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Locally linear embedding (LLE) is an efficient dimensional reduction algorithm for nonlinear data，
and the low dimensional data can maintain topological relations in the original space after the 
processing. But this algorithm main application is not very good in the data dimensional reduction, the 
visualization and learning effects of data classification question and so on. In ordered to solve the above 
question, this paper proposes an efficient dimensional reduction and data classification method--local 
graph embedding method based on maximum margin criterion (LGE/MMC) for dimensional reduction, 
which is applied in face recognition. This goal of algorithm is preserved under nearest neighbour
premise, where MMC criterion is used to construct the intrinsic graph and the penalty graph. In the 
intrinsic graph, the nonlinear structure is discovered in the high dimensional data space by the locally 
symmetric of linear restructuring, which is caused the similar sample as far as possible to gather in 
together. At the same time, the different class sample is far away as far as possible in the penalty graph. 
LGE/MMC seeks to minimize the difference, rather than the ratio, between the locality preserving 
between-class scatter and locality preserving within-class scatter. The results of face recognition 
experiments on ORL, YALE and AR face databases demonstrate the effectivity of the proposed method.

Povzetek: Članek opisuje algoritem za zmanjšanje števila dimenzij podatkov, ki se uporablja pri 
prepoznavanju obrazov.

1 Introduction
Face recognition has been active areas of research 
because of their potential applications in human–
computer interfaces, image and computer vision. Linear 
dimensionality reduction seeks to find a meaningful low 
dimensional subspace in a high-dimensional input space. 
The subspace can provide a compact representation of 
the input data when the structure of data embedded is 
linear in the input space. Principal components analysis 
(PCA) [1] maintains the global Euclidean structure of the 
data in the high-dimensional space and preserves the 
total variance by maximizing the trace of the feature 
covariance matrix. Linear discriminant analysis (LDA) 
[2] preserves discriminative information between data of 
different classes and finds the optimal set of projection 
vectors by maximizing the ratio between the interclass 
and intraclass scatters.

PCA, LDA, and their variants [5, 6] are not able to 
reveal the underlying non-linear [3, 4] structure of the 
face data. Recently, many manifold learning-based 
algorithms with locality preserving abilities have been 
presented. Among them, isometric feature mapping 

(ISOMAP) [7], locally linear embedding (LLE) [8, 9], 
Laplacian eigenmap (LE) [10, 11] and local tangent 
space alignment (LTSA) [12] are widely used. He et al. 
[13, 14] proposed locality preserving projections (LPP), 
which is a linear subspace learning method derived from 
Laplacian Eigenmap. LPP can find an embedding space 
that preserves local information, and it is an unsupervised 
method. Many modified LPP algorithms have been put 
forward to consider the discriminant information of 
recognition task in recent years [15-18]. 

LLE is another representative local linear manifold 
learning method. Based on the assumption of the local 
linearity, LLE first constitutes local coordinates with the 
least constructed cost and then maps them to a global 
one. Some supervised versions of LLE [19–22] are
introduced to deal with data sets labelled with class 
information and some other supervised LLE algorithms 
combined with LDA are becoming popular. Zhang et al. 
presented a unified framework of LLE and LDA [23,24]. 
Recently, He et al. [25] proposed another linear 
dimensionality reduction technique neighbourhood
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preserving embedding(NPE), which is the linearization 
of the locally linear embedding(LLE) algorithm and aims 
at finding a low-dimensional embedding that optimally 
preserves the local neighbourhood reconstruction 
relationships on the original data manifold. Some 
extension methods of NPE [26,27] are introduced to 
feature extraction. Experiments have proven that LLE 
and NPE are effective method for visualization.

Some other discriminant manifold learning 
algorithms, local discriminant embedding (LDE) [28], 
marginal Fisher analysis (MFA) [29] and neighbourhood
preserving discriminant embedding (NPDE) [30] are 
proposed where their combine the Fisher criterion [31] 
with manifold criterion. They can be unified under the 
Fisher graph framework. However, they are different on 
their objective functions in terms of different graph 
embedding types and derivations. LDE utilizes LPP to 
form the intra-class and inter-class graph pair; MFA 
models the intra-class graph to characterize the intra-
class compactness and the inter-class graph to 
characterize the inter-class separability with binary graph 
coefficient; and NPDE utilizes NPE to form the intra-
class and inter-class graph pair to model the within- and 
between-neighbourhood scatters.

