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Today’s fast paced industrial production requires automation at multiple steps during its process. Involving
humans during the quality control inspection provides high degree of confidence that the end products are
with the best quality. Workers involved in the control process may have an impact on production capacity
by lowering the throughput, depending on the complexity of the control process at the time the control
is carried out, during the process which is a time-critical operation, or after the process is completed.
Companies are striving to fully automate their quality control stages of production and it comes naturally
to focus on using various machine learning methods to help build a quality control pipeline which will offer
high throughput and high degree of quality. In this paper we give an overview of applying several machine
learning approaches in order to achieve an autonomous quality control pipeline. The applications for these
approaches were used to help improve the quality control pipeline of two of the biggest manufacturing
companies in Slovenia. One of the most challenging part of the study was that the tests had to be performed
only on a small number of defective products, as is in reality. The motivation was to test several methods
to find the most promising one for later actual application.

Povzetek: Z nekaj prototipi je bila narejena analiza možnosti uporabe umetne inteligence v nekaj velikih
slovenskih podjetjih.

1 Introduction

In the world of machinery, products are expected to be
available in high quantities as well with high quality. To
make this possible, many companies around the world in-
troduce an efficient production process which is stream-
lined as much as possible. To achieve this, many go to
such lengths by having a zero defects policy. This policy
suggests that product defects, while unavoidable, should be
kept to the lowest percentage possible. The reason for this
is to increase profits by lowering the cost of failure. De-
fects can occur at any stage during the production pipeline.
It is important to catch these product defects as early as
possible so they don’t have a chance to propagate to later
stages causing even more damage. Some approaches, such
as [4], reduce defect propagation by shifting quality control
at earlier stages of the production process.

Quality control is a process that is present throughout all
aspects of production, ensuring standards and quality cri-
teria are met before products leave the assembly line. In
order for this process to be as efficient as possible, it needs
to be integrated into the manufacturing process. Depending
on the products manufactured, quality control might need a
separate physical area devoted to it in order to perform mul-

tiple analyses, although this segregation of tasks in a pro-
duction environment is often cumbersome and error prone.
Traditionally, the quality control process requires special-
ized labor who are skilled in correctly identifying mistakes
or inconsistencies in the developed product. The downside
of using such a specialized labor force is that humans are
prone to error [9]. Additionally, repetitive tasks are not
suited for one person to perform them for a long period of
time with consistent quality. One solution is to use com-
puter aid in order to achieve a higher quality of the overall
processes.

Implementing a machine learning quality control
pipeline is a challenging task. Difficulties arise from the
specifics of the industry, requiring expert knowledge to be
used to develop a system which is capable of satisfying the
quality needs while also being fast. In [20] a comprehen-
sive overview regarding the scope of those challenges is
given and one could see the plethora of categories that ma-
chine learning has been applied to.

Looking at machine learning as an enabler to industrial
processes, [15] provide with an overview of the effort put
into machine learning in manufacturing. Most noticeably
are the uses of neural networks and support vector ma-
chines (SVMs) since they are generically applicable and
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provide competitive results with a low investment time. Re-
garding industrial maintenance, [18] provides an overview
on current and future trends which are shaping compa-
nies towards Industry 4.0. Prevalent in these efforts is the
inter-connectivity of different sensors and systems, namely
internet-of-things (IoT).

In this paper we provide a technical overview of various
applications of machine learning into a manufacturing en-
vironment. The solutions presented here are provided for
industrial products each having their own specific purpose.
Due to the different types of products, we will test which
methods are more suited than others. We also show how
making use of transfer learning in the image recognition
domain can provide encouraging results on domains that
the model was not trained on.

The products that were used for our experiments in-
cluded metallic forks, metallic surfaces, oven fans and
broaches. These are included in the following sections and
the data is structured as follows. Section 2 presents simi-
lar papers which focus of quality control in manufacturing
environments. In Section 3 we present our solutions for
quality control on metallic forks from car parts. Regard-
ing home appliances, applicable solutions are presented in
Section 4 and Section 5 where we examine oven parts. Sec-
tion 6 examines broaches in metalworking to determine the
amount of wear. Discussion is provided in section 7. Lastly
a conclusion is presented in Section 8.

