
 Informatica 36 (2012) 153-160 153

Using M Tree Data Structure as Unsupervised Classification Method

Marian Cristian Mihăescu and Dumitru Dan Burdescu

University of Craiova, Faculty of Automation Computers and Electronics, Romania

E-mail: mihaescu@software.ucv.ro, burdescu@software.ucv.ro

Keywords: M Tree, k-means, unsupervised classification, cognitonics

Received: December 8, 2011

Increasing the effectiveness of educational processes is one of the greatest challenges for information

society. The paper presents the usage of M Tree structure for classification of the learners based on

their final marks obtained in their respective courses. The classical building algorithm of M-Trees with

an original accustomed clustering procedure was implemented. The data that are managed within M

Tree structure are represented by instances. The main goal of the structure is to provide information to

students and course managers regarding the knowledge level reached by students. The proposed

clustering procedure that is used for splitting full M Tree nodes is designed to properly classify learners.

A baseline classification scheme based on k-means clustering and a custom M Tree clustering are

presented. For comparison, there are considered classical characterization formulas.

Povzetek: Opisana je metoda za izboljšanje učenja na osnovi M-dreves.

1 Introduction
The ability to classify a student’s performance is very

important in internet-based educational environments. A

very promising area to attain this objective is the use of

special designed data structure. In fact, one of the most

useful applications of modern algorithms in e-Learning is

classification. E-students are students that follow courses

within an e-Learning platform. There are different

educational objectives for using classification, such as: to

discover potential student groups with similar

characteristics and reactions to a particular learning

strategy, to improve a student’s capacity of learning, to

group students who are failure-driven and help them

improve their skills, to identify learners with low

motivation and find remedial actions to lower drop-out

rates etc. In the followings we have applied a

classification method using unique algorithms which

have a common base (tree classification).

One of the greatest challenges in e-Learning area is

to continuously improve existing systems. In order to

overcome the challenge there are needed sound

procedures whose task is to prove the challenger

procedure creates a better system than existing one. The

key issue regarding effectiveness of educational process

is classification. The main goal of this paper is to obtain

a better or at least acceptable classification scheme with

less computation power.

Some possible outcomes of such analysis process

are: predicting students’ grades (to classify in three

classes/clusters of low priority – week learners, medium

priority – easy learners, high priority – competitive

learners) from test scores.

Clustering algorithms are part of the unsupervised

classification techniques. They try to group a set of items

into subsets or clusters. The cluster algorithms’ goal is to

create clusters that are coherent internally, but clearly

different from each other. In other words, items within a

cluster should be as similar as possible; and items in one

cluster should be as dissimilar as possible from items in

other clusters. In this paper, learners represent items.

The standard k-means algorithm [1] is used as

baseline unsupervised classifier. K-means is the most

important flat clustering algorithm. Its objective is to

minimize the average squared Euclidean distance of

items from their cluster centres where a cluster centre is

defined as the mean or centroid of the items in a cluster.

M-tree [2,3] is a dynamic access method suitable to

index generic "metric spaces", where the function used to

compute the distance between any two objects satisfies

the positivity, symmetry, and triangle inequality

postulates. The M-tree design fulfils typical requirements

of multimedia applications, where objects are indexed

using complex features, and similarity queries can

require application of time-consuming distance

functions. In this paper we describe the basic search and

management algorithms of M-tree, introduce several

heuristic split policies, and experimentally evaluate them,

considering both I/O and CPU costs. The obtained results

also show that M-tree performs better than R*-tree on

high-dimensional vector spaces.

2 Related Work
It is now recognized that e-learning further requires the

means to summarize and classify learner trends and

patterns. One serious candidate solution is DM (data

mining), already quite successful in e-commerce and bio-

informatics, where results are achieved through the use

of associates, classifiers, clusters [8], pattern analysers,

and statistical tools.

Educational Data Mining [7] is an emerging

discipline concerned with developing methods for

exploring the unique types of data that come from

educational settings, and using those methods to better

understand students, and the settings which they learn in.

mailto:mihaescu@software.ucv.ro

154 Informatica 36 (2012) 153–160 M.C. Mihăescu et al.

Since the mid-1990's, e-learning has epitomized a

broad range of learning categories while reinforcing four

major pedagogical perspectives often neglected during e-

learning system development. First, insight from

cognitive learning processes can shed light on how the

brain functions. Second, emotional aspects of learning

can be traced, such as interest, motivation, interaction,

fulfilment, and enjoyment. The third perspective

incorporates skills and behaviours, such as role-playing,

that are particularly useful in real settings.