Above manifold learning algorithms can all be 
interpreted as the implementations of the linear graph 
embedding framework (LGE) [32] with different weight 
matrices or some variations. However, some limitations 
are exposed when LGE is applied to pattern recognition. 
One limitation is that some LGE such as LPP, LLE and 
NPE neglect the class information, which will impair the 
recognition accuracy. Another limitation lies in that some 
LGE such as LDE, MFA and DLPP involve inverse 
matrix of discriminant criterion, which will impair the 
recognition accuracy.  So, in this paper we present local 
graph embedding method based on maximum margin 
criterion [33] (LGE/MMC) for dimensional reduction.
Therefore, much computational time would be saved for 
feature extraction which is not necessary to convert the 
image matrix into high-dimensional image vector and 
avoids inverse matrix. 

The rest of this paper is organized as follows: We 
review the ideas of linear methods in section 2. In 
Section 3, we propose the idea of LGE/MMC algorithm 
in detail. In section 4, we introduce the connections 
between LLE, NPE and LGE/MMC. Experiments are 
presented to demonstrate the effectiveness of LGE/MMC 
on face recognition in section 5. Finally, we give 
concluding remarks and a discussion of future work in 
Section 6.

2 Outline of Linear Methods
Let us consider a set of N
sample 1 2{ , ,..., }NX x x x , D

ix R taking values in 

an n-dimensional image space. Let us also consider a 
linear transformation mapping the original n-
dimensional space into a d-dimensional feature 

space 1 2{ , ,..., }NY y y y , where d
iy R

and n d . The new feature vectors d
iy R are 

defined by the following linear transformation:

          , 1, ...,T
i iy U x i N                  (1)

where n dU R  is a transformation matrix. In this 
section, we briefly review how the LDA, LPP and 
UDP algorithms realize subspace learning.

2.1 Linear discriminant analysis (LDA)
LDA [2] is a supervised learning algorithm. Let c denote 

the total class number and ic denote the number of 

training samples in the i-th class. Let j
ix , denote the j-th 

sample in i-th class, x be the mean of all the training 

samples, ix be the mean of the i-th class. The between-

class and within-class scatter matrices can be evaluated 
by:

               
1

( )( )
c T

b i i ii
S l x x x x


             (2)                            

1 1
( )( )ic c j j T

w i i i ii j
S x x x x

 
          (3)                             

LDA aims to find an optimal projection U such that 
the ratios of the between-class scatter to within-class 
scatter is maximized, i.e.

                      arg max
T

b

TU
w

U S U
U

U S U
                        (4)                       

where { | 1, 2,..., }iU i d is the set of generalized 

eigenvectors of bS and wS corresponding to the d

largest generalized eigenvalues { | 1,2,..., }i i d  , i.e.

             , 1,2,...,b i i w iS U S U i d  .                    (5)                                  

2.2 Linear preserving projection (LPP)

The similarity matrix S of LPP [13,14] can be Gaussian 
weight or uniform weight of Euclidean distance using k-
neighbourhood or  -neighbourhood, defined as 

2
1,

0, otherwise

i j
ij

x x
S

   


                        (6)                   

Hence, the objective function of LPP is defined as：

                     
,

min i j ij
i j

y y S                         (7)                    

where  means the 2L norm. After some matrix 

analysis steps, the minimization problem becomes 

arg min T T

U
U XLX U

              s.t.  1T TU XDX U                           (8)

where 1 2[ , , , ]NX X X X  is the training space of 

size n N , and D is a diagonal matrix whose entries
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are column or row sums of S . L D S  is the 
Laplacian matrix.

