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Artificial electric field algorithm is a new swarm bionic optimization algorithm, which uses the 

interaction force of charged particles to create a mathematical model to solve the problem. To improve 

the global exploration ability and local development ability of artificial electric field algorithms, an 

artificial electric field algorithm based on opposition learning is proposed. The chaos strategy is used to 

strengthen the quality of the initial population, and the opposition learning strategy is used to increase 

the diversity of the population and the development ability of the algorithm. The excellent performance 

of the algorithm is proved by simulation experiments. The improved artificial electric field algorithm is 

combined with SVM to construct the sand liquefaction identification model by selecting seven measured 

indexes, including intensity, underground water level, overlying effective pressure, standard penetration 

hit number, average particle size, non-uniformity coefficient, and shear stress ratio. Compared with 

traditional methods such as the standard method and seed simplification method, the results show that 

the IAEFA-SVM model has high prediction accuracy and provides an effective method for sand 

liquefaction identification.  

Povzetek: Predstavljen je izboljšan algoritem umetnega električnega polja na osnovi mnogoterih          

strategij. 

 

 

1 Introduction  
The artificial electric field algorithm (AEFA) is a 

new intelligent optimization algorithm proposed by 

Indian scholar Anita in 2019 [1]. Anita’s intelligent 

optimization algorithm, which is inspired by Coulomb's 

law of static electricity, has the characteristics of fewer 

parameters, lower computational complexity, better 

scalability, exploitability, and many others. However, it 

is easy to get into the local optimum and lacks 

exploration. 

To improve the performance of AEFA, Aysen [2] 

integrated the opposition-based learning strategy into the 

initialization and updating process of AEFA and 

proposed the oppositional learning-based AFEA 

(OBAEFA), which improved the exploring ability of 

AEFA. Anita [3-4] and others extend the AEFA 

algorithm for constrained optimization by introducing 

new velocity and location constraints. The existence of 

boundary allows particles to interact within the scope of 

the problem, and to learn from each other in the problem 

space. The introduction of the strategy makes a better 

balance effect on the exploration and development of the 

algorithm. In the following study, Anita extends the 

artificial electric field algorithm with combinatorial 

higher-order graph matching problems and introduces the 

discrete artificial electric field algorithm. The framework 

combines redefinition of location, speed representation, 

use of addition and subtraction, updating rules for speed 

and location, and initialization of specific problems with 

heuristic information [5, 6]. The algorithm is proved to 

be superior to other existing algorithms in matching 

degree and accuracy [7]. 

To improve the exploratory ability of AEFA and 

solve the problem of easily falling into local optimal 

solution, the AFEA is improved in the following aspects:   

 

i. The chaotic technique is introduced into the AEFA, 

and the initial population is generated in the search 

space by the randomness and universality of the 

chaotic motion, and the probability of finding the 

optimal solution is increased. 

ii. The diversity of the population is maintained and the 

possibility of jumping out of the local optimum is 

improved by the opposite learning strategy. 

iii. The greedy strategy is used to get the optimal value 

of the population quickly. Then, through the 

simulation of 9 test functions, the IAEFA algorithm is 
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compared with other improved algorithms to verify 

its effectiveness of the IAEFA algorithm.  

Finally, the improved artificial electric field 

algorithm, in combination with the support vector 

machine (SVM) is applied for the identification of sand 

liquefaction and the results are compared with the 

traditional method of identification of sand liquefaction. 

This project is not limited to industrial applications but 

the overall growth of social life with the integration of 

the Internet of Things, AI, and robotics [8-11]. 

The rest of this article is organized as: Section 2 

presents the principles of the algorithm. Section 3 

consists of the information about artificial electric field 

algorithms based on chaotic learning and opposition-

based learning strategy. The results and analysis part is 

covered in section 4. Section 5 describes several common 

assessment methods of sand liquefaction. At last, the 

concluding remarks are presented in Section 6.  

 

2 Principles of the algorithms 

2.1 Artificial Electric Field Algorithm 

(AEFA) 

AEFA is inspired by Coulomb's Law of electrostatic 

force, which states that the force that occurs between 

charged particles and charged particle is proportional to 

the product of their charges. The force is also inversely 

proportional to the square of the distance between the 

charges, each individual in the population is considered 

to be a charged particle, their strength is measured by 

their charge, and the position of the charge corresponds 

to the solution to the problem, the charge is defined as 

the fitness value of the candidate solution and the fitness 

function of the population. In the AEFA algorithm, only 

the electrostatic gravitation is considered, so that the 

charged particle with the largest charge (“The best 

individual”) attracts other lower charged particles and 

moves slowly in the search space. The AEFA shown in 

Figure 1 can be considered as an isolated system of 

charges, and the position of the optimal fitness value for 

any electron 𝑖 at any time 𝑡 is given by Equation 1. 

 

𝑝𝑖
𝑑(𝑡 + 1) = {

𝑝𝑖
𝑑(𝑡), 𝑓(𝑝𝑖(𝑡)) > 𝑓(𝑥𝑖(𝑡 + 1))

𝑥𝑖
𝑑(𝑡 + 1), 𝑓(𝑝𝑖(𝑡)) ≤ 𝑓(𝑥𝑖(𝑡 + 1))

 (1) 

The total number of charged particles are denoted by 

N and the total number of parameters by d. The position 

of the particle with the best fitness is represented by 

𝑝𝑏𝑒𝑠𝑡 = 𝑥𝑏𝑒𝑠𝑡  and the force exerted on the particle 𝑖 at 

time 𝑡 by the particle 𝑗 as shown in Equation 2. 

