
https://doi.org/10.31449/inf.v47i9.3844 Informatica 47 (2023) 17–34 17

A Consolidated Tree Structure Combining Multiple Regression Trees with

Varying Depths, Resulting in an Efficient Ensemble Model

Elmira Ashoor Mahani*, Koorush Ziarati

Comp. Sci. & Eng. & I.T. Dept., Shiraz University, Mollasadra Street, Shiraz, Iran

E-mail: elmira.ashoor@cse.shirazu.ac.ir, ziarati@shirazu.ac.ir

*Corresponding Author

Keywords regression tree, stopping condition, ensemble, efficient

Received: November 28, 2021

Regression is a commonly used technique to predict a continuous target value based on a set of input

features. Decision trees are hierarchical models that offer high interpretability, fast and precise

reasoning, and are also used for regression tasks. However, determining the optimal stopping conditions

for decision trees is a complex problem that has attracted significant research interest. Ensemble based

modeling is an effective approach for adjusting hyper-parameters, where base models with varying

parameter values are combined instead of searching for the best value. Random forests are a classic

example of an ensemble model that combines decision trees generated from different perspectives. This

paper proposes a novel approach that generates base trees using the same tree-generation procedure, but

with different stopping conditions. Unlike random forests, this model can be efficiently integrated into a

single tree structure. Additionally, the paper proposes some aggregation methods based on weighting the

base models. Experimental results on standard datasets demonstrate that the proposed method

outperforms well-known stopping conditions.

Povzetek: Razvita je nova metoda kombiniranja regresijskih dreves, ki dosega boljše rezultate v

primerjavi z znanimi metodami v regresijskih nalogah.

1 Introduction
Decision trees are commonly used tools for pattern

recognition, especially in supervised tasks like

classification and regression. Their hierarchical structure

allows for simple, interpretable, fast, and accurate

decision-making. Decision trees have been extensively

researched in the literature, with many applications

focusing on classification tasks such as intrusion

detection, privacy preservation, power systems, bank

marketing, health care and disease diagnosis, and

agriculture [1-7]. Additionally, researchers have

investigated regression models based on decision trees,

which are typically referred to as regression trees, in fields

like psychology, education, urban planning,

environmental management, genetics, communication,

and economics [8-15].

In Table 1, the regression methods are compared. The

popularity of decision trees can be attributed to their

ability to provide a simple and interpretable representation

of the data, which is particularly important in fields where

understanding and analyzing the model's output is crucial.

Furthermore, decision trees are fast and accurate, making

them attractive for real-time applications. However, their

performance can be affected by the quality of the data used

to train the model, and they may not always be the best

choice for complex datasets. Despite these limitations,

decision trees remain a valuable tool for pattern

recognition and continue to be an active area of research.

1.1 Decision tree

A decision tree is a flowchart-like structure with a tree

hierarchy, where each internal node includes a test on a

feature, each branch represents the output of the test, and

each leaf node represents a consequence. To make a

decision on a given instance using a decision tree, the

instance must traverse a complete path from the root to a

leaf in the tree. At the leaf, a value or a model is provided

to predict the target value of the instance, such as a specific

classifier or regression model. Decision trees can easily be

converted into a set of rules, where each path from the root

to a leaf is a rule, making them simple and completely

interpretable.

Compared to other rule-based systems, decision trees

are efficient in decision-making due to their hierarchical

structure, and not all rules need to be checked.

Additionally, decision trees can simultaneously divide the

feature space into small or large regions, providing

specific and general rules, respectively. This ability makes

decision trees one of the most accurate prediction models.

In summary, decision trees are simple, interpretable, fast,

and accurate models that can efficiently divide the feature

space and convert the tree structure into a set of rules.

mailto:ziarati@shirazu.ac.ir

18 Informatica 47 (2023) 17–34 E.A. Mahani et al.

The time complexity of decision tree induction has

been shown to increase exponentially with the height of

the tree. To overcome this limitation, heuristic methods

have been proposed in the literature to produce shallow,

small, and/or accurate trees [13,14]. These methods aim to

optimize a predefined objective function on the training

set by partitioning the feature space into two or more sub-

regions based on a specific feature. The resulting tree

includes internal (decision) nodes and leaves, where each

node is associated with a region that may be partitioned

based on a feature or labeled as a leaf node.

In a classic decision tree, each sub-region, considering

associated instances, is recursively partitioned into smaller

ones until a stopping condition is satisfied. The

partitioning process forms a tree that provides a

hierarchical representation of the decision-making

process. At each internal node, a test is performed on a

feature (called pivot feature) to partition the feature space

into sub-regions. The objective is to maximize the

homogeneity of the instances within each sub-region with

respect to the target variable. The partitioning process

continues until a stopping condition is met, typically when

a sub-region contains a small number of instances or when

further partitioning does not improve the accuracy of the

model. In regression models, the best feature is the one

that can reduce the error metric of regression (e.g., mean

square error) on the training instances more than others.

In a regression tree, if a region cannot be further

partitioned and some stopping conditions are met, the

partitioning process is stopped. The instances associated

with that region are then used for reasoning. A single value

may be assigned as the prediction value for all instances

in the leaf node, or a regression model trained on the

associated instances may be used for future prediction.

The assigned value or model represents the prediction of

the decision tree for instances that belong to that region in

the feature space.

After the tree construction phase, the resulting tree

may have many leaves, particularly in the presence of

noisy data and outliers. This can lead to overfitting, where

the tree is too complex and fits the training data too

closely, even capturing undesired noises. To address this

issue and remove the least reliable branches, statistical

measures are typically used to prune the tree.

Pruning the decision tree results in a smaller, less

complex, and easier-to-understand tree, which is usually

faster and more accurate in classifying test data. Pruning

can be performed either pre-pruning or post-pruning,

depending on the stopping conditions used in the tree

construction phase. Pre-pruning involves setting stopping

conditions during tree construction to avoid overfitting,

while post-pruning involves removing branches after

construction based on statistical measures. Proper

stopping conditions can lead to an efficient pre-pruning

approach that is more accurate and faster than post-

pruning [15].

In the testing phase, a query instance is fed into the

decision tree starting from the root node and following a

path through the tree until a leaf node is reached. At each

node, the value of the query instance for the associated

pivot feature is used to determine which child node to

traverse to in the next layer. This process continues until

the query instance reaches a leaf node. In the leaf node,

the assigned value or model is used to predict the

corresponding target value of the query instance.

1.2 Random forest

Although decision trees have a simple structure and

provide acceptable performance, finding the optimal tree

that optimizes the desired objective function can be a

challenging task. The construction process is typically

done using a greedy method, which can result in a

suboptimal tree. As a result, small changes in the

parameters, distribution of training instances, or objective

function can significantly alter the final tree. To address

this issue, ensemble methods have been proposed to

generate multiple trees from different perspectives to

improve the stability and accuracy of the model [16].

Ensemble methods use multiple base models that can

differ in type, model, hyperparameters, construction

method, and instance set used for training. In the case of

using a set of decision trees as the base models, the

resulting ensemble model is called a Random Forest (RF).

There are various types of RFs that use different

approaches to generate the individual decision trees, such

as Adaboost, boost strap or bagging [17-20].

Decision trees themselves have the ability to divide

the feature space into subregions and their associated

instances, which in turn allows a dedicated subtree to be

assigned to each region to recursively classify the

associated training instances. Therefore, decision trees

employ a specific instance selection to some extent. In RF,

the base trees typically differ in the random features

chosen in each step to partition the feature space. This is

known as feature bagging [21]. Additionally, the random

selection of splitting points in each node is another

characteristic of classic RF algorithm [22]. These

randomization techniques help to reduce overfitting and

increase the diversity of the base models, which in turn

improves the accuracy and stability of the ensemble

model.

In ensemble methods such as Random Forests (RFs),

a majority vote (in classification) or averaging (in

regression) is used to combine the predictions of all the

trees on a query instance to make the final prediction. This

requires storing all the trees. Also, the output of all the

trees should be determined for final prediction as a time-

consuming task during the testing phase. Moreover, a

large number of decision trees can degrade the

interpretability of the model. Some rules may be generated

whose antecedents are satisfied, but their consequences

differ significantly from the final outcome of the ensemble

model due to the aggregation of the consequences of all

activated rules. Despite these limitations, RFs have been

shown to significantly improve the performance of

decision trees, and they remain popular in many

applications. In this paper, trees ensembled with different

stopping conditions is considered, which can lead to a

more efficient and interpretable model.

