Beng Lim et al. [7] aim to 
build a large-scale sensor grid infrastructure that can 
seamlessly integrate heterogeneous sensor resources 
from different projects distributed across a wide 
geographical area. Sanabria, J. et al. [8] discussed a 
deployment framework, which leverages on existing grid 
computing technologies to provide middleware that 
integrates wireless sensor networks and grid 
infrastructures. They demonstrated the work on enabling 
a sensor grid infrastructure for acoustic surveillance 
applications. Hock Beng Lim et al. [9] developed a 
sensor grid architecture framework, called the Scalable 
Proxy-based aRchItecture for seNsor Grid (SPRING). 
They designed the National Weather Sensor Grid 
(NWSG), a large-scale cyber-sensor infrastructure for 

environmental monitoring. The NWSG integrates mini 
weather stations deployed geographically across 
Singapore for weather data collection, processing and 
management. Toshihiro Matsui et al. [10] deal with
distributed resource allocation problem for distributed 
sensor networks. Distributed optimization algorithm is 
used to understand the problems and to design the 
cooperative protocols. A distributed cooperative 
observation system using agency model has been 
developed. Yan YuJie et al. [11] described the 
architecture of wireless sensor grid, also designed a 
connecting platform named MPAS. The advantage of 
MPAS is that it is based on Web service resource 
framework, with the ability of integrating multiple sensor 
networks with grid; also it can actuate sensor network 
and support interoperability among multiple sensor 
networks. Mohammad Mehedi Hassan et al. [12] discuss 
one of the most important issues in Sensor-Grid, i.e., to 
develop a fast and flexible content-based 
publish/subscribe information dissemination (CBPSID) 
system for automatic fusion, interpretation, sharing and 
delivery of huge sensor data to consumers as the entire 
Sensor-Grid environment is very dynamic.

Se-Jin Oh et al. [13] present the design and 
implementation a u-Healthcare SensorGrid gateway to 
connect transparently a sensor network and a Grid 
network for providing convenient and speedy u-
Healthcare services to users. They implement a mobile 
monitoring system for monitoring patient’s status by 
using a mobile device such as PDA. Xiaolin Li et al. [14]
propose an autonomic management framework (ASGrid) 
to address the requirements of emerging large-scale 
applications in hybrid grid and sensor network systems. 
They proposed the autonomic sensor grid system concept 
in a holistic manner targeted at non-trivial large 
applications. Toshihiro Matsui et al. [15] propose a 
model of distributed resource allocation problem for 
distributed sensor networks. Several models based on 
constraint network and another model based on concept 
of agency, are compared. The constraint network 
formalization which are similar to resource allocation 
problem of agency model, is shown. Yong-Kang Ji et al. 
[17] discuss the selfish problems of Sensor Web and 
resolve them using specific designed mechanism, and 
describe several scenarios of the applications in Sensor 
Web. The works [18~22] mainly deal with resource 
allocation, QoS optimization in the computational grid 
and don’t consider exploiting services of sensor to 
support sensor enabled grid. The differences between 
paper [20] [21] and this paper are that this paper deals 
with optimal sensor resources allocation, paper [20] 
considers two level market solution for optimal resource 
scheduling in computational grid; paper [21] considers 
multiple QoS optimization in computational grid.
Computational grid is different from sensor grid. In 
sensor grid environment, sensor nodes have present 
severe limitations in terms of processing, memory 
capabilities and energy, but computational grid doesn’t
have energy problem, and also have enough processing, 
memory capabilities. Considering all these limitations of 
sensor nodes, it is important for the sensor grid system to 
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manage energy consumption without compromising 
system’s performance. Our proposed optimization in 
sensor grid considers energy consumption in the sensor 
node. The objective of the paper is to maximize the 
utility of the system without exceeding the total energy 
available, the expense budget, and deadline.

