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Meta-heuristic learning-based forecasting is widely acceptable vis-à-vis manual and statistical 

methods in estimating the compressive strength of concrete structures. However, there is always a 

scope for exploring an effective, automated, and accurate predictor for this domain. This article 

proposes an elitism artificial electric field algorithm-based neuro-fuzzy network (eAEFA+NFN) for 

the prediction of compressive strength of concrete structures. The elitism method helps AEFA 

preserve the best individuals from iteration to iteration, by directly placing best fit particles into the 

population for the next generation and thus strengthening the optimization capacity of AEFA. A single 

hidden layer neural network (SHNN) is used as the base model and its inputs are fuzzified using the 

Gaussian triangular membership function with a degree of membership to different classes. The 

optimal number of input data, hidden neurons, bias, and weights for the hidden layer are decided by 

eAEFA. The model is evaluated on samples from a publicly available dataset with curing ages at 3, 7, 

14, and 28 days. Considering four sample series, the eAEFA+NFN produced an average MAPE of 

0.092073 and ARV of 0.139731 which are better compared to others. The experimental outcomes and 

analysis are in favor of the eAEFA+NFN-based forecasting.   

Povzetek:  Predlagana je meta-hevristična metoda eAEFA+NFN za napovedovanje moči betonskih 

struktur, ki temelji na elitistični AEFTA in nevro-mehkih mrežah z Gaussovo triangulacijo.

1 Introduction 
     Estimation of compressive strength (CS) [1] of 

concrete structures is a contemporary research area in the 

domain of manufacturing and construction engineering. 

The manual approach to solving this is very costly and 

time-consuming. Despite the availability of a large 

number of analytical and statistical models, the 

prediction preciseness is not quite satisfactory. In the last 

twenty years or so, multiple machine learning (ML) 

approaches to solve this problem have gained 

momentum, due to the availability of simulated datasets. 

The above-mentioned models are proven to be good in 

extrapolating data and predicting input-output 

relationships. Artificial neural networks (ANNs) are the 

most popularly used approach for concrete structure-

property prediction. ANN-based [2] methods for 

compression strength prediction were also proposed 

where ANN trained with gradient descent method is 

found generating superior results compared to multiple 

regression analysis. Gradient-based learning methods are 

common approaches for ANN training. The pitfalls 

associated with ANN include imprecise learning, 

lethargic convergence rate, and inclination to local 

minima. Some other difficulties associated with ANN are 

appropriate learning mechanisms, optimal network 

structure, computation of the model, etc. However, there 

is no proper way of finding an optimal ANN and it is still 

a challenging task for researchers. Alongside, the fuzzy 

logic system (FLS) which is capable of handling 

uncertainties and incompleteness associated with real-life 

datasets. ANNs are suitable for dealing with quantitative 

and numeric data, while FLS are capable of handling 

qualitative and symbolic data. Individually both have 

reached a degree of maturity and excelled in solving real-

world problems. Integration of ANN [3] and FL gives a 

synergetic effect as compared to an individual. The 

advantage of ANN [4] learning and fuzzy if-then rules 

with suitable membership functions are hybridized to 

obtain a high degree of accuracy in generating nonlinear 

input-output relationships. The hybrid systems combine 

the learning and connectedness architecture of neural 
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networks with the human-like logical reasoning 

capability of fuzzy systems and take advantage of both. 

Newly, AEFA [5] has been anticipated as an 

optimization method inspired by the principle of 

electrostatic force. AEFA is based on the strong 

theoretical concept of charged particles, electric field, 

and force of attraction/repulsion between two charged 

particles in an electric field. The learning capacity, 

convergence rate, and acceleration updates of AEFA 

have been established through solving some benchmark 

optimization problems. AEFA starts with random 

solutions, fitness evaluation, reproduction, and updating 

the velocity and position of the particles in the search 

space. The updated solution is then compared with the 

previous one, and the better-fit one is retained.  