 

𝐹𝑖𝑗
𝑑 = 𝑘(𝑡)

𝑄𝑖(𝑡) ∙ 𝑄𝑗(𝑡) ∙ (𝑃𝑗
𝑑(𝑡) − 𝑋𝑖

𝑑(𝑡))

𝑅𝑖𝑗(𝑡) + 𝜀
 (2) 

𝑄𝑖(𝑡) and 𝑄𝑗(𝑡) are the charges of the 𝑖 particle and 

𝑗 particle at arbitrary time 𝑡. 𝑘(𝑡) is the Coulomb 

constant of the arbitrary time t. 𝜀 is a relatively small 

random number. 𝑅𝑖𝑗(𝑡) is the Euclidean distance 

between the two particles, represented by the Equation 3. 

 

𝑅𝑖𝑗(𝑡) = ‖𝑥𝑖(𝑡),𝑥𝑑(𝑡)‖2 (3) 

 

𝑘(𝑡) is the number of iterations and the maximum 

number of iterations, given by the following Equation 4. 

  

𝑘(𝑡) = 𝑘0 ∙ 𝑒
(

−𝛼∙(𝑖𝑡𝑒𝑟)
𝑚𝑎𝑥𝑖𝑡𝑒𝑟

)
 (4) 

𝛼 is the parameter and 𝑘0 is the initial value, 𝑖𝑡𝑒𝑟 is 

the current iteration, and maxiter is the maximum 

number of iterations. At the beginning of the algorithm, 

use constant 𝑘0 in a large initial value can make a better 

exploration. Then it is reduced by iteration to control the 

search accuracy. The total electric force of the other 

particles at any time 𝑡 on particle 𝑖 is expressed in 

Equation 5.  

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑 ∙ 𝐹𝑖𝑗

𝑑(𝑡)

𝑁

𝑗=1,𝑗≠𝑖

 (5) 

𝐹𝑖
𝑑 denotes the resultant force acting on the charged 

particle 𝑖 in 𝑑 dimensional at time 𝑡. And rand refers to 

the uniformly generated random number in the range of 

[0,1]. Random numbers can provide randomness. The 

electric field of the charged particle 𝑖 in 𝑑 dimension at 

time 𝑡 is given in Equation 6. 

𝐸𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑄𝑖(𝑡)
 (6) 

By using Equation 6 and Newton’s law, it can be 

deduced that the particle 𝑖 has an acceleration at time 𝑡 in 

𝑑 dimension and expressed in Equation 7.  

 

𝑎𝑖
𝑑(𝑡) =

𝑄𝑖(𝑡) ∙ 𝐸𝑖
𝑑(𝑡)

𝑀𝑖(𝑡)
 (7) 

𝑀𝑖(𝑡) denotes the unit mass of a particle 𝑖 at time 

t 𝑡, the velocity 𝑣 and position 𝑥 of the particle are 

represented by the following Equation 8 and Equation 9 

respectively. 

 

𝑉𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑 ∙ 𝑉𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡) (8) 

𝑋𝑖
𝑑(𝑡 + 1) = 𝑋𝑖

𝑑(𝑡) + 𝑉𝑖
𝑑(t+1) (9) 
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𝑄𝑖(𝑡) = 𝑄𝑗(𝑡) =
𝑞𝑖(𝑡)

∑ 𝑞𝑖(𝑡)𝑁
𝑖=1

𝑖, 𝑗 = 1,2, ⋯ 𝑁 (10) 

Rand denotes the uniformly generated random 

numbers in the range of [0,1]. The charge of the particle 

is calculated according to Equation 10 and it is supposed 

that each particle has an equal charge. 

In Equation 10, 𝑞𝑖(𝑡) denotes the max normalized 

value (𝑄𝑏𝑒𝑠𝑡=1) of the best particle of the selected 

suitable charge function, calculated as Equation 11. 

 

𝑞𝑖(𝑡) = 𝑒
(

𝑓𝑖𝑡𝑖(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)
𝑏𝑒𝑠𝑡(𝑡)−𝑤𝑜𝑟𝑠𝑡(𝑡)

)
 (11) 

𝑓𝑖𝑡𝑖(𝑡) is the fitness value of particle 𝑖 at time 𝑡. 

𝑏𝑒𝑠𝑡(𝑡) is the fitness value of the best particle. 𝑤𝑜𝑟𝑠𝑡(𝑡) 

is the fitness value of the worst particle. The 

minimization problem is defined as the following 

Equation 12. 

 

𝑏𝑒𝑠𝑡(𝑡) = min(𝑓𝑖𝑡𝑖(𝑡)) , 𝑖 ∈ (1,2, ⋯ , 𝑁) 
 

(12) 
𝑤𝑜𝑟𝑠𝑡(𝑡) = max(𝑓𝑖𝑡𝑖(𝑡)) , 𝑖 ∈ (1,2, ⋯ , 𝑁) 

The flowchart of the AEFA algorithm is shown in 

Figure 1. From the flowchart, you can see that the 

algorithm starts with randomly initializing the particles. 

Then, for each iteration, the fitness of each particle is 

evaluated, and the fitness values for the best and worst 

particles are calculated. In the next iteration, the velocity 

and position of each particle are updated. This process is 

repeated until the maximum number of iterations is 

reached to obtain the optimal solution. 

 

 

Figure 1: The interaction of particle 

2.2 Basic ideas of opposition-based 

learning strategy 

The opposition-based learning strategy was 

proposed by scholar Tizhoosh [12] in 2005. Compared 

with other algorithms, it takes time to get the efficiency 

of the new solution. Genetic algorithms, for example, 

require several generations or more of algebra to 

introduce new directions through genetic variation. In 

recent years opposition-based learning OBL has been 

effectively applied to various swarm intelligence 

algorithms. When solving problems, it is considered that 

there may be a better solution on the opposite side of an 

ineffective solution. The quality of a population can be 

improved by introducing opposite solutions rather than 

two independent random solutions. 