Lastly, a social perspective involving the interaction

with other people permits a focus on collaborative

discovery, namely, the interplay of peer pressure and

support. The complexity of the approach is high, and the

specialists have been more preoccupied about the

development of the information systems from the

perspective of the technological informatics

infrastructure. The studies devoted to the technology

infrastructures embedded in the information systems are

insufficiently presented in literature [5].

One of the constructive steps in this direction was

done by V. Fomichov and O. Fomichova in [6]. The

authors introduced the notation of conceptual-visual

dynamic schemes (CVD-schemes). The CVD-schemes

are the marked oriented graphs introduced in cognitonics

domain for inventing effective teaching analogies. Such

graphs establish a correspondence between the

components of a piece of theoretical material to be

studied and the components of a well-known or just

created by the teacher but bright fragment of the inner

world’s picture of the learner.

Novel database applications, such as multimedia,

data mining, e-commerce, and many others, make

intensive use of similarity queries [2] in order to retrieve

the objects that better fit a user request. Since the

effectiveness of such queries improves when the user is

allowed to personalize the similarity criterion according

to which database objects are evaluated and ranked, the

development of access methods being able to efficiently

support user-defined similarity queries becomes a basic

requirement. In this article we introduce the method

called the M-tree that can process user-defined queries in

generic metric spaces, that is, where the only information

about indexed objects is their relative distances. The M-

tree is a metric access method that can deal with several

distinct distances at a time: (1) a query (user-defined)

distance, (2) an index distance (used to build the tree),

and (3) a comparison (approximate) distance (used to

quickly discard from the search uninteresting parts of the

tree). We develop an analytical cost model that

accurately characterizes the performance of the M-tree

and validate such model through extensive

experimentation on real metric data sets. In particular,

our analysis is able to predict the best evaluation strategy

(i.e., which distances to use) under a variety of

configurations, by properly taking into account relevant

factors such as the distribution of distances, the cost of

computing distances, and the actual index structure.

The access method called M-tree is proposed to

organize and search large data sets from a generic

"metric space", i.e. where object proximity is only

defined by a distance function satisfying the positivity,

symmetry, and triangle inequality postulates. The M-tree

design has been motivated by retrieval requirements from

typical multimedia database applications, where objects,

such as text, image, and video, are indexed using

complex feature representations, and search for objects

similar to a query object can involve application of time-

consuming distance functions. We detail algorithms for

insertion of objects and split management which keep the

M-tree always balanced - several heuristic split

alternatives are considered and experimentally evaluated.

Algorithms for similarity (range and k-nearest

neighbours) queries are also described. The results from

extensive experimentation with a prototype system are

reported, considering as the performance criteria the

number of page I/O's and the number of distance

computations. The results demonstrate that the M-tree

indeed extends the domain of applicability beyond the

traditional vector spaces, performs reasonably well in

high-dimensional data spaces, and scales well in case of

growing files.

As our project goal is to bring a contribution to E-

learning domain, our idea is to structure didactic chapters

as concept maps and provide an efficient electronic

students distribution by their results. The chapter’s

notions will be split depending on their level of priority

as follows:

- Low priority notions – referring to introductive

notions about the chapter.

- Medium priority notions – referring to basic notions

of the chapter.

- Maximum priority notions – referring to advanced

notions of the chapter.

As our concept maps are represented as tree structures,

where each path of the tree is assigned a weight, these

priorities can be computed depending on the assigned

weights.

Assuming that, in order to evaluate a number of

students, each chapter presents a final quiz, we have

decided to use concept maps as weighted trees in order to

generate tests containing notions of different priority

levels. The algorithms responsible for generating tests

are based on tree searches methods.

3 Building Clusters with M Tree and

k-Means Algorithms
Our implementation uses the following student’s data

structures:

struct Student{

 int IDStudent;

 float Lp;

 float Mp;

 float Maxp;

 int Where[3];

 };

The IDStudent is the identifier corresponding to each

student entering the online distribution program. In order

to evaluate these students, each chapter presents a final

quiz containing notions belonging to the previously

discussed levels of priority. Thereby , each student will

USING M TREE DATA STRUCTURE AS… Informatica 36 (2012) 153–160 155

get a mark for each type of notion, contained in the

chapter:

- a Lp mark corresponding to low priority notions,

- a Mp mark corresponding to medium priority

notions,

- MaxP mar corresponding to maximum priority

notions.