The objective of this article is to design a robust 

data-driven ML-based forecasting technique for 

modeling and forecasting the compressive strength of 

concrete structures. The forecast capitalizes on the 

approximation ability of ANN and the reasoning 

capability of FLS to generate a neuro-fuzzy network 

(NFN). The proposed eAEFA is used to design the 

optimal parameters of NFN as well as the size of the 

input and the hidden layers, thus producing a hybrid 

forecast, i.e., eAEFA+NFN. The proposed forecast is 

then used to reveal the hidden nonlinear pattern 

associated with the samples in the dataset and evaluated 

through different error metrics. The new answer is then 

compared to the old one, and the one that fits better is 

kept. However, in the preceding level, known as elite 

solutions, there may be a few good options. These elite 

answers are passed down to the next generation without 

alteration in the elitism mechanism. The worst answers 

are phased out in favour of elite ones. The worst 

solutions are replaced by the elite solutions discovered in 

the preceding generation of any generation. With many 

swarms and evolutionary algorithms, the elitism process 

of replacing the poorest answers with elite ones is 

implemented.  The elitism approach aids AEFA in 

preserving the finest individuals from iteration to 

iteration by immediately introducing the best-suited 

particles into the population for the following generation, 

hence enhancing AEFA's optimization capability. 

The rest of the article is organized into four sections. 

Section 2 discusses related works, Section 3 briefs about 

the methods and dataset, Section 4 summarizes the 

experimental outcomes and discussion, followed by 

concluding remarks in Section 5. 

 

2  Related work 
The background of the research work is presented in 

this Section. In Subsections 2.1 and 2.2, literatures study 

of FLANN as a classifier and predictor is discussed. 

Feature selection and its importance are the focus of 

Subsection 2.3. Differential evolution, a meta-heuristic 

computing paradigm is discussed in Subsection 2.4. Feng 

et al. [6] have used the adaptive boosting technique for 

predicting the compressive strength of concrete. By 

taking 1030 sets of data, they have compared their model 

with other individual machine learning techniques like 

artificial neural network (ANN) and support vector 

machine (SVM).  The proposed approach is superior to 

other models. Deng et al. [7] have used a deep learning 

technique, namely convolution neural networks, for the 

prediction of compressive strength of recycled aggregate 

concrete. After that, the model is developed by softmax 

regression. Finally, their model is considered a new 

method for calculating the strength of recycled concrete. 

Salami et al. [8] have proposed a model by using the 

least square support vector machine (LSSVM) to predict 

the compressive strength of ternary-blend concrete. They 

have also applied Coupled simulated annealing (CSA) to 

LSSVM model for better performance. Kumar et al. [9] 

have applied different machine learning algorithms, such 

as Ensemble Learning (EL), Gaussian Progress 

Regression (GPR), Support Vector Machine Regression 

(SVMR), optimized GPR, SVMR, and EL, to predict the 

compressive strength of Lightweight Concrete (LWC). 

Khursheed et al. [10] have used different machine 

learning techniques such as extreme learning machine 

(ELM), emotional neural network, genetic programming, 

relevance vector machine, and min-max probability 

machine regression to forecast the 28-day compressive 

strength of fly ash concrete. Latif [11] has developed an 

LSTM model to predict concrete compressive strength. 

In his model, three statistical indices were used, namely 

the coefficient of determination (R2), mean absolute 

error (MAE), and root mean square error (RMSE). 

Asteris et al. [12] have proposed a   hybrid ensemble 

surrogate machine learning technique to predict the 

compressive strength of concrete. Their HENSM model 

gives a very high predictive accuracy compared with 

other models. 

 

Güçlüer et al. [13] have used Linear Regression (LR) 

algorithms, Decision Tree (DT), Artificial Neural 

Network (ANN), and Support Vector Machine (SVM) to 

measure concrete compressive strength. They found the 

DT algorithm had the least amount of error and is most 

suitable for use in concrete compressive strength 

estimation. 

Abuodeh et al. [14] have attempted to address the 

ambiguity by applying two deep learning techniques to 

identify the critical material constituents that affect 

ANN. 

Sevim et al. [15] have proposed a prediction model 

to predict the compressive strength of mortar samples. 

For model construction, they have used adaptive-

network-based fuzzy inference systems and artificial 

neural networks (ANN). Finally, they compared the 

results with Multi-Linear Regression. Table 1 shows a 

few popular research results. 

 

Table 1:  Brief discussion of use of AEFA and ANN and 

prediction of concrete structure. 

Ref. 

No. 

Author Model  Purpose  Outcome 

[5] Yadav 

et al. 

AEFA Proving of 

AEFA 

AEFA is the 

best 
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algorithm optimization 
algorithm 

[6] Feng et 

al.   