If there is a number X on [l, u], then the antithesis of 

X is defined as �̅� = 𝑙 + 𝑢 − 𝑥. Extending the definition 

of the opposite point to the n-dimensional space, 

supposing p as a point in the n-dimensional space, where 

𝑥𝑖𝜖[𝑙, 𝑢], i = 1,2，…，n, the opposite point is 𝑝′ =
(𝑥1

′ , 𝑥2
′ , ⋯ , 𝑥𝑛

′ ). Among them, 𝑥𝑖
′ = 𝑙𝑖 + 𝑢𝑖 − 𝑥𝑖 . 

Suppose x as a random number on [l, u], �̃� as its 

reverse solution, 𝑓(𝑥) the objective function, 𝑔(∙) the 

proper evaluation function. Calculating 𝑓(𝑥) and 𝑓(�̃�) in 

each iteration, if 𝑔(𝑓(𝑥)) greater than 𝑔(𝑓(�̃�)), then 

retains the value of 𝑥 and vice versa. 

 

3 Artificial electric field algorithm 

based on chaotic learning and 

opposition-based learning strategy  
 

This section includes the discussion of artificial 

electric field algorithms for chaotic learning and 

opposition-based learning strategy.  

3.1 Basic ideas of the algorithm 

For complex optimization problems, especially for 

multi-modal functions in high latitude, the basic artificial 

electric field algorithm is easy to get into the local 

optimal solution, and the ability of global exploration is 

insufficient.  Based on chaos and oppositional learning, a 

hybrid artificial electric field algorithm (IAEFA) is 

proposed. In the basic artificial electric field algorithm, 

the population initialization of the chaotic map sequence 

and the opposition-based learning strategy is introduced. 

Below are three areas for improvement. 

3.2 The main process of the IAEFA 

algorithm 

3.2.1 Initialization of Chaos method 

The process of the initialization of the standard 

artificial electric field algorithm takes random allocation 

and can not distribute the population uniformly in the 

solution domain. Especially when optimizing the multi-

peak function of high latitude, the diversity of the 

population is reduced, causing precocious puberty. At 

present, the research shows that the variables generated 

by the logistics chaotic map [13] have strong 

universality, which can improve the shortage of initial 

population diversity generated by random allocation. 

 

𝑍𝑛+1 = 𝜇(1 − 𝑍𝑛) (13) 
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In Equation 13, 𝜇 for random numbers between  

[0, 4]; 𝑍𝑛 for the nth chaotic variable, the value range for 

[0, 1]. 

3.2.2 Greedy strategy 

The matrix P of 𝑀 × 𝑁 can be obtained by the 

updating the position of particle x in the formula, and 𝑃𝑖𝑗  

denotes the position of particle 𝑖 in position 𝑗. 

In the optimal problem, each column of matrix P 

has only one selected 𝑃𝑖𝑗 , and the selected 𝑃𝑖𝑗  is the 

smallest or smaller value of the column. So greedy 

strategy is introduced to make a quick selection and the 

specific steps are as follows: 

i. Randomly select column 𝑗 (𝑙, 𝑢) as the starting 

column, and select the minimum value of column j. 

ii. From column 𝑗 forward, select the minimum value 

of the column that meets the constraint conditions 

column by column. 

iii. From column 𝑗 backward, select the minimum 

value of the column that meets the constraint 

conditions column by column. 

3.2.3 Opposition-based learning strategy 

The opposition-based learning strategy can expand 

the searching range of the group, exploit the new 

searching area, and enhance the diversity of the group. 

Mixed with the artificial electric field algorithm, it can 

improve the global search ability of the algorithm and 

prevent the algorithm from falling into the local optimal 

solution. Therefore, after population updating, the 

strategy of oppositional learning is applied to the 

population. 

When the position of particle swarm in n-

dimensional space is updated as 𝑥𝑘 = (𝑥1
𝑘, 𝑥2

𝑘 , ⋯ , 𝑥𝑛
𝑘), 

the corresponding opposite is the elite opposite �̅�𝑘 =
( �̅�1

𝑘,  �̅�2
𝑘 ⋯  �̅�𝑛

𝑘), where  �̅�𝑖
𝑘 = 𝛾 ∗ (𝑙𝑖 − 𝑢𝑖) − 𝑥𝑖

𝑘, 𝛾 ∈
[0,1] for the random number under the uniform 

distribution [14]. The sum of the population 𝑥𝑘 and  �̅�𝑖
𝑘 is 

merged, and 2N particles are sorted according to the 

ascending order of fitness value, and the N particles 

before fitness value are selected as the new particle 

population. 

The basic procedures are described below: 

Step 1: Initializes the basic parameter and initial 

population of the algorithm, determines the particle 

dimension D, the number of charge Population N, and 

initializes the position x and velocity v of N particles by 

logistic chaotic map in a given range. 

Step 2: Calculate the fitness value of each charge, 

calculate the Coulomb constant 𝑘(𝑡) of the charge, 

global optimum 𝑏𝑒𝑠𝑡(𝑡), and the worst value 𝑤𝑜𝑟𝑠𝑡(𝑡). 

Step 3: Calculate the Columbian force and 

acceleration of the charge. Update the velocity v and the 

position x. 

Step 4: Adopt the opposition-based learning strategy 

to the renewed x population and select the first n 

individuals of the fitness. 

Step 5: Use a greedy strategy to choose x. 

Step 6: Judge whether the convergence condition of 

the algorithm is satisfied, if the termination condition is 

not satisfied, then return to Step 2; otherwise, output the 

optimal solution. End the loop. 

 

4 Results and Analysis 
 

This section illustrates the analysis of results obtained 

from the comparison of the IAEFA and AEFA 

algorithms and their comparison with other algorithms. 

To verify the effectiveness of the improved basic 

artificial electric field algorithm, nine standard test 

functions are used to test its performance, and a 

comparison between the particle swarm optimization 

algorithm and the basic artificial electric field algorithm 

is made. The benchmark functions are shown in Table 1. 

In addition, comparisons between (IAEFA) with other 

intelligent algorithms are made. The experimental 

environment of the algorithm is based on the computer 

under Windows 7 system, MATLAB simulation 

platform, Inter Core i7-4720 processor, the main 

frequency of 2.6 GHz. 