Each one of these marks is important , because they

represent the guiding tool for a student. Example:

Let us suppose that the student identified by his/her

IDStudent=1002 takes the quiz, at the end of the chapter

and gets the following results: (Lp= 7.70, Mp=6.78,

Maxp=5.00).

Right know, a teacher, or even an electronic

program, is able to compute the minimum performance

of this student, reaching the conclusion that the advanced

notions of the chapter(indicated by Maxp) have not been

covered properly by this student, and therefore , he/she

needs to put more energy in this direction. These

directions are given by Where vector, used for providing

instructions regarding where should a student improve

his/her level of knowledge. A graphical representation is

given below:

Figure 1: Where vector, used for providing instructions

regarding where should a student improve his/her level

of knowledge.

As a start, Where[3]=(0,0,0). If any of this vector’s

component changes to 1 , this means it becomes

active. For instance, if StudentA.Where[3]=(0,1,0), it

means that he/she needs to review notions of medium

priority level.

These students are then, distributed and placed by

our algorithm in a M-tree structure. Before moving on

with the algorithm, let us present the structure of the M-

tree. As it was explained above, the M-tree is a spatial,

metric tree, consisting of: 1 root and k leaves containing

students.(As we will see later, these leaves represent

clusters of students). For now, let us stick to the structure

of a M-tree, mentioning that this tree is actually a spatial

one, where its leaves can be imagined as spheres,

containing points, which are actually students. As far as

the structure of a node is concerned, we have:

The M-Tree node’s structure is:

struct m_Node{

 int nrKeys;

 bool isLeaf;

 float radius [NMAX];

 m_Node *routes [NMAX];

 struct Student students[NMAX];

 };

The nrKeys represents the number of students

contained in a node (cluster). As far as our M-tree is

concerned, we pay extra attetion to the nodes, because it

is very important wheather they are leaves(terminal

nodes) or internal nodes, as we will see later in the

algorithm. The boolean variable isLeaf is pointing out

our exact concern: weather a node is leaf or internal.

Moving on, as itwas previously said, we consider our

nodes as spheres, and as any sphere, it is geometrically

represented by its center C(x,y,z) and its radius R.

However, in order to match these notions to our real

implementation, we have constructed an abstract

interpretation for this geometrical representation. The

center C of a sphere(cluster) will be represented by the

average student belonging to the set of students

contained in that particular cluster. Instead of spatial

coordinates (x,y,z) , our centerStudent will be represented

by its elements (IDStudent,Lp,Mp,Maxp), which were

presented earlier. The radius of this abstract sphere will

be represented by the distance between the centerStudent

and the student (students) with the lowest results in that

cluster. We will take a closer look to this abstract system

later, when we will discuss the implemented algorithm.

The routes represent the children of a particular node and

of course, the nrKeys points inside the sphere, which

are actually the students, as in our abstract system, a

spatial point is represented by a student.

Our implementation is based on the idea of students

distribution depending on their results to a quiz at the end

of a chapter. For a better understanding of our

implementatio let us consider a real situtation:

Let us consider a finite set S of k students defined as

S={St1,St2,….Stk), k>0. Let us supose that all these

students have taken a quiz at the end of a chapter in order

to evaluate their level of knowledge. Each student is

represented by his/her IDStudent, and his/her grades: Lp,

Mp, Maxp (they were discussed earlier). Let us assume

that we want to create an hierarchy among these students,

depending on their results. In order to do that, we need to

group these students in clusters, each cluster having its

own attribute. An attribute, for a cluster, represents the

level of performance for that particular group of students.

Moreover, these attributes are also used as indicators

pointing out to the type of notion (low priority, medium

priority, maximum priority) the student needs to review.

After a group of students (cluster) is formed, a center is

chosen, that is the average student in that group, and all

the other students are distributed in a spherical manner,

arround him.

Computation of a radius for a cluster : the radius of

a cluster represents the maximum possible distance

between the centerStudent and the rest. The bigger the

distance is, the better or the lower the results of that

student are. Just as in real cases, when we say there is a

big distance between this average student and student A,

this means that Student A has either better results or

worse results, we don’t know for sure. Anyhow, should

the distance between the centerStudent and any other

student be greater than the cluster’s radius, it means that

the particular student does not belong to that cluster, for

156 Informatica 36 (2012) 153–160 M.C. Mihăescu et al.

the simple reason that he/she is smarter than all those

students in that cluster or his/her results are lower than

any other’s in that cluster.