Adaptive 

boosting  

Compressive 

strength test of 

the concrete 
structure  

ANN and SVM 

give better 

result 

[7]  Deng et 

al. 

Deep 

learning 
method   

To find the 

strength of 
recycled 

concrete. 

Gives higher 

precision, high 
efficiency, and 

high 

generalization.  

[8]  Salami 
et al.  

LSSVM, 
LSSVM-

CSA 

To find the 
strength of 

ternary-blend 

concrete 

LSSVM-CSA 
model works 

fine than 

another model 

with 
2R  a 

value is 0.954 

[9] Kumar 

et al. 

 GPR, 

SVMR, 

EL, LWC 

To predict the 

compressive 

strength of 

Lightweight 

Concrete  

GPR gives the 

highest 

accuracy 

[10]  Khursh

eed al. 

MPMR, 

RVM, 
GP, ENN 

and ELM 

models. 

To predict the 

compressive 
strength of 

concrete 

MPMR gives 

better results 
than other 

models. 

[11]  Latif  LSTM  To predict 

concrete 

compressive 
strength  

LSTM model 

works fine than 

other models. 

[12] Asteris 

et al. 

Hybrid 

HENSM 

model  

 To predict 

compressive 

strength (CS) 
of concrete   

structure  

HENSM model 

better than 

CML model. 

[13] Güçlüe
r et al. 

 (ANN), 
(DT), 

(SVM) 

and (LR) 

algorithm

s.  

To predict the 
concrete 

compressive 

strength 

Best   
correlation 

coefficient and 

best absolute 

error using DT 

algorithm 

[14] Abuod
eh et al. 

SFS and 
NID 

To find critical 
material 

constituents 

that affect the 
ANN 

ANN with SFS 
and NID gives 

improved 

accuracy than 
other models. 

[15] Sevim 

et al. 

ANN, 

ANFIS 

To estimate 

compressive 

strength using 
the chemical 

composition of 

fly 

GA-based 

ANFIS gives 

better result 

[17] Priyada

rshee et 

al. 

ANN   Compressive 

Strength 

(UCS) of 
Kaolin clay 

ANN model 

gives better 

results than the 
MRA model 

[18] Cao et 

al. 

MOMEM  Estimation of 

the ultimate 

shear strength 

of the soil 

MOMEM is 

significantly 

superior to 

other AI-based 

methods 

[19] Dash et 
al. 

QORA-
ANN 

Prediction of 
cryptocurrency 

QORA-ANN is 
better than 

ANN-GA, 

ANN-DE, 
ANN-PSO 

[20] Sharifi 

et al. 

ANN  Compressive 

strength of the 
mortars 

ANN-based 

model gives 
better results for 

finding 

compressive 
strength of the 

mortars  

[22] Anita 
et al. 

AEFA 
with CSS, 

MOA, 

PSO, and 
GSA 

Stability 
condition 

checking of 

AEFA 

AEFA works 
fine for stability 

condition 

checking 

[23] Nayak 

et al. 

 Extreme 

learning-

AEFA 

For optimizing 

the parameters 

of a neural 
network with a 

single hidden 

layer. 

Generates the 

lowest mean 

absolute 
percentage of 

error (MAPE) 

[24] Anita 
et al. 

AEFA 
compared 

with PSO, 

GA, ABC, 
and GSA. 

AEFA is tested 
for two 

benchmark 

problem that is 
six and fifteen 

generator 
power plant 

systems. 

The 
convergence 

rate is fast in 

case of AEFA  

[25] Behera 

et al. 

AEFA+A

NN 

AEFA + ANN 

model   used to 
predict 

software 

reliability 
datasets 

The proposed 

model  is best 
suitable for 

forecasting 

[26] AL-

Dmour 
et al. 

AEFA Placement of 

phasor 
measurement 

units using an 

optimization 
algorithm 

AEFA is best 

suitable for  
OPP problem 

3 Methods and our model  
This section presents methods like eAEFA and NFN in a 

nutshell and the development of the proposed 

eAEFA+NFN in detail. 

3.1 eAEFA 

AEFA simulates the charged particles as agents and 

measures their strength in terms of their charges [5]. The 

particles are moveable in the search domain through 

electrostatic force of attraction/repulsion among them. 

The charges possessed by the particles are used for 

interaction and the positions of the charges are 

considered the potential solutions to the problem. 

