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Regression is a commonly used technique to predict a continuous target value based on a set of input 

features. Decision trees are hierarchical models that offer high interpretability, fast and precise 

reasoning, and are also used for regression tasks. However, determining the optimal stopping conditions 

for decision trees is a complex problem that has attracted significant research interest. Ensemble based 

modeling is an effective approach for adjusting hyper-parameters, where base models with varying 

parameter values are combined instead of searching for the best value. Random forests are a classic 

example of an ensemble model that combines decision trees generated from different perspectives. This 

paper proposes a novel approach that generates base trees using the same tree-generation procedure, but 

with different stopping conditions. Unlike random forests, this model can be efficiently integrated into a 

single tree structure. Additionally, the paper proposes some aggregation methods based on weighting the 

base models. Experimental results on standard datasets demonstrate that the proposed method 

outperforms well-known stopping conditions. 

Povzetek: Razvita je nova metoda kombiniranja regresijskih dreves, ki dosega boljše rezultate v 

primerjavi z znanimi metodami  v regresijskih nalogah. 

 

1 Introduction 
Decision trees are commonly used tools for pattern 

recognition, especially in supervised tasks like 

classification and regression. Their hierarchical structure 

allows for simple, interpretable, fast, and accurate 

decision-making. Decision trees have been extensively 

researched in the literature, with many applications 

focusing on classification tasks such as intrusion 

detection, privacy preservation, power systems, bank 

marketing, health care and disease diagnosis, and 

agriculture [1-7]. Additionally, researchers have 

investigated regression models based on decision trees, 

which are typically referred to as regression trees, in fields 

like psychology, education, urban planning, 

environmental management, genetics, communication, 

and economics [8-15]. 

In Table 1, the regression methods are compared. The 

popularity of decision trees can be attributed to their 

ability to provide a simple and interpretable representation 

of the data, which is particularly important in fields where 

understanding and analyzing the model's output is crucial. 

Furthermore, decision trees are fast and accurate, making 

them attractive for real-time applications. However, their 

performance can be affected by the quality of the data used 

to train the model, and they may not always be the best 

choice for complex datasets. Despite these limitations,  

 

 

 

decision trees remain a valuable tool for pattern 

recognition and continue to be an active area of research.  

1.1 Decision tree 

A decision tree is a flowchart-like structure with a tree 

hierarchy, where each internal node includes a test on a 

feature, each branch represents the output of the test, and 

each leaf node represents a consequence. To make a 

decision on a given instance using a decision tree, the 

instance must traverse a complete path from the root to a 

leaf in the tree. At the leaf, a value or a model is provided 

to predict the target value of the instance, such as a specific 

classifier or regression model. Decision trees can easily be 

converted into a set of rules, where each path from the root 

to a leaf is a rule, making them simple and completely 

interpretable. 

Compared to other rule-based systems, decision trees 

are efficient in decision-making due to their hierarchical 

structure, and not all rules need to be checked. 

Additionally, decision trees can simultaneously divide the 

feature space into small or large regions, providing 

specific and general rules, respectively. This ability makes 

decision trees one of the most accurate prediction models. 

In summary, decision trees are simple, interpretable, fast, 

and accurate models that can efficiently divide the feature 

space and convert the tree structure into a set of rules. 
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The time complexity of decision tree induction has 

been shown to increase exponentially with the height of 

the tree. To overcome this limitation, heuristic methods 

have been proposed in the literature to produce shallow, 

small, and/or accurate trees [13,14]. These methods aim to 

optimize a predefined objective function on the training 

set by partitioning the feature space into two or more sub-

regions based on a specific feature. The resulting tree 

includes internal (decision) nodes and leaves, where each 

node is associated with a region that may be partitioned 

based on a feature or labeled as a leaf node. 

In a classic decision tree, each sub-region, considering 

associated instances, is recursively partitioned into smaller 

ones until a stopping condition is satisfied. The 

partitioning process forms a tree that provides a 

hierarchical representation of the decision-making 

process. At each internal node, a test is performed on a 

feature (called pivot feature) to partition the feature space 

into sub-regions. The objective is to maximize the 

homogeneity of the instances within each sub-region with 

respect to the target variable. The partitioning process 

continues until a stopping condition is met, typically when 

a sub-region contains a small number of instances or when 

further partitioning does not improve the accuracy of the 

model. In regression models, the best feature is the one 

that can reduce the error metric of regression (e.g., mean 

square error) on the training instances more than others. 