To verify the validity of the improved IAEFA, contrast 

experiments are made based on seven algorithms 

including the improved IAEFA and PSO, AEFA, 

literature [2] based on the opposite learning AEFA 

algorithm, Archimedes optimization algorithm (AOA) 

[15], Condor algorithm (BES) [16], SSA [17], to 

guarantee the fairness and validity of the experiment. In 

the simulation experiment, the initial population and 

iteration times of each algorithm are set to 30 and 1000; 

the remaining parameters are suggested in the 

corresponding reference [18], as shown in Table 2. 

4.1 Comparison between IAEFA and 

AEFA on the performance 

Table 3 is the experimental results of the two 

algorithms running 30 times independently on the 9 test 

function. The spatial dimension is 30. The evaluation 

results are from the optimal value, the worst value, the 

average value, the standard deviation, and the running 

time, and the optimum values are indicated in bold type 

[19]. 

In solving the problem of minimum or maximum, the 

average value can reflect the searching ability of the 

algorithm, the best value and the worst value can reflect 

the quality of the solution, and the standard deviation can 

reflect the robustness of the algorithm. From Table 3, it 

can be concluded that the overall optimization ability of 

IAEFA is better than that of AEFA. In the 9 algorithms, 

7 of them searched the theoretical optimum and the 

quality of the solution is better than that of AEFA. It 

illustrates that in the global search stage, the chaos 

strategy is used to ensure the diversity of the population 
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and enhance the ability of global search [20]. From the 

average results, the unimodal functions F1, F3, F4, F6, 

and multimodal functions F7-F9, the average values of 

IAEFA are all 0, and F8 tends to improve compared with 

the basic algorithm AEFA. It shows that the accuracy of 

the algorithm in the late period is further improved by 

introducing an opposition-based learning strategy and a 

greedy strategy. From the standard deviation results, we 

can see that the results of IAEFA are better than that of 

AEFA. Excluding F2 and F5 test functions, the values of 

the remaining seven test functions are all 0. IAEFA 

maintains very good robustness; in terms of the running 

time of the algorithm, that of IAEFA is slightly longer 

than that of AEFA due to the addition of more policies, 

which, in combination with other aspects, is within 

acceptable limits. 

4.2 Comparison between IAEFA and 

AEFA on the improved algorithm and 

other algorithms 

Table 4 is the experimental results of 6 algorithms 

running 30 times on 9 test functions independently. The 

space dimension is set to 30, and the evaluation criteria 

are mean value and standard deviation. The “-” table 

does not provide the corresponding data in the 

references, and the optimal results are expressed in bold. 

As can be seen from Table 4, the average values of 

IAEFA in the unimodal functions F1, F3, F4, F6, and 

multimodal functions F7, and F9 are all 0. Compared 

with the other six algorithms, IAEFA is better in the 

quality of feasible solutions and search precision. There 

are many local extremum points in function F8, and it is 

difficult for the algorithm to jump out of the local 

extremum points in the process of solving. The precision 

of the improved IAEFA algorithm increased by 15 orders 

of magnitude compared with AEFA. In the same way, 

the results of the improved algorithm OBAEFA are 

relatively good, and the optimal values are found on F7 

and F9. Based on the analysis of the standard deviation 

results, the improved IAEFA algorithms have a standard 

deviation of 0 in the 7 of the 9 test functions. The results 

show that the IAEFA algorithm has little fluctuation in 

the iterative process, and its stability is better than the 

other 6 algorithms. 

The results show that the performance rank of the six 

algorithms is IAEFA, OBAEFA, BES, AOA and AEFA, 

PSO. Through the simulation experiment, the 

effectiveness of the improved algorithm is proved. 

Finally,  

it can be concluded that the improved algorithm IAEFA 

not only keeps the diversity of the population but also 

speeds up the convergence speed of the algorithm. To a 

certain extent, it avoids falling into the local optimal 

solution and further improves the optimization accuracy 

of the algorithm.  

 

     

Types Functions Function Expressions Region of search Extreme value 

Unimodal 
function 

Sphere 𝑓1(𝑥) = ∑ 𝑥𝑖
2

𝑛

𝑖=1

 [-100.100] 0 

Quartic 𝑓2(𝑥) = ∑ 𝑖𝑥𝑖
4 + 𝑟𝑎𝑛𝑑[0,1]

𝑛

𝑖=1

 [-1.28.1.28] 0 

Schwefel2.21 𝑓3(𝑥) = 𝑚𝑎𝑥𝑖{|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} [-100,100] 0 

Schwefel2.22 𝑓4(𝑥) = ∑|𝑥𝑖| + ∏|𝑥𝑖|

𝑛

𝑖=1

𝑛

𝑖=1

 [-10,10] 0 

Rosenbrock 𝑓5(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2]

𝑛−1

𝑖=1

 [-30,30] 0 

Rotator hyper-

ellipsoid 
𝑓6(𝑥) = ∑([𝑥𝑖 + 0.5])2

𝑛

𝑖=1

 [-100,100] 0 

Multimodal 
function 

Griewank 𝑓7(𝑥) =
1

4000
∑ 𝑥𝑖

2 − ∏ cos (
𝑥𝑖

√𝑖
) + 1

𝑛

𝑖=1

𝑛

𝑖=1

 [-600,600] 0 

Ackley 
𝑓8(𝑥) = −20 exp (−0.2√

1

𝑁
∑ 𝑥𝑖

2𝑁
𝑖=1 ) −

exp (
1

𝑁
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)𝑁

𝑖=1 )+20+e 

[-32,32] 0 
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Rastrigin 𝑓10(𝑥) = ∑[𝑥𝑖
2 − 10cos2 (2𝜋𝑥𝑖 + 10)]

𝑛

𝑖=1

 [-5.12,5.12] 0 

Table 1:    Benchmark test functions

 