A Consolidated Tree Structure Combining Multiple Regression… Informatica 47 (2023) 17–34 19

1.3 Stopping conditions

During the construction of a decision tree, the

expansion of a node may be stopped for various reasons,

such as decreasing memory complexity or preventing

overfitting on the training data. To prevent overfitting and

control the complexity of the decision tree, a set of

hyperparameters is used to define and evaluate the

stopping conditions. The stopping condition is checked at

each node to decide whether to expand the node further or

stop partitioning. Some stopping conditions'

hyperparameters are reported in Table 2. The ones

investigated in this paper are:

- Maximum Depth of the tree (MxD): This parameter

limits the maximum allowed depth of the decision tree. If

the depth of a node exceeds this value, the node expansion

is stopped.

- Minimum number of Instances per leaf (MnI): This

parameter sets the minimum number of training instances

required to split a node. If a node has fewer instances than

this threshold, the node expansion is stopped.

- Maximum number of Leaves (MxL): This parameter

limits the maximum allowed number of leaf nodes in the

decision tree. If the number of leaves exceeds this value,

the node expansion is stopped.

- Maximum Error per leaf (MxE): This parameter sets

the maximum error can be handled in a leaf. If the error

exceeds this threshold, the leaf should be expanded.

-Minimum (Relative) Promotion (MnP/MnRP): Each

expansion should be along with a minimum decrease in

the total error to be done. The value of decrease in error

may be relatively computed respect to the current error.

These hyperparameters can be tuned to optimize the

performance of the decision tree and prevent overfitting.

The merits and drawbacks of them are discussed later in

this paper. The optimal set of hyperparameters depends on

the characteristics of the training data and the desired

performance of the model. On the other hand, adjusting

the hyperparameters of a decision tree is a time-

consuming and challenging task, and there is no rule of

thumb to determine the optimal values for any given

dataset. Cross-validation on the training data is a common

technique for hyperparameter tuning in machine learning

models. However, cross-validation can be expensive, and

separating a set of validation data from the training set can

result in variations in the constructed decision trees such

that the best hyperparameters may not be suitable with

sufficient confidence. In addition, cross-validation is a

task of evaluating a value for a hyper parameter. A search

strategy is required to extract candidates and find the

optimal solution. The strategies will be compared later.

Moreover, different regions of the feature space may

require different attention to extract the decision

boundaries. However, the hyperparameters of the stopping

conditions affect all the nodes in a single tree. Therefore,

in some cases where more specificity is required, the

expansion may be stopped, while in another branch of the

tree, generalization may be sacrificed for extra

partitioning. Additionally, the importance of the stopping

conditions may vary from case to case.

1.4 Motivations and innovations

In this paper, a novel approach is proposed to

ensemble learning using decision trees with different

hyperparameters, specifically focusing on the depth of the

trees. This approach simplifies the process of designing

these hyperparameters by generating many trees with

different stopping conditions, which are then aggregated

to produce the final result. In this approach, the

hyperparameters are integrated into a single, simple

solution by constructing trees with different depths in each

branch. Finally, the resulting trees are merged into a single

tree, called as the Mother Tree. This approach preserves

both the efficiency and interpretability of the model, since

it occupies memory only as large as a single tree and

allows the results of all the virtual trees to be computed for

a query instance by a single pass on the associated path

from the root to a leaf of the Mother Tree. The proposed

approach offers a simple and effective solution for

stopping condition adjustment based on ensemble learning

that overcomes the limitations and challenges of

traditional decision trees and random forests, and provides

an interpretable model.

Weighted model aggregation has been shown to

improve the performance of ensemble methods, but it can

also be computationally expensive, especially when

dealing with a large number of trees. Heuristic

approaches, such as Adaboost are commonly used to

address this issue [18]. In this paper, some simple

weighting approaches are proposed, which can be applied

to the Mother Tree structure. The proposed approaches

assign weights to the virtual trees in voting phase, each

one with its own characteristics.

The remainder of this paper is organized as follows.

In Section 2, a review of the related work is given on

ensemble learning and model aggregation. In Section 3,

the proposed model is presented. In Section 4, the

experimental results are reported followed by discussions.

Finally, the paper is concluded in Section 5

2 Related work
A regression tree is a variant of the classification

decision tree that predicts a real value instead of a class

label. In a regression tree, a constant value or a regression

model is created at each leaf node after constructing the

tree. The node error is usually calculated as the mean

square of all differences between the desired and predicted

values for all validation instances in that node. The first

known regression tree is the AID method [23] . AID

declares the mean of target values of all instances reached

at each leaf node as its regression value. Hence the mean-

square error is equal to the variance of associated target

values as the impurity measure of each node. This method

generates a piecewise constant model that has good

interpretability but may have lower accuracy than models

with more smoothness.

M5' is a regression tree that uses an efficient strategy

to create a piecewise linear model [24]. The first output of

this strategy is a piecewise constant tree, and then a proper

linear regression is found and replaced constant value for

20 Informatica 47 (2023) 17–34 E.A. Mahani et al.

each leaf. Because the tree structure is piecewise constant,

the M5' final tree is larger than other piecewise linear

trees. Fidalgo-Merino et al. introduced an incremental

algorithm to generate a tree [25]. However, most recent

research has applied Classification and Regression Trees

(CART) as the base regression model more than other

models in the literature [26].

Regression trees are typically constructed using

heuristics, which do not guarantee the optimality of the

output. Kordos et al. introduced an evolutionary approach

in which a set of regression trees evolves to achieve the

best tree [27]. Two important evolutionary operators,

mutation and crossover, were implemented by substituting

selected attributes along branches and exchanging

subtrees between different trees. However, evolutionary

search methods can be time-consuming, and defining a

fitness function that can accurately describe the optimal

tree may not be straightforward. With such ambiguity,

finding the tree with the optimum objective function may

not be necessary.

Due to the uncertainties surrounding the proper

objective function, limitations, and structure of regression

trees, researchers have turned to ensemble different views

of tree construction. RSSCARD is a method proposed in

to predict spatial landslides [28]. They hybridized

Random Subspaces (RSS) and CART to achieve their

goal. Choubin and et al. ensemble, for the first time,

CART and Multivariate Discriminant Analysis (MDA) to

analyze flood susceptibility and obtained acceptable

results [29]. Random Forests (RF) are also an ensemble of

decision trees that combine the merits of different

structures or parameters. Decision trees are faster to train

than RFs, which is why they are still desirable. However,

the accuracy of Random Forests (RF) is greater [30].

Parameter adjustment in tree construction is also a

challenge in this research field. One of the most important

sets of parameters are the ones associated with the

stopping conditions, such as maximum depth, maximum

leaves, and maximum error. Bing Zhang et al. used CART

to predict blood pressure, and they used cross-validation

to avoid overfitting, choose the best parameters, and

develop a better general model [31]. Ensemble methods,

including RFs, can also be used to aggregate trees with

different parameters. In this case, time-consuming cross-

validation is not used, and the randomness of the model

injected from cross-validation is removed. However, to

our knowledge, this ensemble approach has not yet been

used in the literature as a solution for the problem of

stopping conditions, especially for regression models. In

this paper, not only is this ensemble approach presented,

but also it has been efficiently integrated into the structure

of a single tree called the Mother Tree. Finally, instead of

generating many trees, a reasoning strategy has been

proposed based on the generated Mother Tree with various

aggregation methods.

3 Proposed method
The main contributions of this paper, as mentioned

previously, are as follows:

1. All stopping conditions and parameter

combinations are integrated into one parameter,

Maximum Depth of tree (MxD), as the only difference

among the candidate trees. It has been proven that MxD is

a sufficient parameter as the stopping condition, here.

2. All constructed trees are merged into a single tree

with the time-complexity of generating just one tree. This

approach saves computational resources and improves the

interpretability of the model.

3. Some weighted average methods are proposed on

this integrated tree to ensemble all candidate trees. These

methods provide more robust and accurate prediction by

combining the outputs of multiple trees. Each aggregation

method has its own attributes and behavior on datasets.

Each one of these contributions is addressed in detail

in the following subsections.

3.1 Maximum depth of tree

Stopping conditions' (SC) parameters do not affect the

selection of the pivot feature of each node or the best set

of splitting points in the nodes. However, these parameters

can determine whether a node should be expanded or not.

As a result, some leaves may be generated based on SCs

that are internal nodes in some other trees (due to later

stopping) and may not be generated in other trees (due to

early stopping). The training set reached at an internal

node or leaf is deterministic and unique in all possible

trees that have that node. If the parameter of the stopping

condition is changed, it can alter the tree's depth of some

branches. The mostly expanded possible tree is called,

here, the Mother Tree (MT). However, the MT may also

follow some hard hyper restrictions defined by experts

which prevent more expansion, such as the Maximum

Depth of Tree. For example, consider an MT constructed

as shown in Figure 1, where the Sum Square Error (SSE)

of the target values of belonging instances in each node is

also reported in the nodes.