In a regression tree, if a region cannot be further 

partitioned and some stopping conditions are met, the 

partitioning process is stopped. The instances associated 

with that region are then used for reasoning. A single value 

may be assigned as the prediction value for all instances 

in the leaf node, or a regression model trained on the 

associated instances may be used for future prediction. 

The assigned value or model represents the prediction of 

the decision tree for instances that belong to that region in 

the feature space. 

After the tree construction phase, the resulting tree 

may have many leaves, particularly in the presence of 

noisy data and outliers. This can lead to overfitting, where 

the tree is too complex and fits the training data too 

closely, even capturing undesired noises. To address this 

issue and remove the least reliable branches, statistical 

measures are typically used to prune the tree. 

Pruning the decision tree results in a smaller, less 

complex, and easier-to-understand tree, which is usually 

faster and more accurate in classifying test data. Pruning 

can be performed either pre-pruning or post-pruning, 

depending on the stopping conditions used in the tree 

construction phase. Pre-pruning involves setting stopping 

conditions during tree construction to avoid overfitting, 

while post-pruning involves removing branches after 

construction based on statistical measures. Proper 

stopping conditions can lead to an efficient pre-pruning 

approach that is more accurate and faster than post-

pruning [15].  

In the testing phase, a query instance is fed into the 

decision tree starting from the root node and following a 

path through the tree until a leaf node is reached. At each 

node, the value of the query instance for the associated 

pivot feature is used to determine which child node to 

traverse to in the next layer. This process continues until 

the query instance reaches a leaf node. In the leaf node, 

the assigned value or model is used to predict the 

corresponding target value of the query instance.  

1.2 Random forest 

Although decision trees have a simple structure and 

provide acceptable performance, finding the optimal tree 

that optimizes the desired objective function can be a 

challenging task. The construction process is typically 

done using a greedy method, which can result in a 

suboptimal tree. As a result, small changes in the 

parameters, distribution of training instances, or objective 

function can significantly alter the final tree. To address 

this issue, ensemble methods have been proposed to 

generate multiple trees from different perspectives to 

improve the stability and accuracy of the model [16]. 

Ensemble methods use multiple base models that can 

differ in type, model, hyperparameters, construction 

method, and instance set used for training. In the case of 

using a set of decision trees as the base models, the 

resulting ensemble model is called a Random Forest (RF). 

There are various types of RFs that use different 

approaches to generate the individual decision trees, such 

as Adaboost, boost strap or bagging [17-20]. 

Decision trees themselves have the ability to divide 

the feature space into subregions and their associated 

instances, which in turn allows a dedicated subtree to be 

assigned to each region to recursively classify the 

associated training instances. Therefore, decision trees 

employ a specific instance selection to some extent. In RF, 

the base trees typically differ in the random features 

chosen in each step to partition the feature space. This is 

known as feature bagging [21]. Additionally, the random 

selection of splitting points in each node is another 

characteristic of classic RF algorithm [22]. These 

randomization techniques help to reduce overfitting and 

increase the diversity of the base models, which in turn 

improves the accuracy and stability of the ensemble 

model. 

In ensemble methods such as Random Forests (RFs), 

a majority vote (in classification) or averaging (in 

regression) is used to combine the predictions of all the 

trees on a query instance to make the final prediction. This 

requires storing all the trees. Also, the output of all the 

trees should be determined for final prediction as a time-

consuming task during the testing phase. Moreover, a 

large number of decision trees can degrade the 

interpretability of the model. Some rules may be generated 

whose antecedents are satisfied, but their consequences 

differ significantly from the final outcome of the ensemble 

model due to the aggregation of the consequences of all 

activated rules. Despite these limitations, RFs have been 

shown to significantly improve the performance of 

decision trees, and they remain popular in many 

applications. In this paper, trees ensembled with different 

stopping conditions is considered, which can lead to a 

more efficient and interpretable model. 
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1.3 Stopping conditions 

During the construction of a decision tree, the 

expansion of a node may be stopped for various reasons, 

such as decreasing memory complexity or preventing 

overfitting on the training data. To prevent overfitting and 

control the complexity of the decision tree, a set of 

hyperparameters is used to define and evaluate the 

stopping conditions. The stopping condition is checked at 

each node to decide whether to expand the node further or 

stop partitioning. Some stopping conditions' 

hyperparameters are reported in Table 2. The ones 

investigated in this paper are: 

- Maximum Depth of the tree (MxD): This parameter 

limits the maximum allowed depth of the decision tree. If 

the depth of a node exceeds this value, the node expansion 

is stopped. 