2 Related work

Many applications of machine learning proved successful
in a wide set of industries, ranging from automotive to
pharmaceutical. Each industry specializes on its problem
domain to achieve a great end product or a service.

Looking at the field of pharmaceuticals, high-throughput
screening (HTS) is a method to quickly test a large num-
ber of chemicals and/or compounds. Using robotics, data
processing, sensitive detectors and more, this allows a re-
searcher to conduct millions of chemical, genetic and phar-
macological tests. Because of the necessity to conduct a
large amount of tests, machine learning can be used here to
speed up the process. In [10], a large problem of the pro-
cess represents data mining and data storage of the images
acquired during testing. There exists a trade-off between
quality and high throughput. More time is needed to get
results with higher quality though that lowers the overall
throughput. Often, image analysis is a bottleneck in this
process, meaning good and fast machine learning methods
for visual tasks are paramount.

An interesting implementation of HTS is presented in
[2], where a whole quality control pipeline is created us-
ing open source software. Their goal is eliminating images
which deviate from the standard quality baseline. Their
tool of choice can implement multiple image processing
modules all of which are configurable. The modules imple-
ment machine learning models which achieve good results.

In manufacturing environments, where products need to
conform to high standards, [5] use a knowledge-based in-
telligent supervisory system to find events of rare quality.
These rare quality events can be considered as finding de-
fects in around one million opportunities. By using sev-
eral methods, such as logistic regression and feature elim-
ination, they have achieved great results, showcasing what
kind of exceptional quality machine learning can bring.

In the automotive industry, timely detection of car body
defects is important since a bad end product can cost tens of
thousands of dollars. To ensure good car body dimensions,
[12] use XGBoost [3], random forest, and other methods
to detect dimensional defects. From their production line
we can see that they carry out quality control in two stages
while the stages that are in-between are human operated.

Integrating machine learning solutions into industrial
processes needs careful selection of best performing mod-
els and parameters. The deployed models have to provide
a prediction in less time than a unit needs to be manufac-
tured. Because of this, not all production processes can
utilize machine learning easily. In [14], an integrated qual-
ity inspection solution is presented which uses the power
of machine learning and edge computing. Edge computing
was used to provide faster model training and evaluation in
order to find the one that gave the best results. They work
on improving the quality inspection in electronics manu-
facturing which uses surface mount technology (SMT) as-
sembly. Printed circuit boards (PCBs) are assembled and
go through a solder paste inspection (SPI) phase, which is
the phase that the predictive models are applied. They used
several models such as Naïve Bayes, Decision Tree, Logis-
tic Regression, SVM and Gradient Boosted Tree. Since in
their use case the manufacturing plant was outputting a de-
vice every single second, the model needs to be trained and
predict in less time than that. All of the models were capa-
ble of achieving this except Gradient Boosted Tree where
the training time took 2 second. It was shown that this ap-
proach could improve the product throughput by lessening
the need for units to go to additional quality checks.

Related to food, [1], explore the usefulness of using ma-
chine vision in food packaging. Specifically, they analyze
the seals of thermoforming packaging using three convo-
lutional neural networks (CNNs): ResNet [6], VGG [16],
DenseNet [8]. These tasks are still done by human oper-
ators which presents a possibility to greatly automate and
improve the production line. Line workers were observed
to see which packages were accepted and which were re-
jected. With that knowledge, a system was built to clas-
sify packages with improper seals that could cause food to
spoil. Five different datasets were created depending on the
type of product that was produced using an inline image ac-
quisition system. Their solution detects 99.93% of defects
in production. It is worth mentioning that this was tested in
both laboratory conditions and also in a real scenario.

Efforts are made into automating quality control pro-
cesses in order to be closer to Industry 4.0. In [11], they
mention several manufacturing paradigms with the main
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focus being on Holonic Shop Floor Control Systems. To
aid in bridging the flow of information between a man-
agement level and a manufacturing process level, several
CNNs were trained in order to find flaws in cast products,
namely impellers of submersible pumps. In order to obtain
more samples for training, the authors used several image
augmentation techniques such as: different axis rotations,
zooming in or out and shear mapping. The best perform-
ing CNN had a total of 7 layers and achieved precision of
99.82%.

In order to get a better representation of the efforts which
are put into building quality control system, a summary of
related work, their description and results is shown in Table
1.