The optimal d projection vectors that minimizes the 
objective function can be computed by the minimum 
eigenvalues solutions to the generalized eigenvalues 
problem                    

T T
i i iXLX U XDX U                       (9)                              

2.3 Maximum margin criterion (MMC)
The MMC is based on the difference of between-class 
scatter matrix and within-class scatter matrix, which is 
defined as follows: 

( ) ( ( ) )T
s wbJ w tr U S S U                (10)               

where the parameter  is a nonnegative constant 
which balances the relative merits of maximizing the 
between-class scatter to the minimization of the 
within-class scatter. The between-class scatter matrix 

bS and within-class scatter matrix wS can be denoted as

0 0
1

1
( )( )

C
T

b i i i
i

S n
n 

   f f f f                   (11)                     

     
1 1

1
( )( )

inC
i i T

w j i j i
i j

S
n  

   x f x f                (12)                             

where in is the number of training samples in class i. In 

class i, the jth training sample is denoted by i
jx , the mean 

vectors of training samples in class i is denoted by if and 

the mean vector of all training samples is 0f . Let 

t b wS S S  and tS denotes the total scatter matrix. As 

we know, bS , wS and tS are all positive semi-definite.

3 Local Graph Embedding Based on 
Maximum Margin Criterion

3.1 The idea of LGE/MMC
When only a small number of training samples is 
available the within-class scatter matrix used by many 
feature extraction techniques (LDA, LPP etc) is singular, 
which represents a major obstacle for most techniques as 
they require an inversion of this singular matrix.
Motivated by the idea of MMC, LGE/MMC seeks to 
minimize the difference, rather than the ratio, between 
the locality preserving between-class scatter and locality 
preserving within-class scatter. Then the singularity is 
avoided. LGE/MMC is theoretically elegant and can 
derive its discriminant vectors from both the range of the 
locality preserving between-class scatter and the range 
space of locality preserving within-class scatter. To gain 
more discriminative power, it is desirable to minimize 
the locality preserving between-class scatter and 
maximize the locality preserving within-class scatter 
simultaneously.

3.2 Locality preserving within-class scatter
To begin with, we propose to minimize the local scatter 
compactness of each data point by linear coefficients that 
reconstruct the data point from other points. The 
technique of local representation is the same as LLE [8, 
9]. LLE regards each data point and its nearest neighbors 
as the locality. The algorithm can be described in three 
steps.

The first step of LLE is to select cK -nearest 

neighbors of each data points ix using Euclidean 

distances.
The second step of LLE is to calculate the 

reconstructing weight matrix ij N N
W w


    , which 

reconstructs each point ix from its cK -nearest 

neighbours. We can obtain the coefficient matrix W by 
minimizing the reconstruction error:

2

1 1

min ( )
cKN

L i ij j
i j

J W x w x
 

                     (13)         

where 0ijw  if ix and jx are not neighbors, and the 

rows of W sum to 1: 
1

1
cK

ij
j

w


 .

The reconstruction error can be converted to this 
form:
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where    
jt

Ti
i j i tG x x x x   ,called the local Gram 

matrix. By solving the least-squares problem with the 

constraint
1

1
cK
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j

w


 , the optimal coefficients are given:
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After repeating the first step and the second step are 
performed on all the N data points, we can calculate the 
reconstruction weights to construct a weight 

matrix ij N N
W w


      .

The third step of LLE is to reconstruct 

represented iy by the weight matrixW . To maintain the 

intrinsic geometrical feature of the data after the 
embedding process, the reconstruction error function 
must be minimized:
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2

1 1

min ( )
N N

L i ij j
i j

J Y y w y
 

                            (16)

where iy is the output of ix , jy is a neighbor of iy .

Considering the map in Eq. (1), the objective 
function reduces to
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where    T
M I W I W   .

3.3 Locality preserving between-class 
scatters

To begin with, for the first aspect of our consideration, 
we propose to maximize the sum of pair wise squared 
distances between outputs if they have different labels.
So, maximize locality preserving between-class scatter of 

samples is considered：

     
2

1 1

max ( )
N N

G i j
i j

J Y y y
 

                (18)                   

Considering the map Eq.(1), the objective function 
reduces to

2
( ) p

G i j ij
i j

J Y y y W 
2T T p

i j ij
i j

U x U x W                                               

2 ( )T p p TU X D W X U 
2 T p TU XL X U                                           (19)

The variance of between-class points is deemed as 
local information. We construct the similarity matrix 

p
ijW as follows:

i

j

1, if  x  is in the  Kp nearest  

from different classes  of x  

0, otherwise

p
ijW


 