Figure 1: An example of Mother Tree expanded to reach

zero sum square error in leaves.

If Maximum Error (MxE) in leaves is considered as

the stopping condition, each node with SSE greater than

ME will be expanded, whereas nodes with SSE less than

or equal to MxE will become leaves. Decreasing this

upper-bound may lead to a deeper tree by expanding some

nodes until reaching the MT shown in Figure 1. Other

intermediate possible trees associated with different

values of MxE are depicted in Figure 2. In this example,

MT is completely generated for MxE < 4.

A Consolidated Tree Structure Combining Multiple Regression… Informatica 47 (2023) 17–34 21

Figure 2: Intermediate tree structures depicted in Fig.

1: (a) MxE ≥ 16, (b) MxE ∈ [8,16), (c) MxE ∈ [4,8).

It is evident that only full rooted subtrees (tree

structures) can be generated because when an internal

node is expanded, all of its children are generated. Cross-

validation is a common method for adjusting

hyperparameters to the best possible value in a candidate

set. However, there is often no guarantee that two different

candidate values will generate different tree structures.

Additionally, a value that generates a specific tree

structure may not be included in the candidate set. For

example, cross-validation on the candidate values of MxE

{18, 13, 8, 3} can only generate two out of the three tree

structures in Figure 2 and the Mother Tree in Figure 1. In

other words, MxE = 13 or 8 generates similar structures,

and the one shown in Figure 2-c is missed. However, a

complete set of non-redundant candidates can be

generated in this case by sorting all positive SSEs in the

nodes of the MT.

The main problem, however, remains. Given a

predefined parametric stopping condition, some node

expansions are inevitable to achieve other specific

expansions. For example, by decreasing MxE of the tree,

it cannot be controlled to have expansion in specific nodes

only. Hence, generating all tree structures is not

guaranteed. For instance, the tree structure depicted in

Figure 3 cannot be generated with this stopping condition

because if a node with SSE = 4 is expanded, the node with

SSE = 8 should also be expanded. However, these nodes

cover disjoint regions of the feature space with their

unique characteristics and requirements.

Hybrid stopping conditions may generate more tree

structures. There are many parameters associated with

stopping conditions, as mentioned in the introduction, and

each one can have numerous values if the parameter is

discrete (e.g., MxD, MnI, and MxL) or a range of values

if the parameter is continuous (e.g., MxE and MnP).

Selecting an appropriate set of parameters and candidate

value set for each one to construct all possible structures

is likely impractical. Thus, conducting a complete search

on tree structures is a challenging task, and the optimal

structure may be missed.

Any parameter of the stopping condition only affects

the lengths of the paths from the root to the leaves. In other

words, these parameters are not used in reasoning and only

determine the expandability of each node during the

training phase. Once the nodes that should not be

expanded (leaves) are determined, the tree structure can be

uniquely constructed, and the target value for each query

instance can be predicted. The tree structures are finite,

countable, and much less than all combinations of the

parameter values. As the first contribution of this paper,

all tree structures are investigated regardless of any

stopping condition to address the above concerns.

However, the number of tree structures also exponentially

increases with respect to the Maximum Depth of the tree.

Assume that the Mother Tree is a full binary tree with

depth 𝐷 at all leaves, called here a 𝐷-tree. For D-trees with

depth D = 1 and 2, there are two and five tree structures,

respectively. The five tree structures of the MT in Figure

1 are itself and four other structures presented in Figures

2 and 3. The number of tree structures can be very large

for deeper trees. For example, a 4-tree, 5-tree, and 6-tree

have 677, 458,330, and approximately 210 ×

10^9structures, respectively. Such a large number of

structures can make constructing all possible structures

computationally infeasible. To address this problem, two

techniques have been employed. Firstly, it is proved that a

small set of tree structures defined with just one stopping

condition, the Maximum Depth of tree, is sufficient to

include an optimal structure for each query instance.

Secondly, these structures are integrated to achieve a

single structure without losing performance. These

techniques significantly reduce the number of structures

and make it practical to construct an optimal tree structure.

3.1.1 Minimum covering set

Determining the best tree structure with minimum

total error on a set of validation data can be challenging.

Regardless of the definition of the error function, the

optimal tree structure is not necessarily the best for all

query instances. Finding the tree structure with the

minimum error for each query instance 𝑞 in the validation

set can help to use the strengths and overcome the

weaknesses of different tree structures. This information

can be used to select the best tree structure for a particular

query instance or to develop an ensemble of tree structures

that performs well on a diverse set of query instances.

Since a query instance 𝑞 deterministically moves

from the root of the MT down to reach the leaf, its path in

its best structure is also determined to reach the associated

leaf 𝐿. In other words, one tree structure in the set of 𝑑-

tree structures (𝑑 = 0, … , 𝐷), includes 𝐿 in associated path

of 𝑞 as the leaf and performs as well as the best structure

for 𝑞.

Therefore, a set of (𝐷 + 1) 𝑑-structures (𝑑 =
0,1, . . . , 𝐷) can work as well as all exponential number of

Figure 3. A tree structure of MT in Fig.1 which is

not feasible with just MxE as the stopping

condition.

22 Informatica 47 (2023) 17–34 E.A. Mahani et al.

tree structures. This approach significantly reduces the

number of tree structures that need to be constructed and

evaluated, making it computationally feasible to find an

optimal tree structure.

3.2 Merging the trees

Assuming a Mother Tree (MT) is constructed and

given, as shown in Figure 1. For each query instance 𝑞, the

corresponding leaf in its optimal tree is denoted by 𝑁∗(𝑞).

Tracking the associated path from the root towards the

corresponding deepest node (leaf) in MT certainly passes

𝑁∗(𝑞). If the prediction value or model for all internal

nodes of MT in this path is also computed, as well as the

leaves, the query can compute its predicted target value by

all 𝑑-structures. Therefore, just one tree structure (Mother

tree) is sufficient to be constructed, whereas all nodes

(internal and leaves) are assigned a prediction value or

model in the training phase. The only problem is

determining the optimal depth for a given query instance.

In this case, two different paths, separated from a

disjoint node, can have their own stopping conditions,

which are dynamically discovered in the test phase. Even

two query instances that belong to a common path may

have their own stopping condition on the tree. As a

postponed decision, all prediction values of a query

instance in all depths of MT can be gathered, and one of

these candidate values can be assigned as the final

prediction (e.g., the most frequent or the median). This

approach can significantly reduce the computational cost

of constructing multiple tree structures to generating just

one tree but with a decision value or model in all the

nodes.

In the training phase, it is assumed that the stopping

condition may be held in each of the nodes (even in the

root). Hence, each node is temporarily considered as a

leaf, and a label or model is assigned to it. In the test phase,

each given query instance 𝑞 is fed to the MT to find its

complete path. This path is a sequence of 𝐷 + 1 decision

nodes 𝑛0(𝑞), 𝑛1(𝑞), . . . , 𝑛𝐷(𝑞). Based on that, 𝐷 + 1

different predictions are computed for 𝑞 representing the

values or output of the models assigned to decision nodes.

Now, it is time to reason for the final value (adaptively

select the leaf or stopping condition). For example, the

most frequent or median value in the predicted values can

be assigned. This adaptive approach can improve the

performance of the MT and make it more robust to

different query instances.

3.3 Ensemble of tree structures

As mentioned earlier, the best tree structure for a

query instance 𝑞 exists; however, it may not be identified

during the test phase. Even, its prediction for the target

value may not be sufficiently accurate. In this case, none

of the candidate values in the path are sufficiently

accurate. To address this issue, this paper, similar to

random forests, uses the average of the outputs of the

regression trees for reasoning during the testing phase.

As the third contribution, this paper employs an

ensemble of 𝑑-structures for reasoning, instead of

selecting just one tree structure. The ensemble of (𝐷 + 1)

𝑑-structures is used for decision here. During the testing

phase, each query instance 𝑞 is fed to all (𝐷 + 1) 𝑑-

structures in the ensemble, and 𝐷 + 1 different predictions

are computed for 𝑞, as explained earlier. Then, the average

of these predictions is returned as the final prediction for

𝑞. Also, a weighted approach can also be used as shown

in (1).

𝑦(𝑞) =
∑ (𝑤𝑑 ∗ 𝑦𝑑(𝑞))𝑑

∑ 𝑤𝑑𝑑
 (1)

where 𝑦𝑑(𝑞) is the predicted value for query instance

𝑞 by the 𝑑𝑡ℎ 𝑑-structure, 𝑤𝑑 is the weight assigned to the

𝑑𝑡ℎ 𝑑-structure, and ∑ (𝑤𝑑)𝑑 is the sum of weights over

all 𝑑-structures to normalize the average. Each node 𝑛𝑑

contributes to the total reasoning as much as its positive

weight 𝑤𝑑. If all 𝑑-structures have an equal effect on the

total prediction, 𝑤𝑑 is set to one.