3 Metallic forks
In this section, we describe our quality control solutions
which were tested in different manufacturing environ-
ments. Our goal is to utilize machine learning accompa-
nied by preprocessing techniques in order to classify if a
given industrial product contains a defect or not. The solu-
tions created must be easy to implement and have little in-
terference during the manufacturing of products. To detect
defects on metal forks we used three approaches: vibration
analysis, 2D and 3D machine vision analysis.

3.1 Vibrations

Looking at utilizing vibrations, we measured the signal of
displacement of the rack which holds and shakes the prod-
uct and measured the signal of displacement for the prod-
uct. To measure the displacement we used a laser distance
meter with high accuracy. In the end we observed the re-
lationship between the two displacement signals. Before
going deeper with this technique, we did a basic validity
test in which we glued a small piece of insulating tape on
the fork. Results showed that the displacement signals had
very high deviation from the baseline which gives hope that
real defects will also be noticeable on the displacement sig-
nals. Then we tested the real products by comparing ones
with and without an imperfection. Each output signal was
10 seconds long which was obtained from using a total of
24 products. Four different vibration settings were used
which were:

1. Amplitude: 0,389 Vpp; frequency: 50Hz

2. Amplitude: 0,389 Vpp; frequency: 60Hz

3. Amplitude: 0,2026 Vpp; frequency: 60Hz

4. Amplitude: 0,2026 Vpp; frequency 50Hz

We split each 10 second measurement into 10 pieces of
1 second long data points. On each of these pieces, 22
features were expertly selected based on the characteristics

Figure 1: Vibration analysis.

from the time and frequency spectrum. On the dataset 5-
fold cross validation was done. For the vibration analysis a
convolutional neural network was also used, having 2 hid-
den layers and an input of 256 neurons. The input was the
whole 10 second measurement of the signal. The results
obtained from the CNN were: Accuracy 48%, Recall 42%,
Precision 91%. There was no point going further with this
approach, so other methods had to be tested.

3.2 2D machine vision analysis
The major problem with machine learning in our case was
lack of faulty products. For the machine vision approach
we had 9 defective products in total from which 46 images
were captured. Each of the images was manually annotated
with a region of interest which encompasses the area with
an imperfection. This was done so we could have an anno-
tated dataset we can use to train our deep neural network.
This dataset was further divided into a training and testing
dataset.

In order to perform image analysis we used a pre-trained
convolutional neural network, Faster RCNN [13]. This net-
works consists of several convolutional layers and at the
end several fully connected layers. The convolutional lay-
ers are good at extracting features from the image such as
shapes and edges, whereas the fully connected layers learn
to classify these features for the task at hand. The whole
network consists of two parts, a segmentation part and a
classification part, both of which were used to detect de-
fects on the surfaces. The first part, namely segmentation,
was used in order to extract specific regions of interest in
the picture which in our case was regions with defects.
These regions are then fed into the second part of the neu-
ral network whose tasks is to classify if a certain region
contains an imperfection or not. The pre-trained weights
were used from the Faster RCNN network and only the
fully connected layers were trained on our training set, ef-
fectively freezing the convolutional layers so we can uti-
lize the features learned in previous object detection tasks.
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Paper Description Results
[5] Using feature elimination and classification threshold search to

find best models for classifying good or bad welds
Logistic regression model - maximum
probability of correct decision (MPCD): 1

[12] Testing several machine learning models to predict dimensional
defects in cars

Both XGBoost and Random Forest - ROC
AUC: 0.97

[14] Training machine learning models to detect defective units dur-
ing PCB manufacturing

Gradient boosted tree - precision: 93.1%,
recall: 89.9%, accuracy: 92.6%

[1] Proper seal detection in thermoforming food packaging ResNet18 - accuracy: 95%
[11] Convolutional neural networks in detecting faults in cast metal

products
Custom CNN - accuracy: 99.82%

Table 1: Overview of related work.

During training we used 2900 epochs on the segmentation
network and 200 epochs on the classification network. In
Figure 2 we can see a schematic view of the metallic fork
that was used in our experiments.