   (20)            

3.4 Criterion of LGE/MMC
At last, when the locality preserving between-class 
scatter and the locality preserving within-class scatter
have been constructed, an intuitive motivation is to find a 
common projection that minimizes between-class scatter 

( )LJ W and maximizes within-class scatter ( )GJ U at the 

same time. Actually, we can obtain such a projection by 
the following multi-object optimized problem, that is:

 
 

min

max

T T

T p T

tr U XMX U

tr U XL X U





                                       (21)                  

s.t. T TU XX U I
The solution to the constrained multi-object 

optimized problem is to find a subspace which minimize 
the locality preserving between-class scatter and 
maximize the locality preserving within-class scatter 
simultaneously. Motivated by the idea of MMC, 
LGE/MMC seeks to minimize the difference, rather than 
the ratio, between the locality preserving between-class 
scatter and the locality preserving within-class scatter. So 
it can be changed into the following constrained 
problem:

  min T p Ttr U X M L X U                                              

s.t. T TU XX U I                                           (22)
where  is an adjustable parameter to balance between-

class scatter and within-class scatter.
Eq. (22) can be solved by Lagrange multiplier 

method:

      ,

0

T p T T T
iL U U X M L X U U XX U I     


                                                                                    (23)       

where i is the Lagrange multiplier. Thus we get:

 p T T
iX M L X U XX U                           (24)   

where iU is generalized eigenvector correspondingly to 

generalized eigenvalue i .

4 Connection between LLE, NPE 
and LGE/MMC

In this Section, LGE/MMC seems to be formally similar 
to LLE and NPE. However, LGE/MMC is also obviously 
different from them. In order to investigate the similarity 
and the difference, we discuss the connections between 
LLE, NPE and LGE/MMC.

4.1 Connection between LLE and NPE

LLE and NPE aim to discover the local structure of the 
data manifold. LLE is defined only on the training 
samples, and there are no natural maps of the testing 
sample. Instead, NPE is defined on both the training and 
test samples. NPE is a linear approximation to LLE.
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In NPE, the matrix TXMX is symmetric and semi-
positive definite. In order to remove an arbitrary scaling 
factor in the projection, we impose a constraint as 
follows:

T T TYY I U XX U I                         (25)
Finally, the minimization problem reduces to 

findingU :

 min
T T

T T

U XX U I

tr U XMX U


                               (26)

The transformation matrix U that minimizes the 
objective function is given by the minimum eigenvalue 
solution to the following generalized eigenvector 
problem:

    T T
i i iXMX U XX U                 (27)           

4.1 Connection between NPE and LGE/MMC
As a result, LGE/MMC is formulated as the 

following constrained minimization problem:

  min
T T

T p T

U XX U I

tr U X M L X U


         (28)             

Thus we have:
ˆ T T

i i iXMX U XX U                          (29)

where M̂ M M   , pM L . It is easy to see that 

NPE is a special case of LGE/MMC (i.e. when 0  ).

4.2 Connection between LLE, NPE and 
LGE/MMC

From above discussed, NPE and LGE/MMC yield 
mappings that are defined not only on the training data 
points but also on novel testing points. The essence of 
NPE is the linear approximation to LLE. As we know, 
the graph construction of LLE and NPE fails to use the 
global discriminative information. However, we can see 

from M̂ first that LGE/MMC preserves the locality 
characteristic since M still exists and second that it 

adds the discriminant information through M . From 
what has been discussed above, it can be concluded that 
LGE/MMC builds a new graph with different edge 
weight assignment method, integrating both local 
information and discriminant information. Thus, by 
integrating the discriminant into the objective function, 
LGE/MMC will be more robust than LLE and NPE.

5 Comparisons of Computation 
complexity and space complexity

In Table 1, we compare the computational and the 
memory space complexities of the six methods. Here m 
and n is the number of the rows and the columns of the 
image matrix. L, M and N are the number of the 
projection vectors, the testing and the training samples, 
respectively.