3.4 Weighting the nodes

In this paper, some proper greedy weighting methods

are sought for the nodes of a path to determine the final

decision. As a classic approach, a statistical representative

of the outputs of the path can be considered as the final

approach as follows:

1. If it is desired to minimized the maximum

difference between each output and the

representative, the Middle point as the mean

of minimum and maximum values is

returned as the final decision. This output is

robust against small changes in all outputs

except of the minimum and maximum.

However, it is highly sensitive to outlier

outputs.

2. If it is desired to minimize sum of absolute

differences between the outputs and the

representative, final result is the Median of

the outputs in the path. In contrary with

Middle, Median is more robust against

outliers and increasing maximum or

decreasing minimum does not change its

value.

3. Minimizing sum square of differences leads

to return the Mean of outputs. It is sensitive

to all values but as much as one vote between

all other votes.

All of above approaches can be considered as a version

of weighted average as shown in equations (2)-(4).

𝑀𝑖𝑑𝑑𝑙𝑒 =
1

2
𝑣0 +

1

2
𝑣𝐷 (2)

𝑀𝑒𝑑𝑖𝑎𝑛 =
1

2
𝑣

⌊
𝐷

2
⌋

+
1

2
𝑣

⌈
𝐷

2
⌉
 (3)

𝑀𝑒𝑎𝑛 =
1

𝐷+1
∑ 𝑣𝒹

𝒟
𝒹=0 (4)

where values 𝑣𝒹 (𝒹 = 0,1, … , 𝒟) are sorted outputs of

the path 𝑦𝒹(𝑞). However, the weights can be assigned

A Consolidated Tree Structure Combining Multiple Regression… Informatica 47 (2023) 17–34 23

with other strategies respect to different goals. Two

simple opposite strategies are given here.

Increasing weighting: In this strategy, it is assumed

that deeper nodes (more specific rules) are more trustable

due to their high resolution of looking training data. In this

strategy, deeper leaves have greater weights. With a

constant growth rate 𝛼, the weights 𝛼, 2𝛼, 3𝛼, … , (𝒟 +
1)𝛼 are assigned to 𝑤0, 𝑤1, 𝑤2, … , 𝑤𝒟, respectively.

Decreasing weighting: From this point of view, the

deepest node (the leaf) is not necessarily the best for

reasoning, especially if the Mother Tree is permitted to be

expanded as much as possible (which may result in

overfitting to the training data). In addition, the training

instances that belong to a leaf not only affect the output of

the leaf but also play a role in determining the output of

all internal nodes in the path. Therefore, the accumulated

effect of training instances that belong to the leaf is more

significant than that of others in determining the final

result. This is why; to balance the effects, the weight of

deeper nodes should be smaller. In this paper, reverse of

previous approach is used and 𝛼, 2𝛼, … , (𝒟 + 1)𝛼 are

assigned to 𝑤𝒟 , 𝑤𝒟−1, … , 𝑤0, respectively.

In increasing weighting, each weight 𝑤𝒹 should be

normalized by equation (5).

𝑤𝒹
𝑁 =

2𝑤𝒹

𝛼(𝒟+1)(𝒟+2)
=

2(𝒹+1)𝛼

𝛼(𝒟+1)(𝒟+2)
=

2(𝒹+1)

(𝒟+1)(𝒟+2)
 (5)

where 𝑤𝒹
𝑁 is normalized value of 𝑤𝒹. Hence, 𝛼 has no

effect on the final result and the weights can similarly

considered 1, 2, …,𝒟 + 1.

3.5 Discussions

In this subsection, some properties of the proposed model

are discussed from different viewpoints. The proposed

ensemble approach has several desirable properties that

make it a promising method for solving classification and

regression tasks.

The proposed ensemble approach can be considered as an

ensemble model of (𝐷 + 1) 𝑑-structures with weights

𝑤0, 𝑤1, … , 𝑤𝐷, respectively. Each 𝑑-structure corresponds

to a tree with a constant depth 𝑑 in all branches.

In addition, the proposed model is flexible and can be

adapted to different types of datasets and tasks. There is

no parameter introduced by this paper for implementing

the proposed ensemble model. The only parameters are

related to the construction of the MT, such as the number

of branches of an internal node for continuous pivot

features or the maximum depth the MT can be expanded

to. These parameters can be adjusted based on the specific

characteristics of the dataset and the computational

resources available.

3.5.1 Extra expansion

One of the challenges in using the proposed ensemble

approach is determining the value of the maximum depth

𝐷 of the MT. The value of 𝐷 can be chosen based on the

characteristics of the dataset and the computational

resources available.

It is worth noting that the maximum depth 𝐷 is equivalent

to the Maximum Depth of the tree (MxD) used in a

regression tree with a single stopping condition. In both

cases, the tree is expanded up to a certain depth. However,

the main difference between a regression tree with a single

stopping condition based on MxD and the proposed

method is in reasoning. In the former, the target value is

predicted by just using the value or model assigned to the

leaf node corresponding to the query instance. However,

in the proposed method, a weighted average of predictions

in the leaf node and its ancestors is used as the final result.

This weighted average takes into account the contribution

of each node to the final prediction. In increasing and

decreasing weighting, general and specific rules,

respectively, have more effects on the output to achieve

more generalization on test data or precision on learning

training data

Expanding the nodes more than necessary can cause

overfitting on the training set. This weighting method

aggregates general (short) and specific (long) rules to

make a good decision. Specifically, if the MT is overfitted

on the training data by deep leaves, it can be compensated

to some extent by the shallower nodes in the test phase.

The shallow nodes capture the general patterns and rules

in the data, while the deeper nodes capture more specific

and detailed patterns. The proposed ensemble approach

aggregates the predictions of all nodes, taking into account

their weights, to make a final prediction for a query

instance. This aggregation ensures that the contribution of

each node to the final prediction is proportional to its

importance. In decreasing weighting, overfitting is

addressed by ensuring that the weights of deeper nodes are

smaller than the weights of shallower nodes.

3.5.2 Single representative tree

One concern with the proposed ensemble approach is the

time-complexity of tree construction and reasoning during

the training and test phases, respectively. However, the

tree construction process in this approach is similar to a

simple regression tree, including feature selection, finding

splitting points, node expansion, and value or model

assignment to the leaves. In contrast to using a regression

model in just the leaves (e.g., in M5), the proposed method

requires learning a model for all nodes, including the

leaves and internal nodes. Each internal node at depth 𝑑 is

treated as a leaf node in a 𝑑-structure, and a model is

learned on the instances that reach this node. However, all

these models are tuned in the offline training phase, rather

than during the online testing phase.

One of the main concerns with the proposed ensemble

approach is the time-complexity of the reasoning process

during the online testing phase. Each query instance must

be fed to all the models associated with the met nodes in

the path to compute their outputs, which can be time-

consuming. To address this issue, the computation can be

transferred to the training phase. Specifically, let Q be the

set of instances (not limited to the training set) that reach

the leaf node 𝑛𝐷(𝑄). Each instance in Q deterministically

meets all and only the ancestors of 𝑛𝐷(𝑄) in the path from

24 Informatica 47 (2023) 17–34 E.A. Mahani et al.

the root to the leaf node (𝑛0(𝑄), . . . , 𝑛𝐷(𝑄), where 𝑛𝑑(𝑄)

is the node in depth 𝑑 that is met by Q).

For all instances in 𝑄, the same weights 𝑤0, . . . , 𝑤𝐷 and

models 𝑦0(𝑞), . . . , 𝑦𝐷(𝑞) are used for output generation.

However, 𝑦𝑑(𝑞1) may not be equal to 𝑦𝑑(𝑞2) for two

different vectors 𝑞1 and 𝑞2 in 𝑄, unless a constant value is

assigned to each node. Finally, instead of having 𝐷 + 1

different models in the path, it is possible to generate just

one model in each leaf by integrating the models in the

path using equation (1). It should be noted that even the

weights can be adaptively determined.

By using the same weights and models for all instances in

Q, the time-complexity of the reasoning process during the

online testing phase may be reduced significantly. In some

cases, such as in AID and M5 models, the outputs of all

nodes are constant or can be represented by a polynomial

regression model of degree M. In these cases, the final

output can also be constant or a polynomial of the same

degree. Therefore, instead of averaging the nodes' output

in the path during reasoning, a constant output or

polynomial regression model can be set to just the leaves,

making the time-complexity of reasoning equal to that of

a single regression tree. However, such value or model is

not computed using only the target values of instances

belonging to the that leaf. Other instances also contribute

in this value respect to their roles to determine the values

of the nodes in the path and associated weights.