The test set used the segmentation network from the
Faster RCNN which contained 21 images with an imper-
fection, 7 without, are presented in Table 2, wheres the
results on the classification network on the testing dataset
which had 18 images with an imperfection, 1 without are
presented in the Table 3.

TP FP TN FN Accuracy Recall Precision
17 4 3 4 71.4% 81% 81%

Table 2: Results from the testing dataset on the segmenta-
tion network.

TP FP TN FN Accuracy Recall Precision
1 0 1 17 10% 5% 100%

Table 3: Results from the testing dataset on the classifica-
tion network.

Figure 2: Schematic view of the metallic fork.

The small number of learning examples was insufficient
for a hard real-life problem, as expected.

3.3 3D machine vision analysis
The last technique for detecting imperfections on metal-
lic surfaces that was tested was through using a 3D hard-
ware system. This is the most expensive option from all
the others but is the one that was expected to deliver the
most promising results. We scanned a total of 8 items, 4 of
which contained a scratch on their surface and 4 without.
The hardware system in question is 3D camera "Ranger 3"
manufactured by SICK with laser light source of 660 nm
(red laser). It is a line scanner which means it scans ob-
jects not at once, but line by line. During scanning, either
the object or the scanner might be moved in order to get
a complete scan. In our case, the scanner was mounted
on a fixed point and only the object was moved along one
axis. Figure 3 showcases the setup used to scan objects, in
this example a saw tooth blade. The point clouds obtained
from the system are 3D representations of the scanned ob-
ject. Each point in the point cloud has a specific color value
associated with it, which represent the reflectance value of
that point. The scratches in the point cloud exhibited lower
number of 3D points at their location, and additionally a
change in reflectance values. The observed scratches var-
ied by length and width, some of them even forming curved
lines. Concerning width, a single scratch might also have
varying width along its whole length. In reality, the width
of the scratches varies between 0.15mm to 2mm.

In order to have a bigger dataset to work with, new sam-
ples were generated by adding artificial imperfections on
samples or adding some noise. Random noise was intro-
duced by moving each point 0.001 mm in any direction,
ending up with a new point cloud. In order to generate a
point cloud with a scratch, the following steps were taken:

1. Two points on the surface are chosen which will rep-
resent the beginning and the end of a scratch.

2. A random point on that line will represent an area
where the scratch is the widest.

3. All points that are contained within a circle which its
center is defined by the random chosen point are af-
fected points.

4. Randomly sample affected points. The probability of
a point being sampled and removed is higher when
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Figure 3: 3D vision system setup.

it is closer to the circle center and center line of the
scratch. The radius of the circle is random and varies
between 0.15mm to 2mm.

5. The points which were not removed in the previous
step are sampled again using the same logic but this
time instead of being removed their reflectance is low-
ered.

Lastly we reduce the problem dimensionality by remov-
ing the Z-axis. In order not to lose the Z-axis information
it is encoded as brightness of the pixels. Next we select
an area of interest on which we will do our analysis. After
selecting an area of interest, a median 3x3 filter is applied
to remove parabolic lines from the scan since those are a
by-product of the whole scanning process. After blurring,
a binary threshold is applied using a constant T=60. De-
ciding whether the region of interest includes a scratch, the
image is compared to an error-free surface using a metric
called "structural similarity index". The values returned by
this metric are between 1 and 0.

Using this metric as the only feature, a random forest
classifier is trained and the results are show in Table 4. The
classifier achieves a perfect score.

True\predicted No error With error
No error 113 0

With error 1 106

Table 4: Confusion matrix of the random forest classifier.

In summary we tested three approaches to solve quality
control of metallic car objects: by vibrations, by using a
2D hardware system and by a 3D hardware system. The
first two approaches soon turned out unsuccessful. Only
the last, hardware costing around 10.000C enabled good
results with machine learning.

Figure 4: Camera and lighting arrangement.

4 Oven surfaces
This section is focused on detecting imperfections on oven
faceplate’s metallic surface and the interior surface of the
oven. During the final stages of the production of a com-
mercial oven, a key step is visual inspection on its surfaces.
For the decision of image acquisition we opted to use a
simple RGB camera that will have almost no interference
on the production line. The amount of oven faceplates we
obtained was again very small, in total 5 faceplates from
which we took our images. Out of the 5 faceplates, 3 had
scratches on the metallic surface and 2 did not have any
scratches.