Table 1: The computational and the memory space complexities of the six methods.
Method Complexity

Time (training) Time (testing) Memory

PCA O(m2n2L)          O(MNL) O(m2n2)
LDA O(m2n2L)          O(MNL) O(m2n2)
MMC O(m2n2L)          O(MNL) O(m2n2)
LLE O(m2n2L+ mnN2)          O(MNL) O(m2n2)
LLE+LDA O(2m2n2L+ mnN2)          O(2MNL) O(2m2n2)
LGE/MMC O(m2n2L+ 2mnN2)          O(MNL) O(m2n2)

In Table 1, for the PCA, LDA and MMC, since we 
need to perform O(MN) tests when using the nearest 
neighbour rule for classification and for each test it has 
the time complexity of O(L), the testing time is O(MNL). 
The memory cost is determined by the size of the 
matrices of the associated eigen equations, which is 
O(m2n2). The training time complexity depends on both 
the size of the matrices in the eigen equations and the 
number of the projection vectors that are required to be 
computed, which is O(m2n2L). For the LLE method, an 
extra time cost to construct the similarity matrix, i.e., 
O(mnN2), will be taken into account. So, LLE+LDA has 
the time complexity of O(2m2n2L+ mnN2), the testing 
time is O(2MNL) and Memory is O(2m2n2). The 
proposed method LGE/MMC has the time complexity of 
O(m2n2L+ 2mnN2), the testing time is O(MNL) and 
Memory is O(m2n2). So the proposed method is much 
than other methods in testing time.

6 Experiments and results
To evaluate the proposed LGE/MMC algorithm, we 
systematically compare it with the PCA [1], LDA [2], 
LLE [8-9], MMC [33] and LLE+LDA [23-24] algorithm 
in three face databases: ORL, YALE and AR. When the 
projection matrix was computed from the training part, 
all the images including the training part and the test part 
were projected to feature space. Euclidean distance and 
nearest neighborhood classifier are used in all the 
experiments. The experiments were carried out on the 
same PC (CPU: P4 2.8 GHz, RAM: 1024 MB).

6.1 Database
The ORL face database [34] contains images from 40 
individuals, each providing 10 different images where 
the pose, face expression and sample size vary. The 
facial expressions and facial details (glasses or no 
glasses) also vary. The images were taken with a 
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tolerance for some tilting and rotation of the face of up to 
20 degrees. Moreover, there is also some variation in this 
scale of up to about 10 percent. All images normalized to 
a resolution of 56×46. We test the recognition 
performances of the six methods: PCA, LDA, LLE, 
MMC, LLE+LDA and LGE/MMC. In the experiments, 
l images ( l varies from 2 to 6) are randomly selected 
from the image gallery of each individual to form the 
training sample set. The remaining 10 l images are 

used for testing. For each l , we independently run 50 
times. In the PCA phase of LDA, LLE, MMC,
LLE+LDA and LGE/MMC, we keep 95 percent image 
energy. 

  The YALE face database [35] contains 165 gray 
scale images of 15 individuals, each individual has 11 
images. The images demonstrate variations in lighting 
condition, facial expression (normal, happy, sad, sleepy, 
surprised, and wink). In this experiment, each image in 
Yale database was manually cropped and resized to 
50×40. In the PCA phase of LDA, LLE, MMC,
LLE+LDA and LGE/MMC, we keep 95 percent image 
energy. In the experiments, l images ( l varies from 2 to 
6) are randomly selected from the image gallery of each 
individual to form the training sample set. The remaining 
11 l images are used for testing. For each l , we 
independently run 50 times.

The AR face database [36] contains over 4,000 color 
face images of 126 people (70 men and 56 women), 
including frontal views of faces with different facial 
expressions, lighting conditions, and occlusions. The 
pictures of 120 individuals (65 men and 55 women) were 
taken in two sessions (separated by two weeks) and each 
section contains 13 colour images. The face portion of 
each image is manually cropped and then normalized to 
50×40 pixels. These images vary as follows: 1. neutral 
expression 2. smiling 3. angry 4. screaming 5. left light 
on 6. right light on 7. all sides light on 8. wearing sum 
glasses 9. wearing sun blasses and left light on 10. 
wearing sun blasses and right light on. In this 
experiment, l images ( l varies from 2 to 6) are 
randomly selected from the image gallery of each 
individual to form the training sample set. The remaining 
20 l images are used for testing. For each l , we 
independently run 10 times. In the PCA phase of LDA, 
LLE, MMC, LLE+LDA and LGE/MMC, the number of 
principle components is set as 150. The dimension steps 
are set to be 5 in final low-dimensional subspaces 
obtained by the seven methods.
Fig.1, Fig.2 and Fig.3 show the sample images from the 
three databases.