The radius of a cluster is computed, depending on

the results of each student, being the maximum distance

between two students. We define the distance between

StudentA and StudentB as follows:

dAB= max{(|LpA-LpB|, |MpA-MpB|, |MaxpA-MaxpB|)} (1)

As you can see, when we measure the distance between

two students, we are looking for the most marking

difference between them. This also helps us in defining

attributes of a cluster, depending on the type of notion

students should focus on (low priority notions, medium

priority notions, maximum priority notions). Moreover

the relation (1) guarantees that the radius of a cluster

represents the biggest difference between the levels of

knowledge for each student belonging to that cluster.

As example, let us consider the student A with

his/her results: (9.60, 8, and 7.50). Let us consider the

student B with his/her results: (7.60, 8, 6.50). Following

the relation (1), we get the biggest difference 2 (9.60-

7.60). This is the biggest distance between them two. So

they might have similar knowledge for medium priority

notions (8,8), and maximum priority notions(7.50,6.50),

but when it comes to low priority notions, we see a gap

between them(StudentA -9.60 , StudentB -7.60). Let us

consider that StudentB has the lowest result in the

cluster, and StudentA is the centerStudent. Then, as we

have presented earlier , they can be grouped in a cluster

with its radix 2 . Let us suppose now that StudentC gets

the results: (5, 6.30, 5). We get:

dAC= max {|9.60-5|,|8-6.30|,| 7.50-5|}=4.60,

dBC= max {|7.60-5|,|8-6.30|,| 6.50-5|}=2.60.

As you can see, neighther of these distances is lower than

our cluster’s supposed radius, as the difference between

Student and the students StudentA, StudentB is huge, so

there is no way, StudentC will not become a member of

this cluster. Moreover, based on the present results of

StudentA and StudentB , we can define an attribute for

this cluster: all students belonging to this cluster, will

posses similar knowledge levels for medium and

maximum priority notions, but the marking difference

between them will be represented by the low priority

notions, so all of them need to review this part of the

chapter.

The main steps of the agorithm are:

Step1. We start from a simple representation of students,

identified by their elements:

- IDStudent

- Lp (score)

- Mp (score)

- Maxp (score)

Step2. We picture the set of the students who have taken

the test as the points in 3D space. Our algorithm

involves two major operations:

- a clustering operation

- a split operation

We will first describe the spliting method. We have

decided that these groups of students should have a

maximum number of allowed members. Let us denote

this number as the filling factor of a cluster (student

group). Whenever the number of students in a particular

cluster becomes greater that this filling factor, a cluster

splitting is involved. This is how the M-tree extends its

nodes. The splitting procedure works as follows:

At the beginning two random students from that

cluster are chosen as the centers for the new clusters

resulting after splitting. Let us denote them Student1 and

Student2. Next, we distribute the rest of the students

arround the new centers Student1 and Student2. If, for

instance, we have Student1 and Student2 as centers, the

question is where should we attach Student3 to? We

compute the distance between (Student1, Student3) and

(Student2, Student3), using relation (1). Student3 will go

near that student which is more closed to him/her (that is,

from a level of knowledge point of view). After the

distribution is completed, we start the chooseCenter

method, which recalculates the new centers of the

clusters, and if new centers are found, the entire

discussed process happens again, until new centers are

found no more. This process is called the Clustering

Process. After that the effective splitting happens, and

the initial tree node is split into two nodes. When these

clusters are formed, they are also assigned atributes(we

have discussed about them earlier). What is interesting is

that these atrributes suffer a constant evolution,

depending of the students inserted in that specific cluster.

As the clusters suffer constant splittings and

modifications, whenever the number of students inside is

greater than the filling factor, so do the attributes change,

transforming a part of the old cluster in a better one (

shelters students with higher levels of knowledge) or

even a lower one (shelters students with lower levels of

knowledge).