Hence, the problem of stopping condition adjustment

changes to value/model assignment to the leaves. In other

words, the main difference between the proposed method

and the base regression tree is in the value/model used in

the leaves for reasoning, with similar time-complexity.

This computation can also be used for other regression

models, but the weighted average of base models is not

necessarily a model of the same type. In this case, the

time-complexity may not be reduced.

As the final quality evaluation, the proposed method is

compared with general strategies for hyperparameter

setting in Table 3. As mentioned, Evolutionary strategies

can also be used for tree construction including

hyperparameters [32]. But evolutionary models are highly

time-consuming such that evaluating each solution needs

a tree construction and evaluation. The most usual strategy

is grid search where a limited set of values for a

hyperparameter (often single parameter) is considered and

the best one based on cross-validation is selected. In order

to be sure, these values address different and all possible

trees, entire path of the parameter may be used in the

literature [33]. The entire path of stopping condition

parameters can easily be extracted by traversing the

Mother Tree; although, based on our knowledge, no

research yet has proposed it. Ensemble of models with

different parameters is also a good approach which is not

indeed a search strategy [34]. However, it uses various

models with different parameters (instead of selecting just

one value) and aggregates their outputs. One of the

contributions of this paper is proposing an ensemble

model for defining the stopping condition. The main merit

of ensemble models is their capacity to generate outputs

by aggregation which are not even seen in each base

model. The main drawback of ensemble models is their

storage need and inefficiency during reasoning because

the query instance should be fed to all base models stored

in the memory. But the proposed method can integrate all

the models in one structure to leverage merits of ensemble

models along with low complexity in time and memory.

One of the most important merits of the proposed model

is that, for a query instance can compute the final output

with any stopping condition parameter without need to

reconstruct the tree using the training set.

4 Experimental results
In this section, the proposed ensemble approach is

compared with single stopping conditions in decision

trees. Other regression methods are not considered

because, it is assumed that decision tree in a specific

application is preferred by an expert as a regression model

due to their accuracy, speed in reasoning, or

interpretability. Random forests may outperform single

trees by sacrificing speed of reasoning and interpretability.

However, the proposed method, despite being based on an

ensemble of trees, can be merged and described by a single

tree. As mentioned before, even the resulted tree can be

converted to a single tree with just labels or models in the

leaves.

In the conducted experiments and comparisons, six

datasets presented in Table 4, were used. Two of these

datasets, "Stock portfolio performance" and "Concrete

Compressive Strength," have two target values for

prediction. As a result, eight datasets in the experimental

results were used. The proposed ensemble approach was

compared with single decision trees using different

stopping conditions, such as Maximum Depth of the tree

(MxD), Maximum Error per leaf (MxE), and Minimum

Relative Promotion in error (MnRP). The experimental

results show that the proposed ensemble approach

outperforms single stopping conditions.

In this paper, two types of regression trees were

implemented based on AID and M5. Each tree

construction has two phases: in the first phase, the tree is

constructed by selecting the best features and splitting

points, while in the second phase, a model is assigned to

the leaves. Based on AID, a constant value (mean of the

target value of belonging instances) is assigned to each

leaf. In M5, although the tree is constructed similarly, a

linear regressor is finally assigned to each leaf. In other

words, based on constant and fast regressors, the tree is

constructed, and finally, a linear regressor is modeled on

the instances of each leaf. The use of constant regressors

in AID-based trees and linear regressors in M5-based trees

allows for flexible modeling of the target variable,

depending on the nature of the dataset. In this paper, each

feature is partitioned into two branches in an internal node.

However, it is permitted to use it again as the pivot feature

in descendants, indirectly supporting partitioning to more

than two branches.

The proposed trees were tested on all datasets

addressed in Table 4, with the only stopping condition

being Maximum Depth of tree (MxD). In the first

experiment, Mean Square Errors (MSE) of prediction by

A Consolidated Tree Structure Combining Multiple Regression… Informatica 47 (2023) 17–34 25

both AID and M5 were computed vs. MxD, using five-

fold five-times cross-validation. In Fig. 4, for each MxD,

the number of datasets for which AID or M5 had better

functionality than the other one was reported. For

example, for MxD of at most two, M5 defeated AID on all

datasets. However, as depth increased up to 20, the

number of datasets on which AID achieved better

prediction also increased. The main reason for this is that,

by increasing the depth of the tree, the complexity of the

tree also increases. In such situations, simpler models in

the leaves have better generalization on unseen data. The

best model for each dataset can often be easily detected by

cross-validation. Therefore, to be fair, the best model was

used for each dataset (i.e., M5 was used on "Housing" and

"Concrete-Slump", while AID was applied on the others).

Figure 4: The number of wins of AID (Morgan,

1963) and M5 (Witten, 2005) in competition on the

datasets addressed in Table 4 vs. MxD.

Table 5 reports the normalized MSE of predictions on the

datasets with different values of MxD. The MSE has been

normalized by Mean Square of the target value under

prediction, to diminish the scaling effect of target values

on the error. The last two rows of the table show the

minimum normalized MSE and associated depth for each

dataset.

While using maximum depth as a stopping condition has

some merits, it also has some drawbacks. On the one hand,

this parameter is simple and has a practically finite set of

values (positive integers less than an acceptable bound),

which makes it easy to implement and tune. On the other

hand, this parameter acts similarly in all branches,

whereas two nodes at similar depths may have completely

different situations with respect to the number of

associated instances, variance of target values, and

separability of instances in the next expansion. As a

consequence, finding the proper value of MxD for a

dataset is a challenge, and it may not work properly in all

parts of the tree.

In the next experiment, the best regression tree for each

dataset (AID/M5) was constructed with another stopping

condition, such that one node would not be expanded

unless the Sum Square Error (SSE) of associated instances

was greater than a predefined threshold. This threshold is

referred to as Maximum Error (MxE) in this paper. The

results of this experiment are reported in Table 6, with

respect to normalized MSE vs. 10 different values of MxE

with various granularities. The two last rows of the table

present the minimum error and corresponding value of

MxE for each dataset.

However, even for this stopping condition, as shown in

Table 6, different thresholds can lead to the best

performance. For example, the labels of "Stock Portfolio"

(Stock Annual & Excess) achieve the best prediction with

MxE=0.01, while for "Slump-Slump," the best

performance is associated with MxE=100. This stopping

condition also suffers from some drawbacks, including its

scale sensitivity. If the training set is duplicated, it is not

desired to have any modification in the decision tree.

However, the number of instances in each node is doubled,

and therefore, stopping conditions based on MxE or

Minimum Instance per leaf (MnI) may be held in deeper

nodes. To address this issue, Mean Squared Error (MSE)

of each node may be checked as the stopping criterion

instead of SSE. Another scaling problem is related to the

scale of the target value. If all target values are scaled by

α, it is desired to have a similar tree for reasoning but with

scaled values at the leaves. However, Sum Squared Error

and MSE of each node are scaled by 𝛼2. Hence defining a

threshold is dependent to the scale of the target values.

The third stopping condition investigated in this paper is

based on Relative Promotion (RP), which is presented in

equation (6).

𝑅𝑃(𝑛) = 1 −
∑ 𝑆𝑆𝐸(𝑛𝑏)𝐵

𝑏=1

𝑆𝑆𝐸(𝑛)
 (6)

Equation (6) defines RP as the difference between the

sum of squared errors (SSE) of the parent node and the

sum of SSEs of its children, divided by the SSE of the

parent node. Here, 𝑆𝑆𝐸(𝑛) is the Sum Square Error of

associated instances to the node 𝑛. The node 𝑛 is

considered to be expanded to 𝐵 children 𝑛1, . . . , 𝑛𝐵. In

other words, this metric measures how the expansion

decreases the sum square error of prediction on associated

instances, relative to the initial SSE of the parent node.

The proposed approach uses RP as a stopping condition,

such that a node will not be expanded if its RP is less than

a predefined threshold. This threshold is referred to as

Minimum Relative Promotion (MnRP) in this paper.

Unlike other stopping conditions, such as MxD and MxE,

RP is stable with respect to both the training set size and

target value scaling. Table 7 shows the normalized MSE

of experiments using the proposed stopping condition with

different values of MnRP for tree construction on the

datasets.

Based on the results, although less oscillation of

normalized errors can be seen in comparison with

previous metrics, and there is a proper value of MnRP (i.e.,

0.2) for most of the datasets, the final results are not

sufficiently good. Table 8 compares the best results

(minimum normalized MSE) of the stopping conditions in

Tables 5-7, which can provide insights into the relative

performance of each stopping condition for different

datasets.