3 A Market based Approach for 
Sensor Resource Allocation in the 
Grid

3.1 System Model
The paper formulates optimal sensor resources allocation 
in sensor enabled grid computing environment by 
adopting computational economy framework. The 
proposed model consists of two types of agents: the 
sensor resource agents that represent the economic 
interests of the underlying sensor resources providers of 
the sensor grid, the sensor user agents that represent the 
interests of grid user using the grid to achieve goals. 
Interactions between the two agent types are mediated by 
means of market mechanisms. Market mechanism in 
economics is based on distributed self-determination, the 
variation of price reflects the supply and demand of 
resources, and market theory in economics provides 
precise depiction for efficiency of resource scheduling. 
Sensor user agents are allowed to specify their
requirements and preference parameters by a utility 
model. As a result, a market based sensor grid model
inherently supports sensor users with diverse 
requirements for the execution of their sensor jobs. The 
utility values are calculated by the supplied utility 
function that can be formulated with the sensor job
parameters. The request is analyzed by the scheduler of 
grid market. Whenever a new sensor user agent is 
created, it is first given an endowment of electronic cash 
to spend to complete its sensor job. A sensor job can be 
characterized by deadline, budget, and sensor task 
requirements. The sensor grid market mechanism allows 
multiple sensor resource agents and sensor user agents to 
negotiate simultaneously, it uses price-directed approach 
to allocate appropriate sensor resources. In this price-
directed approach, an initial set of prices is announced to 
the sensor user agent. Sensor users could update their
allocations based on the sensor provider’s price policy, 
and iteratively approach an optimal solution. In each 
iteration, sensor user agents individually determine their 
optimal allocation and communicate their results to the 
sensor resource agents. Sensor resource agents then 
update their prices and communicate the new prices to 
the sensor user agents and the cycle repeats. Prices are 
then iteratively changed to accommodate the demands 
for resources until the total demand equals to the total 
amount of sensor resources available. Sensor resource
agents publish sensor descriptions to the market. Sensor 
providers compete actively for sensor jobs from sensor
users and execute them for gaining profits. Every sensor 
provider tries to maximize its profit based on its resource 

capability and energy consumption. We assume that the 
sensor resource agents do not cooperate. Instead, they act 
non-cooperatively with the objective of maximizing their 
individual profits. The sensor resource agents compete 
among each other to serve the sensor user agents. The 
sensor user agents do not collaborate either, and try to 
purchase as much sensor resource as possible with the 
objective of maximizing their net benefit.

3.2 Mathematic Formulation
In this section, we set up the mathematical models for 
optimal sensor resources allocation in sensor enabled 
grid computing environment.
First gives notations to be used in the following sections:

p j : the price of the sensor resource unit in sensor j.

iB : the expense budget given to a sensor grid 

application i

jE : the energy limit of sensor resource j

u j
i : money paid to the sensor resource j by sensor 

grid user i
n
iq : sensing task of ith sensor grid application’s nth

sensor job

tn
i : the time taken by sensor grid application i to 

complete sensor job n

iT : time limits given by sensor grid application i to 

complete all sensor jobs

jse : energy consumption of unit resource of sensor j

j
ice : energy dissipation of sensor resource j for 

completing sensor grid application i
j

ix : sensor allocated to sensor grid application i by 

the sensor resource j
It is assumed that the sensor grid system consists of 

multiple grid sites that contain sensor nodes and ordinary 
fixed grid nodes. Sensor nodes consist of a collection of 
sensors M connected by sensor network. In sensor grid, 
an application set is denoted 

as }...,{ 21 ippAAppppAppA  and a sensor resource 

set is denoted as ...},,{ 21 jssss  , jc is the available 

capacity of the sensor resource js . Sensor node estimates 

its energy consumption rate jse for executing the 

application set, and the energy constraint is jE . If the 

energy consumption is proportional to sensor resource

unit, as is the case with battery energy. j
ix is sensor 

allocated to sensor grid application i by the sensor 
resource j. The energy limitation of the sensor imposes a 
constraint as follows:

j

I

1i

j
ij

I

1i

j
i Exseec 



                 (3.1)

The sensor jobs are assumed to acquire real time data 
from sensor grid node, mutually independent, and can be 
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executed at certain sensor grid node. As soon as a sensor 
job arrives, it must be assigned to one sensor grid node 
for processing. When a sensor job is completed, the 
executing sensor node will return the results to the 
originating sensor nodes or ordinary fixed grid node of 
the job. We use SJ to denote the set of all sensor jobs 
generated by sensor grid application 
i, }...,{ 21 n

iiii JSJSJSJS  . Each sensor job can be 
described as ),( n

i
n
i

n
i qtJS  , in which n

it stands for the 
time taken by the i-th sensor grid application to complete 
n-th sensor job, n

iq stands for sensing task of ith sensor
user’ s nth sensor job. There are no dependencies among 
the sensor jobs, so the submission order and completion 
order won’t impact on the execution result. 

We assume that sensor user has an associated utility

function )(xU j
ii if the allocated sensor resource is x j

i .