Before using machine learning models, we also tested
some feature extraction methods, such as Speeded Up Ro-
bust Features (SURF) and Scale Invariant Feature Trans-
form (SIFT). These were used in order to compare images
with and without defects from 13 different key areas on the
oven. These key areas are places where the most errors
occur, such as panel buttons, door alignment, etc. These
methods proved to be effective, achieving an almost per-
fect F1 score, or at least above 0.9 on all the 13 key areas.

4.1 Machine vision
Alongside detecting scratches on the front metallic surface
of the oven, pictures were taken from inside the oven at
varying angles and light conditions. In Figure 4 we can
see the triple camera arrangement with 4 different light
sources. Multiple light sources were used and these caused
a certain amount of noise and glare in the final picture,
remedying it by performing post-processing of the images.
This resulted in improved stability in the classification al-
gorithms. To increase the number of faults on the metal-
lic surface, adhesive tape was used to mimic imperfections
alongside with using a sharp metal object to create new
scratches on the interior oven surface.

In order to be able to use deep learning models, segmen-
tation and augmentation was used to increase the number
of images. Before segmentation, we manually annotated
the images that contained an imperfection using a binary
mask, 1 indicating a pixel which is part of an imperfec-
tion, 0 otherwise. We used various methods to increase the
number of images we could get from the faceplates, from
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Architecture Simple-CNN VGG16 InceptionV3 ResNet101V2
(Macro) F1-score 9.8% 13.0% 58.75% 60.75%

Table 5: Average model F1 score after leave-one-out cross-
validation.
covering individual scratches with adhesive tape, to color-
ing with a felt-tip pen and finally using image augmenta-
tion. To segment an image we used a "sliding window"
approach where a window slides over and extracts smaller
parts of the image. The segments which overlap with the
binary mask from before are labeled as images that con-
tain an imperfection. Figure 5 shows an example of how an
oven faceplate is segmented, avoiding the display area.

After segmentation, class-invariant transformations are
performed in order to increase the dataset size. Traditional
image augmentation techniques such as flipping and rotat-
ing perform well on the results of a classifier as can also be
seen in [19]. With all these methods combined, we man-
aged to obtain more than 20,000 images. We have chosen
4 convolutional neural network models for this task, one
simple CNN and the others which are VGG16 [16], Incep-
tionV3 [17], ResNet101V2 [7]. In order to train all of these
with transfer learning, we disregarded the last fully con-
nected layers, substituting them with our own layers with
randomly assigned weights. During training the weights of
all except the final fully connected layers were updated. By
making use of transfer learning we shorten the time needed
to train a neural network and simultaneously use knowl-
edge which was previously obtained by the pre-trained net-
work on a wide domain of images. The performance of the
models was evaluated using leave-one-out cross-validation
(LOOCV),with 4 folds. For an evaluation metric F1 macro
average score was used. The reason for using the F1 metric
with averaging is because of our imbalanced dataset where
the majority of samples belong to the "No imperfection"
class.

The results of all the models are shown in Table 5. As
we can see our simple CNN and VGG16 weren’t able
to capture the difference between images with or with-
out imperfections. On the other hand, InceptionV3 and
ResNet101V2 showed better and similar results to each
other.

5 Oven fans
Also regarding commercial ovens, the next quality control
solution focuses on oven fans. In order to inspect if a fan
which is located inside an oven is in working condition,
videos were recorded with a frame rate of 30 frames per
second and from those videos images were obtained to-
talling 7200 images. Out of all those frames 4000 were
of a working fan and 3200 were with one which is not
working. The visual data was obtained through a closed
oven door, since opening the door in a manufacturing envi-
ronment would take too much time.

Preprocessing of the images consisted of three steps:

1. Object detection

2. Glare reduction

3. Thresholding

5.1 Extracting image features
In object detection the Hough Gradient Method [21] was
used to extract certain shapes from images. We are only
interested in the area where the fan is located which hap-
pens to be a circular opening. Before running the method
to detect circles, a median filter is applied to blur the image,
since using the original image results in many false positive
detection of circles. The output of this method was a single
circle although the radius of each circle from all the images
varied. Because of this the mean value of the circles’ radius
was calculated and used.