- Minimum number of Instances per leaf (MnI): This 

parameter sets the minimum number of training instances 

required to split a node. If a node has fewer instances than 

this threshold, the node expansion is stopped. 

- Maximum number of Leaves (MxL): This parameter 

limits the maximum allowed number of leaf nodes in the 

decision tree. If the number of leaves exceeds this value, 

the node expansion is stopped. 

- Maximum Error per leaf (MxE): This parameter sets 

the maximum error can be handled in a leaf. If the error 

exceeds this threshold, the leaf should be expanded.  

-Minimum (Relative) Promotion (MnP/MnRP): Each 

expansion should be along with a minimum decrease in 

the total error to be done. The value of decrease in error 

may be relatively computed respect to the current error. 

These hyperparameters can be tuned to optimize the 

performance of the decision tree and prevent overfitting. 

The merits and drawbacks of them are discussed later in 

this paper. The optimal set of hyperparameters depends on 

the characteristics of the training data and the desired 

performance of the model. On the other hand, adjusting 

the hyperparameters of a decision tree is a time-

consuming and challenging task, and there is no rule of 

thumb to determine the optimal values for any given 

dataset. Cross-validation on the training data is a common 

technique for hyperparameter tuning in machine learning 

models. However, cross-validation can be expensive, and 

separating a set of validation data from the training set can 

result in variations in the constructed decision trees such 

that the best hyperparameters may not be suitable with 

sufficient confidence. In addition, cross-validation is a 

task of evaluating a value for a hyper parameter. A search 

strategy is required to extract candidates and find the 

optimal solution. The strategies will be compared later. 

Moreover, different regions of the feature space may 

require different attention to extract the decision 

boundaries. However, the hyperparameters of the stopping 

conditions affect all the nodes in a single tree. Therefore, 

in some cases where more specificity is required, the 

expansion may be stopped, while in another branch of the 

tree, generalization may be sacrificed for extra 

partitioning. Additionally, the importance of the stopping 

conditions may vary from case to case. 

1.4 Motivations and innovations 

In this paper, a novel approach is proposed to 

ensemble learning using decision trees with different 

hyperparameters, specifically focusing on the depth of the 

trees. This approach simplifies the process of designing 

these hyperparameters by generating many trees with 

different stopping conditions, which are then aggregated 

to produce the final result. In this approach, the 

hyperparameters are integrated into a single, simple 

solution by constructing trees with different depths in each 

branch. Finally, the resulting trees are merged into a single 

tree, called as the Mother Tree. This approach preserves 

both the efficiency and interpretability of the model, since 

it occupies memory only as large as a single tree and 

allows the results of all the virtual trees to be computed for 

a query instance by a single pass on the associated path 

from the root to a leaf of the Mother Tree. The proposed 

approach offers a simple and effective solution for 

stopping condition adjustment based on ensemble learning 

that overcomes the limitations and challenges of 

traditional decision trees and random forests, and provides 

an interpretable model. 

Weighted model aggregation has been shown to 

improve the performance of ensemble methods, but it can 

also be computationally expensive, especially when 

dealing with a large number of trees. Heuristic 

approaches, such as Adaboost are commonly used to 

address this issue [18]. In this paper, some simple 

weighting approaches are proposed, which can be applied 

to the Mother Tree structure. The proposed approaches 

assign weights to the virtual trees in voting phase, each 

one with its own characteristics.  

The remainder of this paper is organized as follows. 

In Section 2, a review of the related work is given on 

ensemble learning and model aggregation. In Section 3, 

the proposed model is presented. In Section 4, the 

experimental results are reported followed by discussions. 

Finally, the paper is concluded in Section 5 

2 Related work 
A regression tree is a variant of the classification 

decision tree that predicts a real value instead of a class 

label. In a regression tree, a constant value or a regression 

model is created at each leaf node after constructing the 

tree. The node error is usually calculated as the mean 

square of all differences between the desired and predicted 

values for all validation instances in that node. The first 

known regression tree is the AID method [23] . AID 

declares the mean of target values of all instances reached 

at each leaf node as its regression value. Hence the mean-

square error is equal to the variance of associated target 

values as the impurity measure of each node. This method 

generates a piecewise constant model that has good 

interpretability but may have lower accuracy than models 

with more smoothness. 