The classical M Tree algorithm has been adapted

such that the final structure has two levels. The

procedure for building the structure takes into

consideration both the desired number of clusters and the

filling factor of a leaf node.

procedure MTree (x1, x2, …, xN; K; F)

// K – the number of clusters

// F– filling factor

 for (i=1, i<N){

 Ci = FindCentroid (centroids, xi);

 if (#Leaf [Ci] has F instances)

 if (#we have k clusters)

 #put xi in Leaf [Ci]

 else

 #split Leaf [Ci]

 else

 #put xi in Leaf[Ci]

 RecomputeCentroids(Leaf[Ci])

 }//end for

The computational complexity of this M Tree procedure

takes into consideration that each instance is considered

only once. That is why the complexity of this operation

is O(N). Still, the number of clusters influences the

complexity since the best corresponding cluster needs to

be determined. The time taken for this operation is

O(K). Still, the recomputation of the centroid is not so

USING M TREE DATA STRUCTURE AS… Informatica 36 (2012) 153–160 157

costly as in the case of k-means algorithm due to the

filling factor parameter. Thus, the overall complexity of

employed M Tree procedure is O(KNF).

Clustering and splitting procedures in pseudocode

are presented below.

Procedure Cluster_and_split

 #Get the cluster which will suffer splitting procedure;

 #Let StudentSet={Si| Si є cluster, i=0, nrKeys, Si

student};

 #Choose

S1 є StudentSet (as new center);

S2 є StudentSet (as new center2);

oldCenterStudent1S1;

oldCenterStudent2S2;

 #While (!STOP_CONDITION) do {

For each other Si є StudentSet, (Si ≠ S1 and Si≠

S2) do {

 Compute d1i=max{(|Lp1-Lpi|,|Mp1-Mpi|,|Maxp1-

Maxpi|);

 Compute d2i=max{(|Lp2-Lpi|,|Mp2-Mpi|,|Maxp2-

Maxpi|);

 If (d1i < d2i)

 Attach Si to the cluster with center S 1

 else

 Attach Si to the cluster with center S 2

 #Determine attributes

 }//end do

newCenterStudent1=chooseCenter(newFormedCluster1,

newClusterRadix1);

newCenterStudent2=chooseCenter(newFormedCluster2,

newClusterRadius2);

 STOP_CONDITION

(newCenterStudent1=oldCenterStudent1)

&& (newCenterStudent1=oldCenterStudent1))

 #Effective_split_of_initial_cluster

 }//end while

The Determine attributes sequence works in the

following way. Every time a distance between two

students is computed, after the marking difference

between them is extracted, inside the Where[3] vector,

the corresponding component of that type of level notion

the maximum was extracted for, is incremented (we say

a flag is raised for that component).

Example. Let us consider that the marjing

difference between studentA and studentB regards the

low priority notions, then studentA.Where[0]=1 and

studentB.Where[0]=1 (see the Where[3] vector

configuration in previous sections). Notice that this

Where[3] vector changes for every new student in the

cluster, because in the end of the clustering process only

the attributes of the average student will prevail, because

he/she is the center of that particular cluster.

The chooseCenter sequence simply computes the

biggest distance between all the students and also sets the

new studentCenter of the cluster, as we will see in the

complete algorithm’s pseudocode.

Now we will take a closer look to the splitting

procedure:

Procedure Effective_split_of_initial_cluster

 m_Node = node for splitting

 m_node→isLeaf = false;

 //the initial node becomes a root,

 //where the centers of the clusters will be retained

 # Alloc memory for leftChild and rightChild of

m_node;

 m_Node→leftChild = newCluster1;

 m_Node→rightChild = newCluster2;

 #Insert S = { centerStudent1|radiusCluster1,

centerStudent2|radiusCluster2} in m_Node

 #Attach the rest of students Si

to leftChild or rightChild

 leftChild→isLeaf=true;

 rightChild→isLeaf=true;

After seeing these two important steps in the algortihm, it

is time to present the entire process:

Procedure Build_M_Tree

#initializeTree;//create an empty root tree

 //and set root as leaf

#While (not endOfFile){

 #Get input data student(IDStudent, Lp,Mp,Maxp);

 #If (tree->root->nrKeys < filling factor)

 #make a simple insertion in the actual root

 #Else

 #apply Cluster_and_split;

}//end while

The classical standard k-means algorithm partitions a

dataset on N instances into K clusters. The algorithm is:

procedure k-means (x1, x2, …, xN; K)

 {c1, c2, …, cK} ← Select Random Centroids

 for (k=1, k<K)

 centroidk = ck;//these are initial centroids

 while (#centroids are not same){

 for (k=1, k<K){

 for (n=1, n<N){

 j = index of corresponding cluster

 #put xn in corresponding cluster Cj

 }//end for

 }//end for

 for (k=1, k<K)

 # compute centroids for all clusters

 }//end while

The most important discussion regards the

computational complexity of k-means algorithms. Most

of the time is spent on computing distances between

items. This computing is performed when putting

instance xn in cluster Cj. One such operation costs

log(M). The reassignment step computes KN distances,

so its overall complexity is log(KNM). In the re-

computation step, each vector gets added to a centroid

once, so the complexity of this step is log(NM). For a

fixed number of iterations I, the overall complexity is

158 Informatica 36 (2012) 153–160 M.C. Mihăescu et al.

therefore log(IKNM).Thus, K-means is linear in all

relevant factors: iterations, number of clusters, number

of vectors, and dimensionality of the space. One of the

most important issues regards the number of iterations.