Now, we formulate the problem of optimal sensor 
resources allocation in sensor enabled grid environment
as constraint optimization problem, the utility of the
sensor grid system is defined as the sum of sensor grid 
user utilities.

j
ix is sensor resource allocation obtained by sensor 

user i from the sensor provider j. The utility function for 

sensor user application iA depends on allocated sensor 

resources j
ix . The objective of sensor resource allocation

optimization is to maximize the utility of the sensor grid 
system without exceeding the sensor capacity, the energy 
limit of sensor, expense budget and the deadline. We 
formalize the problem using nonlinear optimization 
theory; the sensor resource allocation optimization in 
sensor grid can be formulated as follows.

1
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i
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
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Subject to 
j

j
ii uB , 




N

n

n
ii tT

1

,

j

I

i

j
i Ece 

1

, 
i

j
ij xc                 (3.3)

Equation 3.2 is the sensor grid system utility 
maximization formulation. The sensor grid utility is 
defined as the sum of utilities for all sensor users. The 
cost overhead accrued to complete jobs cannot exceed

the expense budget iB . The time for completing all 

sensor jobs of user application i cannot exceed the 
deadline iT . The total energy consumed by sensor j for 

executing sensor user applications cannot exceed an 
energy limits jE . Aggregate allocated resource does not 

exceed the total sensor capacity jc .

We can apply the Lagrangian method to solve such a 
problem. The Lagrangian approach is used to solve 
constrained optimization problems. Let us consider the 
Lagrangian form of sensor resource allocation
optimization problem in sensor grid:
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Where  i ,  i
, i is the Lagrangian multiplier of 

sensor user i. Thus, given that the sensor grid knows the 

utility functions )( j
ii xU of all sensor user i, this 

optimization problem can be mathematically tractable. 
However, in practice, it is not likely to know all 

the )( j
ii xU , and it is also infeasible for sensor grid 

environment to compute and allocate sensor resource in a 
centralized fashion. Solving the objective function 

SensorGridMax U requires global coordination of all 

sensor users, which is impractical in distributed 
environment such as the sensor grid.

The system model presented by (3.2) is a nonlinear 
optimization problem with N decision variables. Since 
the Lagrangian is separable, the maximization of the 
Lagrangian can be processed in parallel for sensor users 
and sensor providers respectively. The sensor resource 

allocation }{x j
i solves problem (3.2) if and only if there 

exist a set of nonnegative shadow costs }{ i . Generally 

solving such a problem by typical algorithms such as 
steepest decent method and gradient projection method is 
of high computational complexity, which is very time 
costing and impractical for implementation. In order to 
reduce the computational complexity, we decompose the
sensor utility optimization problem (3.2) into two 
subproblems for sensor users and sensor providers. The 
shadow costs suggest a mechanism to distribute the
sensor resource optimization between the sensor users 
and the sensor grid. We consider the Lagrangian 

multipliers i to be the prices charged by sensor resource 

providers in sensor market, equation (3.7) describes
sensor user’s behavior in sensor market as a sensor 
consumer, and equations (3.8) describe the sensor 
provider’s strategy as a sensor supplier. By decomposing 
the Kuhn-Tucker conditions into separate roles of sensor
user and sensor supplier at sensor market, the centralized 
problem (3.2) can be transformed into a distributed 
problem. Sensor user’s payment is collected by the
sensor providers. The payments of sensor users paid to 
sensor providers are the payments to resolve the 
optimality of sensor resource allocation in the sensor 
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market. We decompose the problem into the following 
two subproblems (3.7) which is sensor user optimization
problem and (3.8) which is sensor providers optimization
problem, seek a distributed solution where the sensor
provider does not need to know the utility functions of 
individual sensor user. Two maximization subproblems 
correspond to sensor user optimization problem as 
denoted by (3.7)
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and a sensor provider optimization problem as 
denoted by (3.8) .
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In (3.7), for the sensor user optimization problem, the 
sensor user gives the unique optimal payment to sensor
provider under the deadline constraint to maximize the

sensor user’s benefit. )( 
j

j
ii uB represents the money 

surplus of sensor user, which is obtained by budgets
subtracting the payments to sensor providers. So, the 
objective of (3.7) is to get more surpluses of money at 
the some time complete jobs for sensor user as soon as 
possible. In (3.8), for the sensor provider's optimization 
problem, different sensor providers compute optimal 
sensor resource allocation for maximizing the revenue of
their own and minimizing the energy consumption for 
completing sensor grid application. We could have 
chosen any other form for the utility that increases 