For glare reduction, each image was decomposed into a
color, saturation and brightness component (HSV). After
this, particularly bright areas of the image were identified
and their pixel values inpainted in respect to their surround-
ing pixel. We followed few rules while reducing glare. Be-
cause reflections coming from the light source are white,
any pixel that contains glare will not have saturation, since
white has no color or saturation. Then we filtered out the
areas that have low saturation. Following that, the non-
saturated areas were reduced by an erosion morphological
operator and the brightness values of the saturated pixels
were set to 0. Lastly, the final glare mask was obtained by
choosing pixels that have high brightness (threshold 130).
The pixels from the original image that overlap with the
glare mask were then interpolated with an inpainting oper-
ation. The final image without glare is almost identical to
the original image.

The last step is thresholding. In an image frame where a
fan is not working, the fan stands out more, and in a frame
where a fan is working the fan is slightly blurred. Using
this information we decided to use binary thresholding and
count the number of white pixels in an image. The idea is
that if the thresholded image represents a non working fan,
then the number of white pixels would be greater than in
a thresholded image representing a working fan. For the
binary thresholding we used a constant of T=90. Next, to
calculate the white pixel count threshold by which we de-
cide the class of the image, that is working/non-working
we calculate the number of pixels in all binary-thresholded
images of a non-working fans and take the 5th percentile of
that. In the end, there were some abrupt changes in classi-
fication during consecutive frames and to remedy that the
class of each frame was taken as the majority of the last 20
frames.

The confusion matrix for the results is shown in Table 6.

Non-working Working
Non-working 3117 82

Working 280 3720

Table 6: Confusion matrix from the results.



A Prestudy of Machine Learning in. . . Informatica 46 (2022) 187–196 193

Figure 5: Example of image segmentation.

Figure 6: Oven fan and corresponding glare mask.

5.2 Audio analysis

A technique that is worth mentioning is the use of sig-
nal analysis in order to detect the workings of the oven
fans. Using an ordinary microphone from a telephone,
samples were gathered which then were analysed. The mo-
bile phone was placed on top of the oven housing in order
to record the audio signal. It was observed that the opera-
tion of the working oven fan was present in the frequency
spectrum at the peak of 100Hz. These results were ob-
tained in a controlled laboratory setting. Recording sam-
ples were also obtained in a production environment where
more noise is present. This added noise introduced some
disturbances in the final signal spectrogram which made
the detection of a working oven fan more difficult, never-
theless, correct detection of the oven fan was still possible.
The ovens are equipped with two fans, a cooling fan and
a heating one. During the period when they are operating,
they both exhibit a signal of 100Hz on the spectrogram.
This makes their separation and identification very difficult
since the signals overlap. With this technique, at any given
time when the fans are working, it can be concluded that at
least one is operational, but not both because of the previ-
ously mentioned problem.

Figure 7: Microstrain parameter over time.

6 Broaches
During metalworking it is necessary to form a metal into a
certain shape. Broaching comes into play because it cuts
and shapes metal using so called broaches. Broaches come
in different shapes and sizes with multiple blades on them,
all with varying size. In the broaching process, internal
or external broaching can be used and in our approach we
experiment with internal broaching. These broaches need
to be replaced after prolonged use and our goal is to iden-
tify how many operational cycles can be done using the
broach before replacement is needed. If the blades of the
broach are too worn but not damaged, then they can also be
sharpened instead of replacing the whole broach, which is
cheaper. To find out when a broach reaches it’s maximum
operational period before irreversible damage, we measure
the microstrain parameter by the cut time, which tells us
the strain change in parts per million.

6.1 Signal features

The normal amount of operational cycles for a single
broach measures around 1500. Using a broach beyond this
number has a very high probability that the cuts done by it
will not be accurate or that a tooth from it might be dam-
aged and in the end, broken. External factors such as heat
and material lubrication affect the rate at which broaches
are getting worn out. In defect recognition the most im-
portant factors are the number and shape of peaks in the
measured stretch signal. In Figure 7 we can see a signal
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of the amount of stretch over time which was taken dur-
ing a cut of the broach and we can see how it changes over
time when different sized blades pass through the object.
Automatic peak recognition was done by measuring when
the signal rises from its standard deviation. Doing this we
were able to isolate a time window in which the signal was
generated when the broach was used for cutting.