Table 8 ranks the stopping conditions based on their

achieved results for each dataset. Each stopping condition

0

2

4

6

8

10

1 3 5 7 9 11 13 15 17 19 21

o

f
W

in
s

Maximum Depth of the tree (MxD)

AID M5

26 Informatica 47 (2023) 17–34 E.A. Mahani et al.

is assigned a rank equal to the number of other stopping

conditions with less error plus one. For example, on

"Yacht Dynamics," both MxD and MxE achieved the best

rank, and MnRP gets the third rank. The last column of the

table shows the average rank of each stopping condition

across all datasets. Based on the results, MxD could be the

best stopping condition on all datasets except for "Stock

Excess," where it achieved the second rank. MxE could

achieve the best error on four datasets, whereas it could be

better than MxD on just "Stock Excess." However, MxE

was the worst stopping condition on other datasets. MnRP

could never be the best stopping condition on any dataset,

but on average, it achieved a better rank than MxE on these

datasets. Due to the stability of results based on MnRP

(presented in Table 7), it can be an acceptable stopping

condition when the user does not know the best value of

the parameter. In the case of having a chance to find out

the best parameter, MnRP is better than MxE on average,

but cannot compete with MxD.

Based on these experiments, it seems that MxD can be a

good stopping metric if there is enough knowledge to find

the best value of MxD. However, the proposed model

claims that an ensemble of trees with different depths may

achieve better results on average without any knowledge

requirement. To evaluate this claim, the proposed model

has been compared with a set of trees with depths ranging

from 0 to 7 in Table 9. The proposed model combined all

of these eight trees in a single tree with MxD=7 and five

aggregation strategies: Middle, Median, Mean, Incresing

weighting, and Decreasing weighting. The methods have

been compared based on the resulting normalized MSE.

In addition to normalized MSE, the rank of each method

for each dataset has been computed and shown in

parentheses. The last columns of the table show the

average rank and error of each method across all datasets.

The results indicate that ensemble methods significantly

outperform fixed depth trees. The worst average error of

proposed models (0.1349) is achieved for Middle

representative which is better than the best one for single

depth models (0.1352 for depth 2). The best average error

is 0.1049 for Decreasing Weighting.

Considering the ranks, just on "Housing" and "Yacht" the

best method is a single depth model with depths five and

six, respectively. On other datasets, the best rank of a

single depth model is 4th. Four depths 0-4, no model can

achieve a rank better than 5th on any dataset. With any

fixed depth, there is at least one dataset for which, the

model is ranked 10th or more. Whereas Decreasing

Weighting model is the 1th model on four datasets and at

most 8th model on others. The Mean model is 2nd or 3rd

rank on all datasets except of "Yacht". This is why; the

best average rank is achieved for Mean and the second one

is Decreasing Weighting. In Fig. 5, average of ranks for

fixed depth models on each dataset is compared with the

proposed ensemble models. As depicted, ensemble

models significantly outperform the fixed depth ones on

all datasets except of "Yacht".

Figure 5: Comparing average of ranks of fixed-depth

models with ensemble ones on datasets

Figure 6: Differences between the normalize MSE of

the 1st rank method and each one of "Mean" &

"Decreasing Weighting" methods on datasets

In order to have a better comparison between rival

proposed methods, "Mean" and "Decreasing Weighting",

Fig. 6 is designed to present the difference between the

normalized MSE of each method respect to the best one

on each dataset. Because the "Mean" method is not the

best on any dataset, this difference is always non-zero for

"Mean". Although, "Mean" is the 2nd rank on

"Challenger", but this difference is significant about 0.08.

However, "Decreasing Weighting" method, not only is the

best on four datasets, but also has not difference with the

best method greater than 0.02.

5 Conclusion
In this paper, a new approach is proposed to ensemble

regression trees that are different in maximum depth. The

trees are integrated into a single tree using some weighting

methods, and all the outputs are merged into a single crisp

tree. Based on the experimental results, the proposed

methods can achieve better results than even the tree with

the best maximum depth on most of datasets, indicating

the importance of considering an ensemble of trees with

different depths rather than using a fixed stopping

condition for all datasets. Moreover, the proposed method

achieves significantly better average rank compared to

trees constructed up to a fixed maximum depth, with the

time complexity of a single crisp tree. Future research

0
2
4
6
8

10

Average Rank

Fixed depth Ensemble

0
0,02
0,04
0,06
0,08

0,1

MSE greater than minimum

Mean Decreasing Weighting

A Consolidated Tree Structure Combining Multiple Regression… Informatica 47 (2023) 17–34 27

directions may include investigating other reasoning

methods, weighting methods, stopping conditions, and

making the final function continuous. These extensions

can further improve the performance and interpretability

of regression trees in various applications.

Acknowledgment
The authors would like to thank Dr. M. Taheri for his help

in revising this paper.

References
[1] Charbuty, B., & Abdulazeez, A. (2021). Classification

based on decision tree algorithm for machine learning.

Journal of Applied Science and Technology Trends,

2(01), 20-28. https://doi.org/10.38094/jastt20165

[2] Nancy, P., Muthurajkumar, S., Ganapathy, S., Kumar,

S. S., Selvi, M., & Arputharaj, K. (2020). Intrusion

detection using dynamic feature selection and fuzzy

temporal decision tree classification for wireless

sensor networks. IET Communications, 14(5), 888-

895. https://doi.org/10.1049/iet-com.2019.0172

 [3] Wang, C., Wang, A., Xu, J., Wang, Q., & Zhou, F.

(2020). Outsourced privacy-preserving decision tree

classification service over encrypted data. Journal of

Information Security and Applications, 53, 102517.

https://doi.org/10.1016/j.jisa.2020.102517

[4] Vanfretti, L., & Arava, V. N. (2020). Decision tree-

based classification of multiple operating conditions

for power system voltage stability assessment.

International Journal of Electrical Power & Energy

Systems, 123, 106251.

https://doi.org/10.1016/j.ijepes.2020.106251

[5] Yang, S. B., & Chen, T. L. (2020). Uncertain decision

tree for bank marketing classification. Journal of

Computational and Applied Mathematics, 371,

112710. https://doi.org/10.1016/j.cam.2020.112710

[6] Sahoo, S., Subudhi, A., Dash, M., & Sabut, S. (2020).

Automatic classification of cardiac arrhythmias based

on hybrid features and decision tree algorithm.

International Journal of Automation and Computing,

17(4), 551-561. https://doi.org/10.1007/s11633-019-

1219-2

[7] Rajesh, B., Vardhan, M. V. S., & Sujihelen, L. (2020,

June). Leaf Disease Detection and Classification by

Decision Tree. In 2020 4th International Conference

on Trends in Electronics and Informatics

(ICOEI)(48184) (pp. 705-708). IEEE.

https://doi.org/10.1109/icoei48184.2020.9142988

[8] Gomes, C. M. A., Amantes, A., & Jelihovschi, E. G.

(2020). Applying the regression tree method to predict

students’ science achievement. Trends in Psychology,

28(1), 99-117. https://doi.org/10.9788/s43076-019-

00002-5

[9] Hu, Y., Dai, Z., & Guldmann, J. M. (2020). Modeling

the impact of 2D/3D urban indicators on the urban heat

island over different seasons: A boosted regression

tree approach. Journal of environmental management,

266, 110424.

https://doi.org/10.1016/j.jenvman.2020.110424

[10] Yang, Q., Williamson, A. M., Hasted, A., & Hort, J.

(2020). Exploring the relationships between taste

phenotypes, genotypes, ethnicity, gender and taste

perception using Chi-square and regression tree

analysis. Food Quality and Preference, 83, 103928.

https://doi.org/10.1016/j.foodqual.2020.103928

[11] Alamgir, M. S. M., Sultana, M. N., & Chang, K.

(2020). Link adaptation on an underwater

communications network using machine learning

algorithms: Boosted regression tree approach. IEEE

access, 8, 73957-73971.

https://doi.org/10.1109/access.2020.2981973

[12] Shabani, S., Pourghasemi, H. R., & Blaschke, T.

(2020). Forest stand susceptibility mapping during

harvesting using logistic regression and boosted

regression tree machine learning models. Global

Ecology and Conservation, 22, e00974.

https://doi.org/10.1016/j.gecco.2020.e00974

[13] Avellaneda, F. (2020, April). Efficient inference of

optimal decision trees. In Proceedings of the AAAI

Conference on Artificial Intelligence (Vol. 34, No.