with j
ix . But we chose the log function because the 

benefit increases quickly from zero as the total allocated
sensor resource increases from zero and then increases 
slowly. Moreover, log function is analytically 
convenient, increasing, strictly concave and continuously 
differentiable. The benefits of sensor provider are 
affected by payments of sensor users, allocated resources 
and energy consumption. It means that the revenue 
increases with allocated sensor resources increasing and 
payment increasing, also with energy consumption 
decreasing. The objective of sensor providers is to 

maximize logj j
i iu x and minimize 

1

I
j

i
i

ec

 under the 

constraints of their energy limit. Sensor providers can’t 

dissipate energy more than jE , which is the upper limit 

of energy presented by sensor providers. )( 
i

j
ij ceE

represents the energy surplus of sensor provider which is 
obtained by the energy limit subtracting energy
dissipation. Thus, the optimization framework provides a 
distributed approach to the sum utility maximization 
problem. Sensor user layer problem adaptively adjusts 

sensor user’s resource demand based on the current 
sensor resource conditions, while the sensor resource
layer adaptively allocates sensor required by the upper
layer. The interaction between the layers is now 
controlled through the use of the variable i , which is the 

price charged from sensor users by sensor provider and 
coordinates the sensor user demand and the supply of
sensor resource.

For the sensor user optimization problem, the sensor 
user gives the unique optimal payment to sensor provider
under deadline constraint to maximize the sensor user’s 
satisfaction.                     

In equation (3.7), Let jp denote the unit price of 

sensor j, Let the pricing policy, ),,,( 21 jpppp  , 

denote the set of sensor prices of all the sensor providers 
at the sensor resource layer. The sensor user i receives 
sensor resource proportional to its payment relative to the 

sum of the sensor provider’s revenue. Let j
ix be the 

sensor resource units allocated to sensor user i by sensor 
provider j.                 

The time taken by the ith sensor user to complete nth
sensor job is: 
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We reformulate sensor user optimization problem as
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We take derivative and second derivative of SA with 

respect to u j
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extreme point is the unique value maximizing the sensor
user's utility under completed time limits. The 

Lagrangian for the sensor user’s utility is )( j
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Where  is the Lagrangian constant. From Karush-

Kuhn-Tucker Theorem we know that the optimal 

solution is given 0)( 
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u j
i


is the unique optimal solution to sensor user 

optimization problem. It is the optimal payment of sensor 
user i to sensor provider j under the completion time 
constraint to maximize the sensor user’s benefits.

    For the sensor provider's optimization problem, 
different sensor providers compute optimal sensor 
allocation for maximizing the revenue of their own under 
constrains of energy limit.           

In equation (3.8),  xlogu j
i

j
i presents the revenue 

obtained by sensor resource j from sensor users. The 
energy consumption of sensor provider for executing 

users’ task can’t exceed more than jE , which is the 

upper limit of sensor power.
The energy dissipation of sensor resource j for 

completing grid application i be written:
j

ij
j

i xsece                             (3.17)

We reformulate sensor provider's optimization 
problem as
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Where  is the Lagrangian constant. From Karush-
Kuhn-Tucker Theorem we know that the optimal 

solution is given 0)( 


x
xL for  >0.
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Using this result in the constraint equation, we can 

determine   1 as
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x j
i


is the unique optimal solution to sensor

provider's optimization problem. It means that sensor 

providers allocate x j
i


to sensor user to maximize its 

revenue.

4 Description of Algorithms
The objective of market based sensor allocation is to 
maximize the utility of the sensor grid system without 
exceeding the energy limit, expense budget and the 
deadline. The proposed algorithm decomposes optimal 
sensor resource allocation optimization problem into a 
sequence of two sub-problems via an iterative algorithm. 
In each iteration, in sub problem 1, the sensor user 
computes the unique optimal payment to sensor provider 
under expense budget and the deadline constraint to 
maximize the sensor user’s benefit. The sensor user
individually solves its fees to pay for sensor resource to 
complete its all sensor jobs, adjusts its sensor demand
and notifies the sensor provider about this change. In sub 
problem 2, different sensor providers compute optimal 
sensor resource allocation for maximizing the revenue of
their own under energy constraint. Sensor provider 
updates its price according to optimal payments from 
sensor user, and then sends the new prices to the sensor
user s and allocates the sensor resource for sensor user, 
and the cycle repeats. The iterative algorithm that 
achieves sensor resource allocation optimization is 
described as follows.
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Algorithm 1 Market based Sensor Allocation 