In most cases, K-means quickly reaches either complete

convergence or a clustering that is close to convergence.

In the latter case, a few items would switch membership

if further iterations are computed. This computation has

a small effect on the overall quality of the clustering.

4 Clustering Evaluation Metrics
A comparison of two distinct procedures defines the

needed steps in order to obtain sound results. The

presented analysis procedure compares two methods

that are used for building clusters of items: k-means and

M Tree.

An input dataset is considered. Both k-means and M

Tree algorithms are than used for building clusters from

the same dataset. For each set of clusters, there are

computed specific indicators for characterizing obtained

clusters. The indicators that are taken into

considerations are:

Tightness Indicator:

where is the number of points from cluster i. The

value for Q will be small if the data points from the

cluster are close. Thus, in the comparison analysis

procedure the clusters with smaller computed values of

Q have higher quality.

Homogeneity Indicator:

If the centroids of clusters are computed with formula

, where x are the instances from cluster

Ck , than homogeneity indicator is

The value for H will be small if a cluster has

homogeneous structure. This, in the comparison analysis

procedure the clusters with smaller computed values of

H have higher quality.

Cluster Distance:

where j and k are indexes of clusters whose centroids r

are taken into consideration. The value for CD will be

big if the similarity among clusters themselves is low.

Thus, in the comparison analysis procedure the methods

with bigger computed values of CD have higher quality.

Weakest Link between Points:

The weakest link for a cluster is the maximal value of all

pairs of points belonging to the same cluster.

WL = max (d(xi, xj)),

for all xi and xj belonging to the same cluster.

5 Experimental Results
The first experiment builds an M Tree from the data from

6 students. The values for (Lp, Mp, Maxp) = {(8,7,6),

(5,9,10), (7,7,7), (7,8,7), (6,6,6), (4,3,5)}. The value of

filling factor is 4.

We insert students with IDStudent 1,2,3,4 in one

cluster. Student 5 also needs distribution, but adding

him/her to the same cluster is not possible, since a cluster

can hold a maximum of 4 persons (filling factor is 4). So

a split is mandatory.

After split the clusters are:

Cluster1={Student1, Student3, Student4},

Cluster2={Student2}.

Then, student 5 may be inserted, and the clusters become

as follows:

Cluster1={Student1, Student3, Student4,

Student5} ,

Cluster2={Student2}.

A new split is necessary, because cluster 1 is full. Thus,

the following clusters are being obtained:

Cluster1={Student3, Student4, Student5}

Cluster2={Student2}

Cluster3={Student1}

Finaly, Sudent6 is inserted in cluster 3, and thus the

following clusters are obtained:

Cluster1={Student3, Student4, Student5}

Cluster2={Student2}

Cluster3={Student1, Student6}.

The chooseCenter sequence simply computes the

biggest distance between all the students, also it sets the

new studentCenter of the cluster, as we will see in the

complete algorithm’s pseudocode.

The second experiment takes into consideration 15

students. For each student there are available two

weighted parameters: the number loggings and the time

spent on-line. The real parameters scale such that all

values are in the range 0 to 16.

The input dataset is:

A1(10.94 , 11.86); A6(11.02,2.28); A11(9.29 ,

13.86); A2(1.58 , 6.27); A7(11.23,9.37); A12(8.00 ,

1.09); A3(13.66 , 4.62);

Figure 2: Distribution of learners with k-Means.

USING M TREE DATA STRUCTURE AS… Informatica 36 (2012) 153–160 159

Figure 3: Distribution of the learners with MTree.

A8(7.35 , 3.99); A13(11.52 , 1.63); A4(2.33 ,

1.16); A9(9.4 , 11.84); A14(5.08 , 7.42); A5(10.04

, 9.41); A10(13.43 , 8.97); A15(12.12 , 12.59);

This dataset is used for building three clusters with

both k-means and M Tree algorithms. The obtained

distributions are presented in figures 2 and 3.