04, pp. 3195-3202).

https://doi.org/10.1609/aaai.v34i04.5717

[14] Salman Saeed, M., Mustafa, M. W., Sheikh, U. U.,

Jumani, T. A., Khan, I., Atawneh, S., & Hamadneh,

N. N. (2020). An efficient boosted C5. 0 Decision-

Tree-Based classification approach for detecting

non-technical losses in power utilities. Energies,

13(12), 3242. https://doi.org/10.3390/en13123242

[15] Lotfi, S., Ghasemzadeh, M., Mohsenzadeh, M., &

Mirzarezaee, M. (2021). The Construction of

Scalable Decision Tree based on Fast Splitting and

J-Max Pre-Pruning on Large Datasets. International

Journal of Engineering, 34(8).

https://doi.org/10.5829/ije.2021.34.08b.01

[16] Panhalkar, A. R., & Doye, D. D. (2021). A novel

approach to build accurate and diverse decision tree

forest. Evolutionary intelligence, 1-15.

https://doi.org/10.1007/s12065-020-00519-0

[17] Muharam, F. M., Nurulhuda, K., Zulkafli, Z.,

Tarmizi, M. A., Abdullah, A. N. H., Che Hashim, M.

F., ... & Ismail, M. R. (2021). UAV-and Random-

Forest-AdaBoost (RFA)-Based Estimation of Rice

Plant Traits. Agronomy, 11(5), 915.

https://doi.org/10.3390/agronomy11050915

[18] Jadhav, D. A. (2021). An enhanced and secured

predictive model of Ada-Boost and Random-Forest

techniques in HCV detections. Materials Today:

Proceedings.

https://doi.org/10.1016/j.matpr.2021.05.071

[19] Wang, Q., Zhou, Y., Ding, W., Zhang, Z.,

Muhammad, K., & Cao, Z. (2020). Random forest

with self-paced bootstrap learning in lung cancer

prognosis. ACM Transactions on Multimedia

Computing, Communications, and Applications

(TOMM), 16(1s), 1-12.

https://doi.org/10.1145/3345314

[20] Biau, G., & Scornet, E. (2016). A random forest

guided tour. Test, 25(2), 197-227.

https://doi.org/10.1007/s11749-016-0481-7

28 Informatica 47 (2023) 17–34 E.A. Mahani et al.

[21] Abellan, J., Mantas, C. J., Castellano, J. G., & Moral-

Garcia, S. (2018). Increasing diversity in random

forest learning algorithm via imprecise probabilities.

Expert Systems with Applications, 97, 228-243.

https://doi.org/10.1016/j.eswa.2017.12.029

[22] Hornung, R. (2020). Diversity forests: Using split

sampling to allow for complex split procedures in

random forest. https://doi.org/10.1007/s42979-021-

00920-1

[23] Morgan, J. N., & Sonquist, J. A. (1963). Problems in

the analysis of survey data, and a proposal. Journal

of the American statistical association, 58(302), 415-

434.

https://doi.org/10.1080/01621459.1963.10500855

[24] Witten, I. H., Frank, E., Hall, M. A., Pal, C. J., &

DATA, M. (2005). Practical machine learning tools

and techniques. In DATA MINING (Vol. 2, p. 4).

https://doi.org/10.1016/b978-0-12-374856-0.00007-

9

[25] Fidalgo-Merino, R., & Nunez, M. (2011). Self-

adaptive induction of regression trees. IEEE

transactions on pattern analysis and machine

intelligence, 33(8), 1659-1672.

https://doi.org/10.1109/tpami.2011.19

[26] Breiman, Leo. (2017). Classification and regression

trees. Routledge. DUA, DHEERU, & GRAFF,

CASEY. 2017. UCI Machine Learning Repository.

GRISONI, FRANCESCA, CONSONNI, VIVIANA,

VIGHI, MARCO, VILLA, SARA, &

TODESCHINI, ROBERTO. 2016. Investigating the

mechanisms of bioconcentration through QSAR

classification trees. Environment international, 88,

198–205.

https://doi.org/10.1016/j.envint.2015.12.024

[27] Kordos, M., Piotrowski, J., Bialka, S., Blachnik, M.,

Golak, S., & Wieczorek, T. (2012, March).

Evolutionary optimized forest of regression trees:

application in metallurgy. In International

Conference on Hybrid Artificial Intelligence

Systems (pp. 409-420). Springer, Berlin, Heidelberg.

https://doi.org/10.1007/978-3-642-28942-2_37

[28] Pham, B. T., Prakash, I., & Bui, D. T. (2018). Spatial

prediction of landslides using a hybrid machine

learning approach based on random subspace and

classification and regression trees. Geomorphology,

303, 256-270.

https://doi.org/10.1016/j.geomorph.2017.12.008

[29] Choubin, B., Moradi, E., Golshan, M., Adamowski,

J., Sajedi-Hosseini, F., & Mosavi, A. (2019). An

ensemble prediction of flood susceptibility using

multivariate discriminant analysis, classification and

regression trees, and support vector machines.

Science of the Total Environment, 651, 2087-2096.

https://doi.org/10.1016/j.scitotenv.2018.10.064

[30] Ahmad, M. W., Reynolds, J., & Rezgui, Y. (2018).

Predictive modelling for solar thermal energy

systems: A comparison of support vector regression,

random forest, extra trees and regression trees.

Journal of cleaner production, 203, 810-821.

https://doi.org/10.1016/j.jclepro.2018.08.207

[31] Zhang, B., Wei, Z., Ren, J., Cheng, Y., & Zheng, Z.

(2018). An empirical study on predicting blood

pressure using classification and regression trees.

IEEE access, 6, 21758-21768.

https://doi.org/10.1109/access.2017.2787980

[32] Abdelkader, E. M., Al-Sakkaf, A., Alfalah, G., &

Elshaboury, N. (2022). Hybrid Differential

Evolution-Based Regression Tree Model for

Predicting Downstream Dam Hazard Potential.

Sustainability, 14(5), 3013.

https://doi.org/10.3390/su14053013

[33] Bak, K. Y. (2023). The regularization paths of total

variation-penalized regression splines.

Communications in Statistics-Simulation and

Computation, 1-12.

https://doi.org/10.1080/03610918.2023.2170410

[34] Zhang, Y. L., Shi, Q., Li, M., Yang, X., Li, L., &

Zhou, J. (2022). A Classification Based Ensemble

Pruning Framework with Multi-metric

Consideration. In Intelligent Systems and

Applications: Proceedings of the 2021 Intelligent

Systems Conference (IntelliSys) Volume 1 (pp. 650-

667). Springer International Publishing.

https://doi.org/10.1007/978-3-030-82193-7_44

A Consolidated Tree Structure Combining Multiple Regression… Informatica 47 (2023) 17–34 29

Table 1: Comparing categories of the regression methods

Regression
Methods

Interpretability Storage
Training

time
Reasoning

time
Performance Description

Deep Low Complex High Good High Need large training data

Neural
Network Low Good Good Low High

Local Optima, high capacity
of learning

Model Based Low Good Good Low Good Global Information

Prototype
Based Good Complex Low High High

Local information, storing
all prototypes

Rule Based High Low Good Good Good
Need to evaluate by all

rules

Random
Forest Good Good Good Good High

Need to evaluate by all
trees

Decision Tree High Low Low Low Good
Interpretable, Compact,
Simple, Fast, Accurate

Table 2: Stopping conditions' hyperparameters of regression trees

Stopping
Conditions

Merits Drawbacks

Max. Depth Simple, Integer, Limited values
Global effect on all nodes, Independent of

error

Max. Nodes
Simple, Integer, Limited values, Using storage

completely
Needs priority metric, Complex training,

Independent of error

Min. Instances Simple, Integer, Limited values
Sensitive to the size of dataset, Independent

of error

Max. Sum
Square Error

Considers local errors
Floating point, Unlimited range, sensitive to

the size of dataset and the scale of target
values

Max. Mean
Square Error

Considers local errors, insensitive to the size of
dataset

Floating point, Unlimited range, sensitive to
the scale of target values, Ignores

expandability

Min. Error
Promotion

Considers local errors, Considers expandability
Floating point, Unlimited range, sensitive to

the scale of target values

Min. Relative
error Promotion

Considers local errors, Considers expandability,
insensitive to the size of dataset and scale of target

values
Floating point, Unlimited range

Information
theoretical

Good for classification
Not proper for regression and continuous

spaces

Hybrid
conditions

More control on tree construction Complex, multi parameters, Static

30 Informatica 47 (2023) 17–34 E.A. Mahani et al.

Table 3: Search strategies to find hyperparameters of a model

Search strategies Merits Drawbacks

Evolutionary Computation: GA,
PSO, …

Capable of search in complex
spaces including parameters of

hybrid conditions

Inefficient: needs to measure the
fitness of each solution by tree
construction, Static reasoning

Grid Search Simple

Just one parameter, limited
number of candidates: redundancy

and missing values, Static
reasoning

Entire Path
All possible unique values of

parameter
Just one parameter, Static

reasoning

Ensemble of models Generating various outputs
Each parameter set needs a tree,

Inefficient reasoning

Proposed model
Generating various outputs, Single

tree, Efficient reasoning, testing
new conditions without retraining

Table 4: Datasets used in experiments from UCI Machine Learning Depository (Asuncion, 2007) in regression

category.