Fig.1 Images of one person on the ORL database

Figure 2: Images of one person on the YALE database.

Figure 3: Images of one subject of the AR database. The 
first line and the second line images were taken in 
different time (separated by two weeks).

6.2 Experimental results and analysis 
Except PCA and LDA, the local methods involved in the 
experiments are manifold learning based approaches, 

where cK and pK nearest neighbourhood search are

contained. Thus how to select cK and pK are an 

important problem in feature extraction. If the value of 

cK and pK are too small, it is very difficult to preserve 

the topologic structure in low-dimensional space. On the 

contrary, if the value of cK and pK are too big, it is very 

difficult to depict the assumption of local linearity in 
high dimensional space. So it will affect the 
dimensionality manifold reduction result by the value 

of cK and pK . In the first experiment, we investigate the 

performance of the LGE/MMC algorithm over the 
reduced dimensions versus the corresponding varied the 

value of cK and pK . To find how cK and pK affect the 

recognition performance, we change 1ck l  and 

pK are from 1 to 20 with step 1. Fig.4 displays the 

average recognition rates with varied the value of pK by 

carrying out LGE/MMC when only two images per class 
were randomly selected for training on the YALE face 
databases. LGE/MMC obtains the best average 

recognition rate is 94.79% when pK =4. This indicates 

that the locality and the globality are with the same 
importance. In the next experiment, the value of 

adjustable parameter pK is taken to be 4.

Figure 4: The average recognition rates (%) of 
LGE/MMC versus the corresponding varied the value of 
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pK when only two images per class were randomly 

selected for training on the YALE face databases.

In the second experiment, we also test the impact of 
 on the performance when only two images per class 

were randomly selected for training on the YALE face 
database, which can be found in Fig. 5. We varied 

from 1 to 100 with step 1. Fig. 5 displays the maximal 
average recognition rates with varied parameter  by 

carrying out LGE/MMC. From Fig. 5, it can be found 
that the effectiveness of the LGE/MMC algorithm is 
sensitive to the value of the parameter  . LGE/MMC 

obtains the best average recognition rate is 94.79% when 
 =6. This indicates that the locality and the globality 

are with the same importance. In the next experiment, the 
value of adjustable parameter is taken to be 6.

In the third experiment, we randomly select l images 

( l varies from 2 to 6) of each individual for training, and 
the remaining ones are used for testing. We compare the 
performances of different algorithms. The average 
recognition rates obtained by different algorithms as well 
as the corresponding dimensionality of reduced subspace 
(the numbers in parentheses) on the ORL, YALE and AR 
face databases are given in the Table 2, Table 3 and 
Table 4, respectively. Fig.6. is the average recognition 
rates (%) of LGE/MMC versus the corresponding varied 
dimensions when only six images per class were 
randomly selected for training on the ORL, YALE and 
AR face databases. We change the number of 
eigenvectors from 2 to 50 with step 2 on the ORL, YALE 
face databases and the number of eigenvectors from 5 to 
150 with step 5 on the AR face database, respectively. 

Table 2: The average recognition accuracy(%)of different algorithms on the ORL face database and the corresponding 
standard deviations and dimensions.

              l
Methods

2 3 4 5 6

PCA 72.25 2.61
(22)

81.62 0.65
(22)

83.98 1.00
(22)

85.41 1.30
(22)

85.41 1.98
(22)

LDA 76.35 1.07
(28)

83.40 1.69
(28)

84.13 2.03
(28)

86.07 1.16
(28)

88.60 0.78
(28)

LLE 69.78 0.82
(32)

72.66 0.73
(30)

76.32 1.14
(36)

78.85 1.15  
(20)

88.44 1.55
(28)

MMC 75.01 1.77
(26)

83.96 0.48
(28)

84.37 2.48
(28)

87.47 0.85
(28)

90.49 1.17
(26)

LLE+LDA 73.36 1.24
(18)

85.84. 1.23
(20)

89.30 0.83
(22)

88.61 1.79
(20)

94.53 1.82
(10)

LGE/MMC 75.53 1.88
(30)

86.00 1.41
(36)

91.65 0.33
(36)

94.17 1.45
(36)

96.53 0.72
(36)

Table 3: The average recognition accuracy(%) of different algorithms on the YALE face database and the 
corresponding standard deviations and dimensions.