The obtained clusters by k-Means clustering have

the following centroids and composition:

C1 (2.99,4.95) //Cluster 1’s Centroid

 A2 (1.58, 6.27)

 A4 (2.33, 1.16)

 A14 (5.08, 7.42)

C2 (10.92, 11.13) //Cluster 2’s Centroid

 A1 (10.94, 11.86)

 A2 (10.04, 9.41)

 A7 (11.23, 9.37)

 A9 (9.40, 11.84)

 A10 (13.43, 8.97)

 A11 (9.29, 13.86)

 A15 (12.12, 12.59)

C3 (10.31, 2.72) – Cluster 3’s Centroid

 A3 (13.66, 4.62)

 A6 (11.02, 2.28)

 A8 (7.35, 3.99)

 A12 (8.00, 1.09)

 A13 (11.52, 1.63)

The obtained clusters by M Tree clustering have the

following centroids and composition:

C1 (10.04, 9.41) - //Cluster 1’s Centroid

 A1 (10.94, 11.86)

 A2 (10.04, 9.41)

 A7 (11.23, 9.37)

 A9 (9.40, 11.84)

 A10 (13.43, 8.97)

 A11 (9.29, 13.86)

 A14 (5.08, 7.42)

 A15 (12.12, 12.59)

C2 (2.33, 1.16) //Cluster 2’s Centroid

 A2 (1.58, 6.27)

 A4 (2.33, 1.16)

 A8 (7.35, 3.99)

 A12 (8.00, 1.09)

C3 (11.02, 2.28) //Cluster 3’s Centroid

 A3 (13.66, 4.62)

 A6 (11.02, 2.28)

 A13 (11.52, 1.63)

For each clustering procedure there were computed the

evaluation metrics presented in section 3. The results are

presented in the following table:

Indicator Clustering Procedure

k-means M Tree

Tightness 7.55 8.52

Homogeneity 100.47 137.48

Clusters

Distance

230.47 203.11

Table 1: Tightness, homogeneity and cluster distance

indicators for k-means and MTree distributions.

The link analysis for both distributions is presented in

the following table:

Indicator Clustering Procedure

k-means M Tree

Weakest Link Cluster 1 0.9 1.21

Weakest Link Cluster 2 0.84 1.15

Weakest Link Cluster 3 0.87 0.51

Table 2: Weakest link values obtained for k-means and

MTree distributions.

The k-means results are obtained using Weka [4]. Weka

is a collection of machine learning algorithms for data

mining tasks which has implemented the k-means

clustering algorithm.

 The M Tree results are obtained, using a custom Java

implementation of the algorithm. The main differences

of this implementation compared with classical M Tree

algorithm regard two aspects. One regards the general

structure of the tree that is restricted to two levels. This

means there is only one root node where centroids along

with covered radius are placed. The second issue regards

the way k (the number of clusters) and f (the filling

factor) are managed. If the algorithm is required to

produce a certain number of clusters, the instances are

placed into appropriate clusters until a filling factor is

reached. When this happens, a split is performed.

Splitting is no longer performed when the desired

number of clusters is reached. In this way, the clustering

process is directly managed by the values k and s.

The comparison of the two obtained distributions

reveals the fact that the M Tree distribution clusters

have lower quality than the ones obtained by usage of k-

means. Still, the results obtained by M Tree are very

different from the ones obtained by k-means. All

indicators presented in table 1 have better results for k-

means than the ones obtained for M Tree. It can be

observed that the tightness and homogeneity are better

(because they have smaller values) for k-means than for

M Tree.

 Another comparison that may be done regards the

mobility of centroids. Although the differences of

computed indicator (Tightness, Homogeneity, Clusters

Distance) values are not very small, the computed

centroids are quite close.

160 Informatica 36 (2012) 153–160 M.C. Mihăescu et al.

6 Conclusions
The paper presents a study usage of an implementation of

M-Trees building algorithm. The tree manages real data

representing e-Students (students from an e-Learning

environment). The instances (i.e. the students) are

characterized by attributes representing the scores

obtained when taking tests. The tests are classified

according with their level of difficulty: low, medium and

high.

Within classical M-Tree building procedure it was

used a custom clustering procedure when splitting a node

was necessary. The clustering procedure is designed such

that produces an optimal grouping of students regarding

the “distances” in knowledge among them.