According to AEFA, the particle having the highest 

charge is measured as the best individual, and it attracts 

other particles having inferior charge and moves in the 

search domain. The mathematical justification of AEFA 

is illustrated in [5]. The velocity and position of a particle 

at time instant ‘t’ are updated as per Eqs. (1) and (2), 

respectively. 

( 1) ( ) ( )d d d

i i i iVelocity t rand Velocity t acceleration t+ =  +        (1) 

 ( 1) ( ) ( 1)d d d

i i iPosition t Position t V t+ = + +   (2)                              

Elitism, as previously said, is a technique for passing 

down the greatest persons from generation to generation. 

The system never loses the best individuals discovered 

during the optimization process in this manner. Elitism 

can be achieved by inserting several of the best 

individuals into the next generation's population. Here, 

we simulate a potential solution of SHNN as a charged 

particle and its fitness function as the quantity of charge 

associated with that element. 

https://link.springer.com/article/10.1007/s41062-021-00506-z#auth-Suhaila-Khursheed
https://link.springer.com/article/10.1007/s41062-021-00506-z#auth-Suhaila-Khursheed
https://www.sciencedirect.com/topics/engineering/compressive-strength
https://www.sciencedirect.com/topics/engineering/compressive-strength
https://ieeexplore.ieee.org/author/37089162071
https://ieeexplore.ieee.org/author/37089162071
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3.2 NFN 

The proposed method uses an SHNN as the base 

model depicted in Figure 1. An input undergoes a 

fuzzification process using the Gaussian triangular 

membership function as shown in Eq.3. The expanded 

vector intensifies the dimensionality of the input vector 

thus, generates a hyperplane that affords larger 

discrimination ability in the input pattern space. 

2
1

2
( ; , )

i i

i

x small

width
Gaussian x c e

 −
−  

 = ,          (3)                                           

                                                

where x = input, c = center of the pattern, and  = 

width of the input pattern. Considering smallest, 

medium, and biggest values as the center of the input 

pattern, a unit in the input pattern has a triangular 

membership function as in Eqs. (4) – (6). 

2
1

2

,1O ( , , )

i i

i

x small

width

i i i ix small width e

 −
−  

 = ,   (4)                                                   

                                           

2
1

2

,2O ( ,medium , )

i i

i

x medium

width

i i i ix width e

 −
−  

 = , and                                          

                                   (5) 

 

2
1

2

,3O ( ,big , )

i i

i

x big

width

i i i ix width e

 −
−  

 = .                (6)                                                                                          

The medium value of the 
thi  input vector 

( ) /i ibig small sizeofinputpattern= − . Each data is 

used as the input of these membership functions (low, 

medium, high) and the outputs 

( 1... , 1,2,3)ijO i N j= =
 are the grades of 

membership. For an input vector [ 1, 2,..., ]T

NX x x x=  

and membership of
thi the input pattern as 

, ( )i j imf x ,the 

N M  membership matrix after fuzzification process is 

shown in Eq.7. This matrix is supplied to the SHNN as 

input. 

   (7)

                                

 

 
Figure 1: Single hidden layer neural network. 

To increase its optimization potential, the recently 

created AEFA [21, 24] has been infused with the idea of 

elitism. The elitism approach assists AEFA in preserving 

the greatest individuals from generation to generation by 

immediately inserting the best-fit particles into the 

population for the following generation. The architecture 

of the proposed eAEFA+NFN model is presented in 

Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Architecture of eAEFA+NFN. 
 

Output at
thj  hidden neuron is calculated using Eq. 8 

and that of output neuron is calculated using Eq. 9. 

 

1

( )
n

j ij i

i

Z f Bias Weight O
=

= + 
     (8)              

1

( )
m

o j

i

Z f Bias Weight Z
=

=                     (9)                    

       
 

This output is compared to the target output and the 

error is calculated as  
i i iError Target Estimated= − . We 

simulate a potential solution of SHNN as a charged 

particle and its fitness function (i.e., error) as the quantity 

of charge associated with that element. The velocity and 

position of a particle are updated as per Eq. 1 and 2. 

3.3 eAEFA+NFN  

This section describes the design of eAEFA+NFN 

[21,22,27] model and then the CS forecasting process. As 

discussed earlier, elitism is a mechanism to retain the 

finest entities from generation to generation. By this 

method, the system never misses the finest individuals 

initiated throughout the optimization procedure. Elitism 

can be done by inserting one or more best individuals 

directly into the population for the subsequent 

generation. The overall eAEFA+NFN process is depicted 

in Figure 3. The process starts with a random initial 

population of solutions. An individual of the population 

represents a potential initial weight and bias of NFN. 