 
Algorithm Parameter 

AEFA Alfa=30;K0=150; 

OB-AEFA Alfa=30;K0=150; 

IAEFA Alfa=30;K0=150; 

PSO W=0.9;c1c2=2.03;wmin=0.4; 

SSA R1,R2,R3=0-1; 

BES A=10;r=1.5; 

AOA 
C1=2;c2=6;c3=2;c4=0.5;u=0.9;l

=0.1; 

Table 2:  Specific parameters set by each algorithm 

 

 

Function Algorithm Optimal value 
The worst 
value 

Mean value 
Standard 
Deviation 

Run time 

F1 
AEFA 1.24E-23 2.36E+00 2.75E-01 5.63E-01 2.6723 

IEAEFA 0.00E+00 0.00E+00 0.00+00 0.00E+00 2.1768 

F2 
AEFA 4.80E-02 3.42E-01 1.9E-01 8.06E-02 1.8059 

IEAEFA 4.66E-07 6.85E-05 2.28E-05 2.60E-05 2.3204 

F3 
AEFA 2.53E+00 8.57E+00 6.07E+00 1.67E+00 1.7088 

IEAEFA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.0955 

F4 
AEFA 1.71E-03 1.82E+01 4.81E+00 4.88E+00 1.784 

IEAEFA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.107 

F5 
AEFA 1.53E+02 1.92E+02 1.72E+02 2.73E+01 1.3438 

IEAEFA 2.85E+01 2.86E+01 2.86E+01 6.38E-02 1.646 

F6 
AEFA 5.98E+02 1.94E+03 1.23E+03 3.82E+02 2.052 

IEAEFA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.4963 

F7 
AEFA 1.07E+01 3.22E+01 2.18E+01 6.86E+00 1.7691 

IEAEFA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.8644 

F8 
AEFA 1.26E-09 1.77E+00 3.71E-01 5.38E-01 1.6274 

IEAEFA 8.88E-16 8.88E-16 8.88E-16 0.00E+00 1.6879 

F9 
AEFA 1.29E+01 4.87E+00 3.11E+01 8.76E+00 1.8159 

IEAEFA 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.8537 

Table 3:  Experimental results of IAEFA and AEFA
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4.3 Comparison between IAEFA, AEFA, 

OB-AEFA, AOA, BES, and PSO on 

Convergent curve  

According to the average fitness curve, in the 

unimodal functions F1 and F6, the IAEFA found the 

theoretical optimum values at about 350 iterations, and 

for F3, and F4, at about 700 iterations. The other five 

algorithms are all above IAEFA, the fitness fluctuation 

value is small, and the theoretical optimum value cannot 

be found after 1000 iterations. For the function, F8 has 

many local minimum values and it is easy to get into the 

local optimum. IAEFA has obtained the theoretical 

optimal value of about 30 iterations and keeps the state 

of continuous exploration. Figure 2 to Figure 10 depicts 

the average fitness curve of function F1, F2, F3, F4, F5, 

F6, F7, F8, F9 respectively. 

 

 

For F7, F9, and IAEFA, the convergence speed and 

the precision are better than those of AEFA, OBAEFA, 

AOA, BES, and PSO. The effect of the algorithm is 

remarkable, the convergence curve is always at the 

bottom, and the theoretical optimal value is found in 

about 10 iterations. The results show that the algorithm 

can get the optimal population more quickly in the global 

search stage and avoid falling into the local optimal 

solution because of the guidance of the optimal 

individual in the local search stage. And the convergence 

speed and accuracy of the algorithm are improved to a 

great extent. 

 

 
Figure 2: Average fitness curve of function F1 

 
Figure 3: Average fitness curve of function F2 
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Function PSO BES AOA SSA AEFA 
OBAEF

A 
IAEFA 

F1 
Mean 3.01E-06 3.98E-84 2.11E-05 1.74E-06 2.67E-01 4.59E-02 0.00E+00 

Std.dev. 9.15E-06 1.39E-83 1.93E-05 1.05E-06 5.96E-01 2.00E-01 0.00E+00 

F2 
Mean 5.38E+00 1.02E-03 3.48E-02 1.52E-02 2.03E-01 2.39E-05 2.28E-05 

Std.dev. 6.66E+00 3.23E-03 1.86E-02 1.13E-02 8.53E-01 5.46E-05 2.60E-05 

F3 
Mean 3.01E+01 6.05E-02 2.79E+00 2.24E-05 6.07E+00 8.66E-01 0.00E+00 

Std.dev. 6.42E+00 1.39E-01 1.30E+00 7.80E-06 1.67E+00 4.33E-01 0.00E+00 

F4 
Mean 5.93E+01 8.07E-52 3.33E-04 5.30E-02 4.81E+00 1.61E-14 0.00E+00 

Std.dev. 1.89E+01 3.25E-51 2.36E-04 2.33E-01 4.88E+00 1.45E-14 0.00E+00 

F5 
Mean 4.65E+04 1.56E+01 2.80E+01 - 1.72E+02 2.85E+01 2.82E+01 

Std.dev. 6.14E+04 2.15E+00 2.13E+00 - 2.73E+01 2.59E-02 1.38E-02 

F6 
Mean 3.40E+04 3.52E-10 5.83E+01 1.40E+02 1.23E+03 6.51E-28 0.00E+00 

Std.dev. 1.19E+04 1.93E-09 5.51E+01 1.42E+02 3.82E+02 1.39E-27 0.00E+00 

F7 
Mean 3.01E+01 0.00E+00 1.91E-03 1.58E-02 2.18E+01 0.00E+00 0.00E+00 

Std.dev. 4.32E+01 0.00E+00 1.66E-02 1.11E-02 6.86E+00 0.00E+00 0.00E+00 

F8 
Mean 1.59E+01 2.34E-02 1.81E-01 2.16E+00 3.71E-01 4.67E-15 8.88E-16 

Std.dev. 7.06E+00 9.99E-02 5.56E-01 6.33E-01 5.38E-01 4.05E-15 0.00E+00 

F9 
Mean 1.58E+02 2.74E+01 2.15E+01 5.21E+01 3.11E+01 0.00E+00 0.00E+00 

Std.dev. 2.99E+01 4.91E+01 5.94E+00 1.64E+01 8.76E+00 0.00E+00 0.00E+00 

Table 4: Performance comparison of IAEFA with modified AEFA and other algorithms

 