Various features were extracted from the signal such as
minimum and maximum signal value, frequencies, patterns
etc. The features were filtered using a statistical signifi-
cance test and after using this test alongside with the Ben-
jamini–Yekutieli procedure, it turned out that there are only
three most important features which are: area, number of
peaks and maximum value of the signal. These features
were used to train several machine learning models such
as:

1. Linear regression

2. Gradient boosting

3. AdaBoost

4. K-nearest neighbour

The results show that for broaches that are worn, the area of
the signal is larger since more force is needed to make a cut
resulting in more stretch. This is analogous to a dull knife
requiring more force to make a cut. What is also noticed
is that the number of peaks is inversely proportional to the
number of cuts done by the broach. Since the blades are
getting worn out, they don’t scrape enough metal which is
why we see a lower amount of peaks. For the regression
metrics we used Mean Absolute Error (MAE). Our model
achieved a MAE of 27.58 when predicting the current cut
cycle. That corresponds to 98.18% accuracy of the model
that predicts in which cycle the needle needs to be replaced.
In Table 7 we can see the MAE results on all the tested
regressors.

Regressor MAE
Linear regression 101.25

Gradient boost 27.58
AdaBoost 165.44

KNN 74.16

Table 7: Regressors and their corresponding MAE metrics.

7 Discussion
Manufacturing is a large field which encompasses many
different production areas, from automotive to pharmaceu-
tical, to also food and packaging. Our proposed quality
control models are from a range of applications and each
is tailored to the specific use case. Several papers from the
Related Work section are comparable to our solutions. For
example, we use CNNs in detecting imperfections in oven
faceplates, which similar application is used in [11]. Al-
though the accuracy of their proposed network is higher, we

showcase that there is underlying knowledge which can be
used in pre-trained networks that brings forth faster train-
ing. In the future, custom networks can be built to facilitate
a more specific problem learning. Moving on to oven fans,
we see that good results are achieved by using simpler tech-
niques such as extracting image features, glare reduction,
thresholding and so on. While the work in Table 1 ana-
lyzes only static products, our scenario posed a different
problem because of the movement of the oven fans. Taking
a look at random forest classifiers, comparable results are
achieved in our 3.3 section in regards to the efforts of [12].
The results from our random forest classifier can be seen in
Table 4.

8 Conclusion
In this paper we presented tests of many different methods
in improving the quality control pipeline in manufacturing,
using typically only a couple of imperfect products. Our
contribution includes novel methods used in conjunction
with machine learning such as processing 3D point clouds
and vibration analysis of industrial products. An addition
to that is the application of various machine learning mod-
els on data obtained from an industrial environment. We
presented augmentation techniques to increase our dataset
size since obtaining defective industrial products in large
numbers is difficult. The results from each applied method
were presented in the previous sections and they are en-
couraging. With more data it is possible to train better
classifiers which will have better performance in classify-
ing defective samples from the production line. This re-
search tests different kinds of industrial products for some
of which only a sparse number of samples could be ob-
tained. It is worth mentioning that some of the niche in-
dustrial products have such specific defects that so far us-
ing machine learning methods proved to be unsatisfactory.
The current classifiers have difficulties learning meaning-
ful information from those samples, nevertheless results on
other industrial products give hope that new models with
better quality can be learned if sufficient data is acquired.

The purpose of this study was to test which hardware and
which methods should be applied in the second stage of a
project, that is, actual implementation. The study showed
that several approaches demand special care for our specific
real-life quality control, namely:

1. Some methods like DNNs demand lot of learning ex-
amples. In some cases, it was possible to artificially
generate these learning examples and the machine
learning approach was successful, otherwise the ap-
proach failed.

2. Depending on the difficulty of the quality control,
cheaper or more expensive hardware was needed. For
several visual problems, quality cameras were suf-
ficient, but for demanding visual problems the only
hardware that enabled good results was the 10.000
euro 3D hardware system.
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3. Machine learning proved successful when sufficient
number of learning examples were given, either real or
artificially generated. However, each approach needed
special machine learning methods. For example, DNs
sometimes performed best and sometimes worst. In
summary: having quality input data enables creation
of proper machine learning models.
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