This population and the input samples are fed to the NFN 

model and the fitness is evaluated. Based on the fitness, a 

set of elite solutions are selected. The remainder of the 

population is subject to the regular operators of AEFA. 

At the end of the current generation, the updated and 

original solutions are compared and the better one is 

carried over. Here, the worst solutions are substituted by 

the elite solutions and the process passes into the 

subsequent generation. In this way, the elite solutions are 

carried forward through successive generations. Finally, 

the best solution is preserved and used for testing. The 
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high-level eAEFA+NFN process is presented by 

Algorithm 1 and depicted in Figure 3. 

 

 

Figure 3: The eAEFA+NFN-based forecasting process. 

 

Algorithm 1: eAEFA+NFN Training 

1. Initialization of population 

2. Setting Input data 

3. Fuzzification of input data using Eq. 4-6 

4. Normalization of fuzzified data 

5. Supply input data and population to the NFN 

6. Apply eAEFA for search updating 

7. Supply test data and the best particle to the NFN and 

preserve the estimated CS value 

4 Experimental data 
The experimental data collected from an open 

repository contains 1030 samples each of which has 9 

real attributes [28]. The attributes 1 – 8 are used as input 

features and the last one as the response variable. All 

instances are quantitative and have numeric values only. 

From the dataset samples curing ages at 3, 7, 14, and 28 

days only are extracted and used for modeling. A 

statistical summary of the dataset is given in Table 2.  

 

Table 2: Summary statistics from the dataset. 

Compo

nent 
Mean Std Min 25% 50% 75% Max 

Cement 

(kg/m3) 
281.167 104.51 102.0 192.3 272.9 350.0 540 

Blast 

furnace 
slag 

(kg/m3) 

73.8958 86.279 0.000 0.000 22.0 142.95 359.4 

Fly ash 
(kg/m3) 

54.1883 63.997 0.000 0.000 0.0 118.30 200.1 

Water 
(kg/m3) 181.567 21.354 121.8 164.9 185 192.0 247 

Super 
plastici

zer 

(kg/m3) 

6.2046 5.9738 0.000 0.000 6.40 10.20 32.20 

Coarse 
Agg. 

(kg/m3) 
972.918 77.754 801.0 932.0 968 1029.4 1145 

Fine 

Agg. 
(kg/m3) 

773.580 80.176 594.0 730.9 779.5 824.0 992.6 

Age 

(numeri

c) 

45.6621 63.167 1.000 7.00 28.0 56.0 365 

Compre
ssive 

Strengt

h 
(MPa) 

35.8179 16.706 2.330 23.71 34.44 46.135 82.6 

 

Table 3: Error statistics from four sample series and 

seven forecast. 

Forec

ast 

Sample series 

3-days 7-days 14-days 28-days 

MA

PE 

AR

V 

MA

PE 

AR

V 

MA

PE 

AR

V 

MA

PE 

AR

V 

eAEF

A+N

FN 

0.06

275

5 

0.05

1725 

0.0

652

75 

0.05

268 

0.07

753 

0.27

205 

0.16

273 

0.1

82

47 

AEF

A+N

FN 

0.06

530

2 

0.08

2204 

0.1

528

47 

0.05

8725 

0.07

9201 

0.44

5177 

0.30

066 

0.1

82

73 

GD+

NFN 

0.08

845

3 

0.27

4423 

0.3

673

77 

0.29

872 

0.16

439 

0.46

283 

0.32

005 

0.1

87

25 

ANFI

S 

0.08

715

7 

0.29

7405 

0.0

963

57 

0.29

953 

0.09

556 

0.25

293 

0.33

165 

0.2

01

16 

MLP 0.45

440

0 

0.38

9472 

0.4

065

48 

1.00

523 

0.20

604 

0.55

729 

0.35

207 

0.3

30

23 

SVM 0.48

845

2 

0.59

7655 

0.6

864

50 

1.10

308 

0.76

583 

1.02

734 

0.72

005 

0.6

30

47 

MLR 0.89

299

1 

0.93

2005 

0.9

720

35 

1.34

125 

0.92

884 

1.27

026 

1.35

266 

0.9

38

20 

4.1 Experimental outcomes and model 

evaluation 

As stated earlier, we considered only the samples 

with curing ages of 3, 7, 14, and 28 days. The time-series 

approach is used for modeling the data. Model inputs are 

selected using a rolling window method from a sample 

series and normalized using the sigmoid method [29, 30]. 