M5' is a regression tree that uses an efficient strategy 

to create a piecewise linear model [24]. The first output of 

this strategy is a piecewise constant tree, and then a proper 

linear regression is found and replaced constant value for 
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each leaf. Because the tree structure is piecewise constant, 

the M5' final tree is larger than other piecewise linear 

trees. Fidalgo-Merino et al. introduced an incremental 

algorithm to generate a tree [25]. However, most recent 

research has applied Classification and Regression Trees 

(CART) as the base regression model more than other 

models in the literature [26]. 

Regression trees are typically constructed using 

heuristics, which do not guarantee the optimality of the 

output. Kordos et al. introduced an evolutionary approach 

in which a set of regression trees evolves to achieve the 

best tree [27]. Two important evolutionary operators, 

mutation and crossover, were implemented by substituting 

selected attributes along branches and exchanging 

subtrees between different trees. However, evolutionary 

search methods can be time-consuming, and defining a 

fitness function that can accurately describe the optimal 

tree may not be straightforward. With such ambiguity, 

finding the tree with the optimum objective function may 

not be necessary. 

Due to the uncertainties surrounding the proper 

objective function, limitations, and structure of regression 

trees, researchers have turned to ensemble different views 

of tree construction. RSSCARD is a method proposed in 

to predict spatial landslides [28]. They hybridized 

Random Subspaces (RSS) and CART to achieve their 

goal. Choubin and et al. ensemble, for the first time, 

CART and Multivariate Discriminant Analysis (MDA) to 

analyze flood susceptibility and obtained acceptable 

results [29]. Random Forests (RF) are also an ensemble of 

decision trees that combine the merits of different 

structures or parameters. Decision trees are faster to train 

than RFs, which is why they are still desirable. However, 

the accuracy of Random Forests (RF) is greater [30]. 

Parameter adjustment in tree construction is also a 

challenge in this research field. One of the most important 

sets of parameters are the ones associated with the 

stopping conditions, such as maximum depth, maximum 

leaves, and maximum error. Bing Zhang et al. used CART 

to predict blood pressure, and they used cross-validation 

to avoid overfitting, choose the best parameters, and 

develop a better general model [31]. Ensemble methods, 

including RFs, can also be used to aggregate trees with 

different parameters. In this case, time-consuming cross-

validation is not used, and the randomness of the model 

injected from cross-validation is removed. However, to 

our knowledge, this ensemble approach has not yet been 

used in the literature as a solution for the problem of 

stopping conditions, especially for regression models. In 

this paper, not only is this ensemble approach presented, 

but also it has been efficiently integrated into the structure 

of a single tree called the Mother Tree. Finally, instead of 

generating many trees, a reasoning strategy has been 

proposed based on the generated Mother Tree with various 

aggregation methods. 

3 Proposed method 
The main contributions of this paper, as mentioned 

previously, are as follows: 

1. All stopping conditions and parameter 

combinations are integrated into one parameter, 

Maximum Depth of tree (MxD), as the only difference 

among the candidate trees. It has been proven that MxD is 

a sufficient parameter as the stopping condition, here. 

2. All constructed trees are merged into a single tree 

with the time-complexity of generating just one tree. This 

approach saves computational resources and improves the 

interpretability of the model. 

3. Some weighted average methods are proposed on 

this integrated tree to ensemble all candidate trees. These 

methods provide more robust and accurate prediction by 

combining the outputs of multiple trees. Each aggregation 

method has its own attributes and behavior on datasets. 

Each one of these contributions is addressed in detail 

in the following subsections. 

3.1 Maximum depth of tree 

Stopping conditions' (SC) parameters do not affect the 

selection of the pivot feature of each node or the best set 

of splitting points in the nodes. However, these parameters 

can determine whether a node should be expanded or not. 

As a result, some leaves may be generated based on SCs 

that are internal nodes in some other trees (due to later 

stopping) and may not be generated in other trees (due to 

early stopping). The training set reached at an internal 

node or leaf is deterministic and unique in all possible 

trees that have that node. If the parameter of the stopping 

condition is changed, it can alter the tree's depth of some 

branches. The mostly expanded possible tree is called, 

here, the Mother Tree (MT). However, the MT may also 

follow some hard hyper restrictions defined by experts 

which prevent more expansion, such as the Maximum 

Depth of Tree. For example, consider an MT constructed 

as shown in Figure 1, where the Sum Square Error (SSE) 

of the target values of belonging instances in each node is 

also reported in the nodes. 