Algorithm (MSA)
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Receives the new price p j
from the sensor resource j;

SA (u )u
jj

i iMax U  ;  //calculates u j
i

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iSA uU

If   
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j
ii uB

Then  Return u j
i


to sensor resource j ; 

Else Return Null;  

Sensor resource j

Receives optimal payments u j
i


from sensor user i; 
( 1)

SR ( )n jj
ii Max U xx

   ; // Calculates its optimal

sensor resource 
)*1( nj
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j cpxpp   ; // 

Computes a new price

// 
i

j
i

j xx , 0 is a small step size parameter, n

is iteration number

Return sensor resource price )1( n
jp to all sensor

users;  

5 Simulations
In this section, the performance evaluation of our 
mechanism is conducted. The sensor grid simulator is 
implemented on top of the JAVASIM network simulator
[22]. In the experiments, 150 sensors are uniformly 
deployed in a field that is 500m ×500m in area. There are 
also 16 base stations that are deployed based on a 
uniformly random distribution. Sensor tasks are created 
in uniformly distributed locations in the field. There are a 
total of 150 sensor resources and 600 sensor users are 
taken for experimental evaluation of the system. Energy 
consumption is represented as a percentage of the total 
energy required to execute all job and meet deadlines.
Assume that the maximum power, maxP , corresponds to 

running all jobs with the maximum processing 
frequency. The maximum frequency is assumed to be

1max f and the maximum frequency-dependent power 

is 1max P . When the power capacity for each interval is 

limited, we can only consume a fraction of maxP when 

processing requests during a given interval. Jobs arrive at 
each site is , i=1, 2,…, n according to a Poisson process 

with rate . The energy cost can be expressed in grid 
dollar that can be defined as unit energy processing cost. 
The initial price of energy is set from 10 to 500 grid 
dollars. Sensor users submit their jobs with varying 
deadlines. The deadlines of sensor user application are 
chosen from 100ms to 400ms. The budgets of sensor 

applications are set from 100 to 1500 grid dollars. Each 
experiment is repeated 6 times and 95% confidence 
intervals are obtained.

The experiments are conducted to compare proposed 
market based sensor allocation algorithm (MSA) with an 
integrated and flexible scheduler for a sensor grid [3], 
which makes use of several scheduling and load 
balancing algorithms to suit the characteristics of sensor 
jobs in sensor grid environment. The reason for choosing 
reference [3] as the comparison is that both our work and 
reference [3] provide a resource scheduling and 
allocation algorithm for sensor grid environment. In [3],
they adapted four existing multiprocessor scheduling 
algorithms to suit the sensor grid scenario: Earliest 
Deadline First (EDF), First Come First Served (FCFS), 
Least Laxity First (LLF), and Shortest Job Next (SJN).
EDF is a scheduling algorithm that allocates higher 
priorities to jobs closer to their deadline. As an 
alternative to the static priority schedulers, it guarantees 
schedulability when node utilization is full. In the case 
where deadlines are equal, we modified the algorithm to 
use the duration of the job as a tie breaker, with shorter 
duration jobs given a higher priority. FCFS is the 
simplest of the four scheduling algorithms. Using a 
queue structure, this algorithm simply adds new jobs to 
the end of the queue as they arrive, picking jobs for 
execution only from the front of the queue. A derivative 
of EDF, LLF is a scheduling algorithm that allocates 
priorities on the amount of laxity a job has: the lower the 
laxity, the higher the priority. The laxity, or slack time, is 
the time left until its deadline after the job is completed, 
assuming that the job could be executed immediately. 
SJN allocates priorities statically depending on the
duration of jobs. Shorter jobs are favored, and are given 
higher priorities. Similar to LLF, the modification made 
to the algorithm was to allocate a higher priority to the 
job with the nearer deadline when durations are equal.