Figure 5: The maximal average recognition rates (%) of 
LGE/MMC versus the corresponding varied the value 
of  when only two images per class were randomly 

selected for training on the YALE face database.
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Table 4: The average recognition accuracy(%) of different algorithms on the AR face database and the corresponding 
standard deviations and dimensions.

         l
Methods

2 3 4 5 6

PCA 66.68 1.11
(85)

70.21 1.62
(85)

77.60 1.27
(85)

79.03 0.81
(80)

81.54 1.04
(85)

LDA 71.50 0.71
(70)

75.58 0.76
(70)

82.53 0.81
(70)

87.12 0.33
(70)

87.58 0.75
(70)

LLE 70.40 0.89
(85)

74.31 1.16
(75)

83.35 1.49
(70)

84.78 0.76
(80)

86.98 0.40
(85)

MMC 69.39 1.15
(80)

75.71 0.59
(80)

82.98 0.62
(85)

85.27 0.94
(80)

87.86 0.82
(80)

LLE+LDA 69.38 1.20
(90)

79.23 0.89
(80)

88.17 1.36
(80)

89.09 1.49
(85)

92.420 1.08
(80)

LGE/MMC 71.99 0.99
(75)

81.00 0.78
(50)

90.46 0.89
(85)

91.39 0.91
(45)

95.60 0.80
(50)

(a)ORL face database( l  4 ) (b) Yale face database( l  6)

l
Methods

2 3 4 5 6

PCA 77.29 1.20
(18)

80.20 1.27
(20)

83.99 1.38
(18)

84.72 1.24
(20)

86.21 0.80
(22)

LDA 80.45 1.48
(8)

84.55 1.06 
(8)

87.85 0.45
(8)

87.20 1.64
(8)

88.54 0.82
(8)

LLE 83.55 1.38
(14)

83.58 0.59
(6)

85.90 0.75
(6)

88.37 1.63
(8)

88.97 1.56
(8)

MMC 80.58 0.71
(12)

82.84 0.88
(6)

85.87 1.12
(6)

86.83 0.37
(6)

87.79 0.50
(6)

LLE+LDA 88.33 1.21
(22)

92.45 0.75
(18)

92.84 1.01
(12)

95.34 1.21
(10)

95.21 1.24
(10)

LGE/MMC 94.38 0.41
(36)

94.54 0.83
(16)

93.84 1.16
(38)

95.47 0.11
(38)

96.29 1.26
(38)
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(c)AR face database( l  5)

Figure 6: The average recognition rates (%) of 
LGE/MMC versus the corresponding varied dimensions 
on the ORL, YALE and AR face databases.

The above experiments showed that the maximal 
average recognition rates of all methods increases with 
the increase in training sample size in Table 2, Table 3
and Table 4 respectively. The proposed LGE/MMC 
algorithm consistently outperforms better than other 
methods in all experiments in three face databases. From 
Fig.6 we can find that with the increase number of 
eigenvectors on three face databases, the average 
recognition rates also improved.

7 Conclusions
In pattern recognition, feature extraction techniques 

are widely employed to reduce the dimensionality of data 
and enhance the discriminatory information. In this 
paper, we proposed a new method for feature extraction 
and recognition, namely local graph embedding method
based on maximum margin criterion (LGE/MMC) for 
dimensional reduction. The results of face recognition 
experiments on ORL, YALE and AR face databases 
demonstrate the effectivity of the proposed method. In 
the future, we will make more tests on other types of data 

and decide the optimal parameter  , cK and pK . For 

future work, we will extend LGE/MMC to supervised 
and semi-supervised cases.
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