 

Figure 1: An example of Mother Tree expanded to reach 

zero sum square error in leaves. 

 

If Maximum Error (MxE) in leaves is considered as 

the stopping condition, each node with SSE greater than 

ME will be expanded, whereas nodes with SSE less than 

or equal to MxE will become leaves. Decreasing this 

upper-bound may lead to a deeper tree by expanding some 

nodes until reaching the MT shown in Figure 1. Other 

intermediate possible trees associated with different 

values of MxE are depicted in Figure 2. In this example, 

MT is completely generated for MxE < 4. 
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Figure 2: Intermediate tree structures depicted in Fig. 

1: (a) MxE ≥ 16, (b) MxE ∈ [8,16), (c) MxE ∈ [4,8). 

 

It is evident that only full rooted subtrees (tree 

structures) can be generated because when an internal 

node is expanded, all of its children are generated. Cross-

validation is a common method for adjusting 

hyperparameters to the best possible value in a candidate 

set. However, there is often no guarantee that two different 

candidate values will generate different tree structures. 

Additionally, a value that generates a specific tree 

structure may not be included in the candidate set. For 

example, cross-validation on the candidate values of MxE 

{18, 13, 8, 3} can only generate two out of the three tree 

structures in Figure 2 and the Mother Tree in Figure 1. In 

other words, MxE = 13 or 8 generates similar structures, 

and the one shown in Figure 2-c is missed. However, a 

complete set of non-redundant candidates can be 

generated in this case by sorting all positive SSEs in the 

nodes of the MT. 

 

The main problem, however, remains. Given a 

predefined parametric stopping condition, some node 

expansions are inevitable to achieve other specific 

expansions. For example, by decreasing MxE of the tree, 

it cannot be controlled to have expansion in specific nodes 

only. Hence, generating all tree structures is not 

guaranteed. For instance, the tree structure depicted in 

Figure 3 cannot be generated with this stopping condition 

because if a node with SSE = 4 is expanded, the node with 

SSE = 8 should also be expanded. However, these nodes 

cover disjoint regions of the feature space with their 

unique characteristics and requirements. 

Hybrid stopping conditions may generate more tree 

structures. There are many parameters associated with 

stopping conditions, as mentioned in the introduction, and 

each one can have numerous values if the parameter is 

discrete (e.g., MxD, MnI, and MxL) or a range of values 

if the parameter is continuous (e.g., MxE and MnP). 

Selecting an appropriate set of parameters and candidate 

value set for each one to construct all possible structures 

is likely impractical. Thus, conducting a complete search 

on tree structures is a challenging task, and the optimal 

structure may be missed. 

Any parameter of the stopping condition only affects 

the lengths of the paths from the root to the leaves. In other 

words, these parameters are not used in reasoning and only 

determine the expandability of each node during the 

training phase. Once the nodes that should not be 

expanded (leaves) are determined, the tree structure can be 

uniquely constructed, and the target value for each query 

instance can be predicted. The tree structures are finite, 

countable, and much less than all combinations of the 

parameter values. As the first contribution of this paper, 

all tree structures are investigated regardless of any 

stopping condition to address the above concerns. 

However, the number of tree structures also exponentially 

increases with respect to the Maximum Depth of the tree. 

Assume that the Mother Tree is a full binary tree with 

depth 𝐷 at all leaves, called here a 𝐷-tree. For D-trees with 

depth D = 1 and 2, there are two and five tree structures, 

respectively. The five tree structures of the MT in Figure 

1 are itself and four other structures presented in Figures 

2 and 3. The number of tree structures can be very large 

for deeper trees. For example, a 4-tree, 5-tree, and 6-tree 

have 677, 458,330, and approximately 210 × 

10^9structures, respectively. Such a large number of 

structures can make constructing all possible structures 

computationally infeasible. To address this problem, two 

techniques have been employed. Firstly, it is proved that a 

small set of tree structures defined with just one stopping 

condition, the Maximum Depth of tree, is sufficient to 

include an optimal structure for each query instance. 