 
Figure 4: Average fitness curve of function F3 

 

 
Figure 5: Average fitness curve of function F4 
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Figure 6: Average fitness curve of function F5 

 

 
Figure 7: Average fitness curve of function F6 

 
Figure 8: Average fitness curve of function F7 

 

 
Figure 9: Average fitness curve of function F8 

 
Figure 10: Average fitness curve of function F9 

 

5 Several common assessment 

methods of sand liquefaction 
The influence factors of sand liquefaction can be 

summed up into three categories [22]. Dynamic load: 

seismic intensity, duration, seismic wave characteristics, 

etc.; burial conditions: geological factors, soil depth, 

groundwater level, etc.; Soil conditions: soil type, 

particle composition, density, etc. In addition, the site 

shape, geomorphology, and historical earthquake 

background also have an impact on the foundation soil 

liquefaction. A description of the factors is given in 

Table 5. 

According to the analysis method of other scholars 

[23, 24], seven independent variables are selected among 

numerous influencing factors according to the seismic 

liquefaction data set provided by reference [25, 26]. 

Based on seven characteristic indexes, including 

intensity𝐼′(𝑋1), groundwater level 𝑑𝑤(𝑋2), effective 

overburden pressure𝜎0
′(𝑋3), blow counts of 

SPT 𝑁63.5(𝑋4), average grain size 𝑑50(𝑋5), non-

uniformity coefficient 𝐶𝑢(𝑋6) and shear-to-stress ratio 

𝜏𝑑/𝜎0
′(𝑋7), the liquefaction of sandy soil is divided into 

three grades according to the field conditions. The 

category set is {non-liquefaction (1), critical liquefaction 

(2) , obvious liquefaction (3)} . The discriminant results 

of the IAEFA-SVM model and Code for Seismic Design 

of Buildings (GB5011- 2010) [27] (hereinafter referred 

to as “Code”) and that of the seed simplification method 

[28] are compared and analyzed. Raw data are shown in 

Table 6. 

5.1 Critical blow counts of SPT for 

evaluating liquefaction 

In the Code for Seismic Design of Buildings 2010 

[28], clause 4.3.4 of the code puts forward the formula 

for evaluating sand liquefaction, within a depth of 20m 

below the ground, the critical blow counts of SPT of 

evaluating liquefaction can be calculated as follows in 

equation 14. 

 

𝑁𝑐𝑟 = 𝑁0𝛽[ln(0.6𝑑𝑠 + 1.5) − 0.1𝑑𝑤]√3 𝜌𝑐⁄  (14) 

In the formula: 𝑁𝑐𝑟  is the critical value of the blow 

counts of SPT for evaluating liquefaction; 𝑁0 is the 
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reference value of the blow counts of SPT for evaluating 

liquefaction, which can be taken as follows in Table 7. 𝑑𝑠 

is the depth of penetration point for saturated soil m; 𝑑𝑤 

is the groundwater level, m; 𝜌𝑐 is the clay content, when 

less than 3 or sand is used 3; 𝛽 is the adjustment factor, 

the first group takes 0.80, the second group 0.95, and the 

third group takes 1.05. 

5.2 Seed’s “simplified procedure” 

Seed’s “simplified procedure” is the first method 

proposed abroad to evaluate the liquefaction of saturated 

sand in a horizontal site [29]. The essence is to compare 

the Cyclic Resistance Ratio CRR generated by vibration 

with the Cyclic Stress Ratio CSR to evaluate the 

liquefaction. The safety factor FS=CRR /CSR, if FS>=1, 

is judged not to be liquefied, otherwise, it is judged to be 

liquefied [30]. 

5.2.1 Cyclic Stress Ratio CSR 

The Seed’s “simplified procedure” is modified 

several times, and then converts the cyclic stress ratio 

into the equivalent CSR7.5 under the magnitude 𝑀𝑠 =
7.5 after several corrections. 

 

𝐶𝑆𝑅7.5 =
𝜏𝑑

𝜎0
′ = 0.65 ×

𝛼𝑚𝑎𝑥

𝑔
×

𝜎0

𝜎0
′ × 𝛾𝑑  (15) 

In the formula, 𝐶𝑆𝑅7.5 for the earthquake cyclic 

stress ratio, kPa; 𝜏𝑑 for the average shear stress, kPa; 

𝛼𝑚𝑎𝑥 for the peak acceleration,  𝑚/𝑠2; g for the 

gravitational acceleration, 𝑚/𝑠2; 𝜎0 for the calculated 

depth of the soil divided by the total vertical stress, kPa; 

𝛾𝑑 for the stress reduction factor. 

 

𝛾𝑑 = 1.000 − 0.00765𝑧, 𝑧 ≤ 9.15𝑚 (16) 

𝛾𝑑 = 1.174 − 0.0267𝑧, 9.15𝑚 ≤ 𝑧 ≤ 23𝑚 (17) 

z is the depth of the calculated point. 

  

Influencing factor Description of influencing factors 

Dynamic load 

When an earthquake is less than magnitude 5, that is, when the epicentral intensity is less than 6, 

liquefaction will not occur generally [31]. The higher the earthquake intensity, the more serious the 

sand liquefaction. 