Two error metrics, mean absolute percentage of error 

(MAPE) and average relative variance (ARV) are used 

for model evaluation and are shown in Eq. 10 -11. 
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1

ˆ1
100%

N
i i

i i

x x
MAPE

N x=

−
=                             (10) 

2

1

2

1

ˆ( )

ˆ( )

N

i i

i

N

i

i

x x

ARV

x x

=

=

−

=

−





                                              (11) 

 

To ensure the performance of the eAEFA+NFN 

forecast, four comparative models as NFN with gradient 

descent-based training (GD+NFN), NFN with AEFA 

(AEFA+NFN) adaptive neuro-fuzzy inference system 

(ANFIS), multilayer perceptron (MLP), support vector 

machine (SVM), and multiple linear regression (MLR) 

are also implemented and evaluated with the same input 

patterns. Error statistics from different data series using 

different models are summarized in Table 3. 

 

The best statistics are highlighted in boldface. From 

Table 3, the proposed eAEFA+NFN is found to be the 

best performing and MLR is the least performing 

forecast among all. For the 3-day sample set, 

eAEFA+NFN produced 0.062755 MAPE and 0.051725 

ARV. In the case of the 7-day sample, it achieved 

0.065275 MAPE and 0.05268 ARV. For 14-day samples, 

the MAPE and ARV by eAEFA+NFN are 0.07753 and 

0.27205 respectively. Similarly, in the case of a 28-day 

sample, the proposed model generated the lowest MAPE 

of 0.16273 and ARV of 0.18247. GD+NFN and ANFIS 

are found to be similar in performance. Similarly, the 

performance of MLP and SVM are found closer to each 

other. Overall, the eAEFA+NFN model produced the 

lowest error metric values, offering consistent and 

satisfactory results compared to others. The forecast plots 

shown in Figures 4–7 reflect the accuracy of 

eAEFA+NFN. The model estimations are closer to the 

actuals.  

 
Figure 4: eAEFA+NFN forecast vs actual 

compressive strength values from the 3-day sample series 

 

 
Figure 5: eAEFA+NFN forecast vs actual compressive  

strength values from the 7-day sample series. 

 
Figure 6: eAEFA+NFN forecast vs actual compressive  

strength values from the 14-day sample series. 

 
Figure 7: eAEFA+NFN forecast vs actual compressive  

strength values from the 28-day sample series. 

 

 
Figure 8: MAPE comparison of eAEFA+NFN and 

AEFA+NFN. 

 

Further, to realize the benefit of elitism, we 

compared the MAPE from eAEFA+NFN and that of 

AEFA+NFN. The outcome of the comparative studies is 

depicted in Figure 8. It is observed that in the case of 3-

days and 14-day time series data the performances of 

both models differ slightly from each other while there is 

a significant difference in the case of 7-days and 28-day 

datasets. Similar observations are inferred while 

comparing ARV from both methods. These shreds of 

evidence are in support of the elitism concept and thus 

eAEFA is found better in training NFN. 
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5 Conclusions 
A robust hybrid forecast called eAEFA+NFN is 

proposed in this article for accurate and effective 

modeling of compressive strength of concrete cement 

data and forecasting the CS values of unseen samples. 

NFN inputs are fuzzified using the Gaussian triangular 

membership function with a degree of membership to 

different classes. The fuzzified input vectors intensified 

the dimensionality of the input thus, generated a 

hyperplane that affords a larger discrimination ability in 

the input pattern space. The model parameters are fine-

tuned by eAEFA. The enhanced search ability of eAEFA 

and improved approximation ability of NFN combined to 

make the model robust helped in capturing the 

nonlinearity associated with the data. Considering four 

sample series, the eAEFA+NFN produced an average 

MAPE of 0.092073 and ARV of 0.139731 which are 

better compared to others. From comparative studies, it is 

found that the proposed eAEFA+NFN outperformed 

others. Further, the efficiency of the proposed approach 

may be evaluated in other areas of the predictive system. 

The current work may be extended using similar datasets 

from the manufacturing engineering domain. 
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