Secondly, these structures are integrated to achieve a 

single structure without losing performance. These 

techniques significantly reduce the number of structures 

and make it practical to construct an optimal tree structure. 

3.1.1 Minimum covering set 

Determining the best tree structure with minimum 

total error on a set of validation data can be challenging. 

Regardless of the definition of the error function, the 

optimal tree structure is not necessarily the best for all 

query instances. Finding the tree structure with the 

minimum error for each query instance 𝑞 in the validation 

set can help to use the strengths and overcome the 

weaknesses of different tree structures. This information 

can be used to select the best tree structure for a particular 

query instance or to develop an ensemble of tree structures 

that performs well on a diverse set of query instances. 

Since a query instance 𝑞 deterministically moves 

from the root of the MT down to reach the leaf, its path in 

its best structure is also determined to reach the associated 

leaf 𝐿. In other words, one tree structure in the set of 𝑑-

tree structures (𝑑 = 0, … , 𝐷), includes 𝐿 in associated path 

of 𝑞 as the leaf and performs as well as the best structure 

for 𝑞. 

Therefore, a set of (𝐷 + 1) 𝑑-structures (𝑑 =
0,1, . . . , 𝐷) can work as well as all exponential number of 

Figure 3. A tree structure of MT in Fig.1 which is 

not feasible with just MxE as the stopping 

condition. 
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tree structures. This approach significantly reduces the 

number of tree structures that need to be constructed and 

evaluated, making it computationally feasible to find an 

optimal tree structure. 

3.2 Merging the trees 

Assuming a Mother Tree (MT) is constructed and 

given, as shown in Figure 1. For each query instance 𝑞, the 

corresponding leaf in its optimal tree is denoted by 𝑁∗(𝑞). 

Tracking the associated path from the root towards the 

corresponding deepest node (leaf) in MT certainly passes 

𝑁∗(𝑞). If the prediction value or model for all internal 

nodes of MT in this path is also computed, as well as the 

leaves, the query can compute its predicted target value by 

all 𝑑-structures. Therefore, just one tree structure (Mother 

tree) is sufficient to be constructed, whereas all nodes 

(internal and leaves) are assigned a prediction value or 

model in the training phase. The only problem is 

determining the optimal depth for a given query instance. 

In this case, two different paths, separated from a 

disjoint node, can have their own stopping conditions, 

which are dynamically discovered in the test phase. Even 

two query instances that belong to a common path may 

have their own stopping condition on the tree. As a 

postponed decision, all prediction values of a query 

instance in all depths of MT can be gathered, and one of 

these candidate values can be assigned as the final 

prediction (e.g., the most frequent or the median). This 

approach can significantly reduce the computational cost 

of constructing multiple tree structures to generating just 

one tree but with a decision value or model in all the 

nodes. 

In the training phase, it is assumed that the stopping 

condition may be held in each of the nodes (even in the 

root). Hence, each node is temporarily considered as a 

leaf, and a label or model is assigned to it. In the test phase, 

each given query instance 𝑞 is fed to the MT to find its 

complete path. This path is a sequence of 𝐷 + 1 decision 

nodes 𝑛0(𝑞), 𝑛1(𝑞), . . . , 𝑛𝐷(𝑞). Based on that, 𝐷 + 1 

different predictions are computed for 𝑞 representing the 

values or output of the models assigned to decision nodes. 

Now, it is time to reason for the final value (adaptively 

select the leaf or stopping condition). For example, the 

most frequent or median value in the predicted values can 

be assigned. This adaptive approach can improve the 

performance of the MT and make it more robust to 

different query instances. 

3.3 Ensemble of tree structures 

As mentioned earlier, the best tree structure for a 

query instance 𝑞 exists; however, it may not be identified 

during the test phase. Even, its prediction for the target 

value may not be sufficiently accurate. In this case, none 

of the candidate values in the path are sufficiently 

accurate. To address this issue, this paper, similar to 

random forests, uses the average of the outputs of the 

regression trees for reasoning during the testing phase.  

As the third contribution, this paper employs an 

ensemble of 𝑑-structures for reasoning, instead of 

selecting just one tree structure. The ensemble of (𝐷 + 1) 

𝑑-structures is used for decision here. During the testing 

phase, each query instance 𝑞 is fed to all (𝐷 + 1) 𝑑-

structures in the ensemble, and 𝐷 + 1 different predictions 

are computed for 𝑞, as explained earlier. Then, the average 

of these predictions is returned as the final prediction for 

𝑞. Also, a weighted approach can also be used as shown 

in (1). 