Burial conditions 

Deeper the sand layer is buried, greater the effective overburden pressure is, and the less easy the sand 

is to liquefy. The shallower the groundwater is, the smaller the effective pressure is, and the smaller the 

shear stress is, the easier the sand is to liquefy. The geological factors mainly refer to the geological 

age and geomorphologic unit. The older the geological age, the better the degree of consolidation, 

compactness, and structure, and the stronger the anti-liquefaction ability [32-34]. 

Soil conditions 

The average grain size is the main basis for classifying sandy soil, which can reflect the gradation of 

soil particles. The size of soil particles is related to drainage conditions. The larger the particle size, the 

less likely it is to liquefy. The non-uniformity coefficient is an index to reflect the uniformity of the 

composted soil, and it can reflect the gradation of the soil. The well-graded soil has a relatively stable 

structure, so the well-graded sand is not easy to liquefy [35-37]. 

Table 5: Factors affecting liquefaction and their description 

 

 

Serial 

number 
I(𝑿𝟏) 𝒅𝒘(𝑿𝟐) 𝝈𝟎

′ (𝑿𝟑) 𝑵𝟔𝟑.𝟓(𝑿𝟒) 𝒅𝟓𝟎(𝑿𝟓) 𝑪𝒖(𝑿𝟔) 𝝉𝒅/𝝈𝟎
′ (𝑿𝟕) 

Categorization 

vector 

1 7 1.09 50.3 5.0 0.41 2.9 0.1 2 

2 7 1.2 34.6 8.0 0.187 4.0 0.09 2 

3 7 0.8 20.3 6.0 0.111 2.0 0.08 2 

4 7 0.5 21.1 3.0 0.166 1.7 0.1 2 

5 7 1.1 42.1 7.0 0.17 1.7 0.1 2 

6 7 1.1 71.5 9.0 0.14 2.8 1.11 2 

7 7 1.4 55.5 9.0 0.14 1.6 0.1 2 
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⋮ ⋮ ⋮ 

88 8 0.65 57.7 1.1 0.080 1.74 0.234 3 

89 9 1.5 76 16.0 0.160 1.80 0.4150 3 

90 9 1.45 65.8 5.0 0.055 5.60 0.4070 3 

Table 6: Model-training samples 

 

 
The basic design earthquake acceleration (g) 0.1 0.15 0.2 0.3 0.4 

The reference value of the blow counts of SPT 
for evaluating liquefaction 

7 10 12 16 19 

Table 7: Reference value of the blow counts of SPT for evaluating liquefaction 𝑁0 

 

5.2.2 Cyclic Resistance Ratio CRR 

The cyclic resistance ratio CRR can be calculated 

from SPT values obtained from standard penetration 

tests, using the following formula (18): 

 

 

𝐶𝑅𝑅7.5 =
1

34 − (𝑁1)60𝐶𝑆
+

(𝑁1)60𝐶𝑆

135
+

50

[10(𝑁1)60𝐶𝑆 + 45]2 −
1

200
 (18) 

(𝑁1)60𝐶𝑆 = 𝛼 + 𝛽(𝑁1)60 (19) 

 

Among them: 

When 𝐹𝐶 ≤ 5，𝛼 = 0，𝛽 = 1.0; when 5 ≤ 𝐹𝐶 ≤

35，𝛼 = exp [1.76 − (
190

𝐹𝐶2)]，𝛽 = [0.99 − (
𝐹𝐶2

1000
)]; 

and when 𝐹𝐶 ≥ 35，𝛼 = 0.5，𝛽 = 1.2 

𝐶𝑅𝑅7.5 for the cyclic resistance ratio, (𝑁1)60𝐶𝑆 for 

the corrected blow counts of SPT, FC for the fines 

content, (𝑁1)60 for the modified blow counts of SPT 

when the overburden load is 100kpa and the energy 

transfer efficiency is 60%. 

 

(𝑁1)60 = 𝐶𝑁 ∙ 𝑁 (20) 

𝐶𝑁 = √100 𝜎0
′⁄  (21) 

In the formula, N is the actual blow count; 𝐶𝑁is the 

adjusted factor of overburden pressure, when 𝐶𝑁 is less 

than 0,4, it takes 0.4, when it is more than 2, takes 2. 𝜎0
′ 

is the effective overburden pressure. 

5.3 IAEFA-SVM Model 

Support Vector Machine [38-40] is a machine 

learning approach proposed by Vapnik that has been 

widely used to analyze and identify patterns. Optimal 

Separate Hyperplane (Optimum Separate Hyperplane,  

 

OSH) is obtained by using the training set to split the 

data into two categories to obtain the data categories. As 

shown in Figure 11 below. 

 
Figure 11: Support vector machine and Optimal 

Separating Hyperplane 

 

The problem of solving in a linear Support vector 

machine can be translated into the following problem 

solving: 

 

min
𝑤,𝑏,𝜉

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

 (22) 

𝑠. 𝑡. 𝑦𝑖(𝑤 ∙ 𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝑖 = 1,2, ⋯ , 𝑁 (23) 

𝜉𝑖 ≥ 0, 𝑖 = 1,2, ⋯ , 𝑁 (24) 

𝑤 is the normal vector of the hyperplane, 𝑏 is the 

classification threshold, 𝜉𝑖 ≥ 0 is the introduced slack 

variable, and C is the penalty factor. The size of C 

indicates the size of the misclassification penalty. The 

optimal decision function is obtained by the Lagrange 

multiplier: 

 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛[𝑦𝑖𝑎𝑖(𝑥 ∙ 𝑥𝑖 + 𝑏)] (25) 

The nonlinear problem is transformed into a linear 

problem by being transformed into a high-dimensional 

space to solve the problem of surface classification. 

Finally, the optimal decision function becomes: 
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𝑓(𝑥) = 𝑠𝑖𝑔𝑛[∑ 𝑦𝑖𝑎𝑖𝑘(𝑥 ∙ 𝑥𝑖) + 𝑏

𝑁

𝑖=1

] (26) 

Where k(x ∙ xi) is the kernel function. 