Dataset Attributes type # of attribute # of rows labels
Housing Real 13 506 Housing

Challenger USA Space Shuttle O-Ring Integer 3 23 Challenger

Concrete Slump Test Real 10 103 Concrete Slump

Yacht Hydrodynamics Real 7 308 Yacht Dynamics

Stock Portfolio Performance Real 12 63
Stock Annual

Stock Excess

Concrete Compressive Strength Real 9 1030
Slump _Slump

Slump
Flow

A Consolidated Tree Structure Combining Multiple Regression… Informatica 47 (2023) 17–34 31

Table 5. Normalized MSE of prediction on datasets vs. MxD

MxD Housing Challenger
Concrete

Slump
Yacht

Dynamics
Stock

Annual
Stock
Excess

Slump_
Slump

Slump_
Flow

0 0.046 0.844 0.072 0.682 0.051 0.054 0.192 0.113

1 0.064 0.611 0.039 0.152 0.045 0.043 0.156 0.082

2 0.059 0.654 0.037 0.035 0.031 0.034 0.152 0.081

3 0.044 0.751 0.03 0.009 0.03 0.033 0.189 0.09

4 0.037 0.875 0.03 0.006 0.028 0.032 0.204 0.101

5 0.032 0.92 0.029 0.006 0.027 0.032 0.215 0.104

6 0.038 0.92 0.029 0.005 0.026 0.031 0.22 0.106

7 0.034 0.92 0.027 0.006 0.026 0.03 0.22 0.112

8 0.033 0.92 0.027 0.006 0.026 0.031 0.222 0.114

9 0.034 0.92 0.027 0.006 0.026 0.031 0.225 0.114

10 0.034 0.92 0.027 0.006 0.026 0.031 0.225 0.115

Min 0.032 0.611 0.027 0.005 0.026 0.03 0.152 0.081

Best Depth 5 1 >6 6 >5 7 2 2

Table 6. Normalized MSE vs. 10 values of MxE

MxE Housing Challenger
Concrete

Slump
Yacht

Dynamics
Stock

Annual
Stock
Excess

Slump-
Slump

Slump-
Flow

0 0.034 0.92 0.027 0.006 0.026 0.031 0.225 0.115

0.01 0.034 0.92 0.027 0.006 0.026 0.029 0.225 0.115

0.05 0.034 0.92 0.027 0.006 0.028 0.033 0.225 0.115

0.1 0.034 0.92 0.027 0.006 0.03 0.032 0.225 0.115

0.5 0.034 0.92 0.027 0.006 0.045 0.043 0.226 0.115

1 0.034 0.775 0.027 0.006 0.051 0.043 0.226 0.114

5 0.034 0.834 0.027 0.005 0.051 0.054 0.224 0.114

10 0.035 0.844 0.027 0.005 0.051 0.054 0.226 0.114

50 0.045 0.844 0.028 0.007 0.051 0.054 0.217 0.117

100 0.044 0.844 0.028 0.008 0.051 0.054 0.214 0.115

Min 0.034 0.775 0.027 0.005 0.026 0.029 0.214 0.114

Best
MxE

[0,5] 1 [0,10] [5,10] [0,0.01] 0.01 100 [1,10]

32 Informatica 47 (2023) 17–34 E.A. Mahani et al.

Table 7. Normalized MSE vs. values of Minimum Relative Promotion

MnRP Housing Challenger
Concrete

Slump
Yacht

Dynamics
Stock

Annual
Stock
Excess

Slump-
Slump

Slump-
Flow

0 0.034 0.92 0.027 0.006 0.026 0.031 0.225 0.115

0.05 0.033 0.92 0.027 0.006 0.026 0.031 0.225 0.115

0.06 0.033 0.918 0.027 0.006 0.026 0.031 0.225 0.115

0.07 0.033 0.912 0.027 0.006 0.026 0.031 0.226 0.115

0.08 0.033 0.912 0.027 0.006 0.026 0.031 0.226 0.115

0.09 0.033 0.911 0.027 0.006 0.026 0.031 0.225 0.115

0.1 0.033 0.911 0.027 0.006 0.026 0.031 0.217 0.114

0.15 0.033 0.716 0.027 0.006 0.026 0.03 0.196 0.104

0.2 0.033 0.617 0.038 0.006 0.026 0.03 0.183 0.096

0.3 0.04 0.617 0.072 0.006 0.039 0.048 0.189 0.092

Min 0.033 0.617 0.027 0.006 0.026 0.03 0.183 0.092

Best
MnRP

[0,0.2] [0.2,0.3] [0,0.15] [0,0.3] [0,0.2] [0.15,0.2] 0.2 0.3

Table 8. Comparing MxD, MxE and MnRP based on the best Normalized MSE on datasets

Stop.
Metric

Housing Challenger
Concrete

Slump
Yacht

Dynamics
Stock

Annual
Stock
Excess

Slump-
Slump

Slump-
Flow

Avg.
Rank

MxD
0.032

(1)
0.611

(1)
0.027

(1)
0.005

(1)
0.026

(1)
0.03
(2)

0.152
(1)

0.081
(1)

1.125

MxE
0.034

(3)
0.775

(3)
0.027

(1)
0.005

(1)
0.026

(1)
0.029

(1)
0.214

(3)
0.114

(3)
2

MnRP
0.033

(2)
0.617

(2)
0.027

(1)
0.006

(3)
0.026

(1)
0.03
(2)

0.183
(2)

0.092
(2)

1.875

A Consolidated Tree Structure Combining Multiple Regression… Informatica 47 (2023) 17–34 33

Table 9. Comparing normalized MSE of the proposed model and regression trees with fixed MxD

MxD Housing Challenger
Concrete

Slump
Yacht

Dynamics
Stock

Annual
Stock
Excess

Slump-
Slump

Slump-
Flow

Avg.
Rank

Avg.
Err.

0
0.0462 (11) 0.8443 (9)

0.0723
(13)

0.6824
(13)

0.0508
(13)

0.054
(13)

0.1922
(9)

0.1133
(13)

12 0.257

1
0.0637 (13) 0.6111 (5)

0.0391
(12)

0.152
(12)

0.0451
(12)

0.0429
(12)

0.1558
(6)

0.0817
(7)

9.9 0.149

2
0.0592 (12) 0.6538 (7)

0.0366
(11)

0.0347
(10)

0.0305
(11)

0.0335
(11)

0.1523
(4)

0.0811
(5)

8.9 0.135

3
0.0441 (10)

0.7508
 (8)

0.0298
(9)

0.0085
(7)

0.0295
(10)

0.0335
(10)

0.1886
(8)

0.0899
(8)

8.8 0.147

4
0.037 (7)

0.8753
(10) 0.03 (10)

0.0065
(5)

0.0281
(9)

0.0318
(8)

0.2041
(10)

0.1006
(9)

8.5 0.164

5
0.0322 (1)

0.92
 (11)

0.0293
(7)

0.0056
(3)

0.0271
(8)

0.0324
(9)

0.2147
(11)

0.1036
(10)

7.5 0.171

6
0.0378 (8)

0.92
(12)

0.0289
(6)

0.0054
(1)

0.0262
(7)

0.0306
(7)

0.2197
(13)

0.1058
(11)

8.1 0.172

7
0.0338 (2)

0.92
 (13)

0.0267
(4)

0.0055
(2)

0.0261
(5)

0.0305
(6)

0.2196
(12)

0.1124
(12)

7 0.172

Middle
0.0359 (5)

0.5874
 (4)

0.0288
(5)

0.1506
(11)

0.0254
(4)

0.0271
(4)

0.1481
(2)

0.0762
(1)

4.5 0.135

Median
0.0378 (9)

0.5853
 (3)

0.0248
(3)

0.0061
(4)

0.0261
(6)

0.0293
(5)

0.1538
(5)

0.081
(4)

4.9 0.118

Mean
0.0345 (3)

0.5723
 (2)

0.0245
(2)

0.0288
(9)

0.0243
(3)

0.0259
(2)

0.1491
(3)

0.0768
(2)

3.3 0.117

Inc.
Weight

0.0347 (4)
0.6164

 (6)
0.0224

(1)
0.0078

(6)
0.0236

(2)
0.0266

(3)
0.1663

(7)
0.0813

(6)
4.4 0.122

Dec.
Weight

0.0369 (6)
0.4908

 (1)
0.0298

(8)
0.0237

(8)
0.017

(1)
0.0165

(1)
0.1456

(1)
0.0786

(3)
3.6 0.105

34 Informatica 47 (2023) 17–34 E.A. Mahani et al.