The paper performed the evaluations to measure the 
impact of the algorithms using several performance
metrics, and test whether the algorithm can satisfy
performance objectives such as sensor resource 
utilization, allocation efficiency, sensor job execution 
success, response time and energy consumption ratio. We 
study the performances of proposed market based sensor 
allocation algorithm (MSA) with several scheduling and 
load balancing algorithms for a sensor grid [3]. We 
choose the performance metrics and simulation 
parameter according to the reference [3]. Performance
metrics include in terms of allocation efficiency,
execution success ratio, response time and energy 
consumption ratio, resource utilization ratio. Allocation 
efficiency is defined as the percentage of allocated sensor
among total available sensor resources. Execution
success ratio is the percentage of sensor jobs executed 
successfully before their deadline. Energy consumption 
ratio is defined as the percentage of consumed energy of 
sensors to complete the jobs. We compare the algorithms
by varying load factor to study how they affect the 
performance of the algorithms.

The following four figures (Figs.1, Figs.2, Figs.3, 
and Figs.4) are to study resource allocation efficiency,



174 Informatica 36 (2012) 167–176 L. Chunlin et al.

execution success ratio, response time, energy 
consumption ratio and resource utilization ratio under
different load factor (LF) respectively. Load factor varies 
from 0.1 to 0.9. Fig.1 shows the effect of load factor on
allocation efficiency. When LF=0.5, allocation efficiency 
of MSA is as much as 17% less than that with LF=0.1. 
The allocation efficiency is larger when the load factor
(LF) is smaller. When load factor increases, system load 
increases; some sensor user agent’s requirements can’t be 
processed on time. The sensor user agents with low 
budget don’t have enough money to buy sensor and can’t 
complete jobs before deadline; this leads to low 
allocation efficiency. When load factor is 0.5, allocation 
efficiency of MSA is 27% more than FCFS. Compared 
with FCFS and SJN, the allocation efficiency of MSA 
decreases more slowly when the load factor increases.
When the load factor is 0.6, the allocation efficiency of 
LLF decreases to 54%, the allocation efficiency of MSA
decreases to 84%. The allocation efficiency of MSA is
better than SJN, LLF and FCFS. Considering the 
execution success ratio, from the results in Fig.2, when 
load factor is 0.5, the execution success ratio of SJN is 
28% less than that using MSA. When load factor 
increases, execution success ratio of SJN and FCFS
deteriorate quickly. SJN and FCFS scheduling algorithms 
don’t consider optimization of both sensor resource 
providers and sensor users, it wants to minimize the 
runtime of sensor jobs. EDF has higher execution success 
ratio than MSA. When the load factor increases, fewer 
requests from sensor user agents can be admitted into the 
system due to the increase of system burden, so, fewer
requests from sensor user agents can be executed
successfully before their deadline. Fig.3 shows the 
energy consumption ratio under different load factors. 
When load factor increases, more requests need to be 
processed within one interval and the energy 
consumption ratio increases. When increasing the load 
factor by LF=0.7, the energy consumption ratio of MSA
is as much as 25% more than LF=0.4. Under same load 
factor (LF=0.8), the energy consumption ratio of MSA is 
16% less than that of EDF. The energy consumption ratio 
of MSA and EDF is less than that of SJN, LLF and 
FCFS. Fig.4 shows the effect of load factor on the 
response time. The smaller is LF, the lower is the 
response time. When LF=0.7, the response time of MSA 
is as much as 30% more than that by LF=0.2. SJN 
provides the shortest response times amongst all 
algorithms. The response time of LLF is longest among 
other algorithms. The value of LF is low, the system is 
lightly loaded, the price of the sensor provided by sensor 
resource agent is cheap; sensor user agents with low 
budget can choose cheap sensor resources to complete 
jobs under the deadline, so the satisfaction of the sensor 
user agent is high. When the system is heavily loaded, 
the price of the sensor resource is expensive; some sensor 
user agent need more time to complete tasks.
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Figure 1: allocation efficiency under various load factor.
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Figure 2: execution success ratio under various load factor.
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Figure 3: energy consumption ratio under various load factor.
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6 Conclusions
  The paper presents market based sensor resources 
allocation in sensor enabled grid computing environment.
Since sensor users’ tasks might compete for the exclusive 
usage of the same sensing resource we need to allocate
individual sensors to sensor users’ tasks. Sensor grid 
tasks are usually characterized by an uncertain demand 
for sensing resource capabilities. We model this 
allocation problem by introducing the sensor utility 
function. The goal is to find a sensor resource allocation 
that maximizes the total profit. The paper proposes a 
distributed optimal sensor resource allocation algorithm. 
The performance evaluation of proposed algorithm is 
evaluated and compared with other resource allocation 
algorithm for sensor grid. In the future, we will consider 
moving our method to a real grid platform to test its 
feasibility.
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