 

𝑘(𝑥 ∙ 𝑥𝑖) = exp (−
‖𝑥 − 𝑥𝑖‖2

2𝜎2
) (27) 

 
Figure 12: The flow chart of seismic sand liquefaction 

evaluation based on IAEFA-SVM 

 

SVM is suitable for solving the problem of small 

sample size, nonlinearity, high latitude, and local 

minimum. In the SVM model using Radial Basis 

Function (RBF) as kernel Function, penalty factor C and 

kernel function g both affect the performance of SVM. 

The parameters C and G are optimized by using the 

algorithm. The flow chart of seismic sand liquefaction 

evaluation based on IAEFA-SVM is shown in Figure 12. 

Step 1: Through the 6:4, 7:3, and 8:2 comparison of 

seismic data, select the 9:1 ratio in the training set and 

test set and improve the performance of the model. The 

input variables are the seven parameters shown above. 

Step 2: Set the range of values for C and g and the 

specific parameters for IAEFA. 

Step 3: Calculate the fitness value of IAEFA-SVM. 

Step 4: According to Formula (8) ~ (13), update the 

position of the particle, calculate the fitness value of the 

current position, and compare it with the previous fitness 

value, choose a better one. 

Step 5: Select the max of iterations as the end 

indicator, the optimal values of the IAEFA output are the 

C and g parameters in the SVM model. 

Step 6: Take the obtained C and g parameters into 

the prediction model for testing, and analyze the results. 

 

Serial 

number 
I 𝒅𝒘 𝒅𝒔 𝝈𝒗

′  𝑵𝟔𝟑.𝟓 𝒅𝟓𝟎 𝑪𝒖 𝝉𝒅/𝝉𝒗
′  

Measured 

value 
Norm Seed’s 

IAEFA-

SVM 

1 7 0.5 1.7 66.0 3 0.16 1.65 0.10 0 0 0 0 

2 7 1.1 6.3 100.0 9 0.14 2.80 0.11 0 0 1 0 

3 7 0.7 2.3 17 1 0.07 4.00 0.10 0 0 0 0 

4 7 1.4 2.3 82.4 2 0.19 1.90 0.80 0 0 0 0 

5 8 3.2 7.2 98.9 8 0.13 2.23 0.172 1 0 0 1 

6 8 3.1 9.3 78.3 51 0.32 2.46 0.184 1 1 1 1 

7 8 2.3 12.3 140.0 13 0.30 2.43 0.203 1 1 1 1 

8 8 1.1 9.22 23.4 12 0.11 2.00 0.225 0 0 0 0 

9 8 3 5.1 84.2 9 0.20 2.38 0.159 0 0 0 0 

10 8 2 3.46 48.6 8 0.31 2.42 0.163 0 1 0 0 

11 9 5 13.52 176.7 64 0.13 2.00 0.34 1 1 1 1 

12 9 3.5 8.35 78.5 31 0.21 3.15 0.347 1 1 1 1 

Table 8: Evaluation results of sand liquefaction by three methods
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5.4 Comparison between Seed’s 

simplification method and IAEFA-

SVM model and norm 

To prove the accuracy of the model, 78 groups of 

sample data were trained and 12 groups of sample data 

were evaluated. And they are also compared with the 

criterion and the results of Seed’s simplification method 

as shown in Table 8. 

 

 
Figure 13: IAEFA-SVM identification diagram 

 

From the comparison results in Table 8, it can be 

seen that two samples were misjudged by the 

normalization method and two samples were misjudged 

by the seed simplification method, the classification 

accuracy of the IAEFA-SVM model is illustrated. The 

reason for the error of the standard method is that the 

method does not take into account some key factors that 

affect the liquefaction of sand. The reason for the error of 

the seed simplification method is that it is the empirical 

discriminant of statistics, and it will have some deviation. 

It is affected seriously by human factors and has certain 

limitations. 

From the identification diagram as depicted in Figure 

13, it can be seen that the accuracy of identifying the 

degree of sand liquefaction by using the IAEFA-SVM 

model is 100%. Although there are some differences in 

the process of (C, g) parameter optimization with 

IAEFA, it is caused by the randomness of IAEFA in the 

process of optimization and it does not affect the 

accuracy of the model. It is proved that the classification 

effect of IAEFA-SVM is good and it can effectively 

solve the problem of earthquake liquefaction prediction 

of sand soil. 

 

6 Conclusion 
 

Based on the analysis of the iterative optimization 

process of the artificial electric field algorithm, the  

chaotic strategy is proposed to improve the initial 

population quality, and the opposite learning strategy and  

 

greedy strategy are used to enhance the ability of the 

algorithm to prevent the local optimal solution. 

In the process of benchmark function quota 

optimization, the results prove the effectiveness of the 

improved strategy. Based on the analysis of standard 

deviation results, the IAEFA algorithm can find the 

theoretical optimal value in 7 out of 9 test functions, the 

standard deviation of 7 out of 9 test functions is zero, 

which shows that IAEFA keeps good robustness and has 

little fluctuation in the iterative process. According to the 

analysis of the average results, all the six test functions of 

IAEFA are zero, which shows that the quality of the 

feasible solution and the search precision of IAEFA can 

be improved obviously by introducing the opposition-

based learning strategy. 

Based on the measured data of the earthquake, the 

seven measured characteristic indexes include intensity, 

effective overlying pressure, groundwater level, blow 

counts of SPT, average grain diameter, asymmetrical 

coefficient, and the shear-to-stress ratio. These 

characteristics are used as the discriminant indexes of the 

IAEFA-SVM model. The standard method, seed 

simplification method, and IAEFA-SVM model were 

used to distinguish sand liquefaction. In 12 groups of 

samples, both the standard method and seed 

simplification method made two misjudges. The 

accuracy of IAEFA-SVM to identify sand liquefaction 

reached 100%, providing a new method for the 

identification of sand liquefaction. 
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