The tests were performed with datasets representing

200 students, and the filling factor of a cluster was

restricted to 18. As a result, we got 7 clusters, with

attributes, leading e-Students to notion reviews.

Another goal of our current implementation is to

provide valid data distribution using specific data

validation algorithms. Moreover our algorithm is able,

for the moment, to distribute e-Students which test their

level of knowledge for one chapter only. We wish to

extend this process for multiple chapters.

This paper also presents a procedure that measures

the degree in which the effectiveness of an e-learning

process has improved. The analysis process is data

centred. The data represents experiences provided by

learners. In this study two features (attributes)

characterize each learner: the number loggings and the

time spent on-line.

The goal of the procedure is to produce clusters of

users using two different techniques: standard k-means

algorithm implemented in weka and a custom flavour of

M Tree algorithm with a custom implementation.

The input dataset is restricted to a sample of 15

learners. This choice is because a manual inspection of

the obtained clusters is desired. An automated analysis of

the obtained clusters is performed by computing some

basic clustering quality metrics: Tightness, Homogeneity,

Clusters Distance and link analysis. The obtained results

show an acceptable quality of the M Tree clusters

although the computational complexity of the algorithm

is much lower than complexity of k-means.

The main goal of the paper is to find an algorithm

that produces acceptable results with complexity much

smaller than a classical procedure.

The quality of the obtained clusters has a direct

influence over the degree in which the e-learning process

has been performed. Unsupervised classification

(clustering) is one of the main methods for making

evidence regarding the knowledge acquisition of

learners. Once a high quality distribution has been

discovered, a learner may by clustered at certain

moments and progress may be evaluated. Of course, the

process needs to be well defined and needs to be based

on a high quality clustering procedure.

The future works regard different aspects. A first

issue would be to replicate the procedure with more data.

This may be accomplished on hundreds or even

thousands of learners, if data are available. The

clustering procedure is highly influenced by the initial

centroids. In custom initialization is advisable. A good

starting point may be obtained by using a k-means

clustering on a sample dataset from the entire dataset.

The quality of the clustering process is directly

influenced by the choices made regarding k and f values.

Thus, an initialization step may also refer to prior

computation of the optimal number of clusters and

optimal filling factor. The computation of these

parameters may be delegated to other high quality

clustering procedure that works on a data sample.

Finally, there may be defined procedures for

assessing progress in time and even recommendations.

The progress in time may be computed classifying the

learner from time to time. This may yield to a learning

path that has been followed by the learner. More than

this, there may be obtained recommendations for the

learner. The recommendations may regard necessary

actions necessary to be taken by the learner in order to

improve his learning curve.

References
[1] J. Hartigan and M. Wong (1979). A k-means

clustering algorithm. In Applied Statistics, 28, pp.

100–108.

[2] Uhlmann, J.K. (1991). Satisfying General

Proximity/Similarity Queries with Metric Trees.

Information Processing Letters, Vol. 40, pp. 175-

179.

[3] Ciaccia, P., Patella, M., Zezula, P. (1997). M-tree:

An Efficient Access Method for Similarity Search

in Metric Spaces. In: VLDB'97, Proceedings of

23rd International Conference on Very Large Data

Bases. Morgan Kaufmann, pp. 426-435.

[4] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard

Pfahringer, Peter Reutemann, Ian H. Witten (2009).

The WEKA Data Mining Software: An Update;

SIGKDD Explorations, Vol. 11, Issue 1.

[5] Burlea Schiopoiu A. (2008). The Complexity of an

e-Learning System: A Paradigm for the Human

Factor, The Inter-Networked World: ISD Theory,

Practice and Education. Vol. 2, Springer-Verlag,

New York, pp. 267-278.

[6] V. Fomichov and O. Fomichova (2006. .

Cognitonics as a New Science and Its Significance

for Informatics and Information Society. Special

Issue on Developing Creativity and Broad Mental

Outlook in the Information Society (Guest Editor

Vladimir Fomichov), Informatica. (Slovenia), 2006,

30 (4), pp. 387-398.

[7] C. Romero and S. Ventura (2007). Educational Data

Mining: A Survey from 1995 to 2005. Expert

Systems with Applications, 33(1), pp. 135-146.

[8] Gema Bello Orgaz, Héctor D. Menéndez, David

Camacho (2011). Using the Clustering Coefficient

to Guide a Genetic-Based Communities Finding

Algorithm, IDEAL 2011, pp.160-169.