𝑦(𝑞)  =
∑ (𝑤𝑑 ∗ 𝑦𝑑(𝑞))𝑑

∑ 𝑤𝑑𝑑
    (1) 

 

where 𝑦𝑑(𝑞) is the predicted value for query instance 

𝑞 by the 𝑑𝑡ℎ 𝑑-structure, 𝑤𝑑 is the weight assigned to the 

𝑑𝑡ℎ 𝑑-structure, and ∑ (𝑤𝑑)𝑑  is the sum of weights over 

all 𝑑-structures to normalize the average. Each node 𝑛𝑑 

contributes to the total reasoning as much as its positive 

weight 𝑤𝑑. If all 𝑑-structures have an equal effect on the 

total prediction, 𝑤𝑑 is set to one.  

3.4 Weighting the nodes 

In this paper, some proper greedy weighting methods 

are sought for the nodes of a path to determine the final 

decision. As a classic approach, a statistical representative 

of the outputs of the path can be considered as the final 

approach as follows: 

1. If it is desired to minimized the maximum 

difference between each output and the 

representative, the Middle point as the mean 

of minimum and maximum values is 

returned as the final decision. This output is 

robust against small changes in all outputs 

except of the minimum and maximum. 

However, it is highly sensitive to outlier 

outputs. 

2. If it is desired to minimize sum of absolute 

differences between the outputs and the 

representative, final result is the Median of 

the outputs in the path. In contrary with 

Middle, Median is more robust against 

outliers and increasing maximum or 

decreasing minimum does not change its 

value. 

3. Minimizing sum square of differences leads 

to return the Mean of outputs. It is sensitive 

to all values but as much as one vote between 

all other votes.  

All of above approaches can be considered as a version 

of weighted average as shown in equations (2)-(4). 

 

𝑀𝑖𝑑𝑑𝑙𝑒 =
1

2
𝑣0 +

1

2
𝑣𝐷    (2) 

 

𝑀𝑒𝑑𝑖𝑎𝑛 =
1

2
𝑣

⌊
𝐷

2
⌋

+
1

2
𝑣

⌈
𝐷

2
⌉
   (3) 

 

𝑀𝑒𝑎𝑛 =
1

𝐷+1
∑ 𝑣𝒹

𝒟
𝒹=0      (4) 

 

where values 𝑣𝒹 (𝒹 = 0,1, … , 𝒟) are sorted outputs of 

the path 𝑦𝒹(𝑞). However, the weights can be assigned 
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with other strategies respect to different goals. Two 

simple opposite strategies are given here. 

Increasing weighting: In this strategy, it is assumed 

that deeper nodes (more specific rules) are more trustable 

due to their high resolution of looking training data. In this 

strategy, deeper leaves have greater weights. With a 

constant growth rate 𝛼, the weights 𝛼, 2𝛼, 3𝛼, … , (𝒟 +
1)𝛼 are assigned to 𝑤0, 𝑤1, 𝑤2, … , 𝑤𝒟, respectively. 

Decreasing weighting: From this point of view, the 

deepest node (the leaf) is not necessarily the best for 

reasoning, especially if the Mother Tree is permitted to be 

expanded as much as possible (which may result in 

overfitting to the training data). In addition, the training 

instances that belong to a leaf not only affect the output of 

the leaf but also play a role in determining the output of 

all internal nodes in the path. Therefore, the accumulated 

effect of training instances that belong to the leaf is more 

significant than that of others in determining the final 

result. This is why; to balance the effects, the weight of 

deeper nodes should be smaller. In this paper, reverse of 

previous approach is used and 𝛼, 2𝛼, … , (𝒟 + 1)𝛼 are 

assigned to 𝑤𝒟 , 𝑤𝒟−1, … , 𝑤0, respectively. 

In increasing weighting, each weight 𝑤𝒹 should be 

normalized by equation (5). 

 

𝑤𝒹
𝑁 =

2𝑤𝒹

𝛼(𝒟+1)(𝒟+2)
=

2(𝒹+1)𝛼

𝛼(𝒟+1)(𝒟+2)
=

2(𝒹+1)

(𝒟+1)(𝒟+2)
 (5)  

 

where 𝑤𝒹
𝑁 is normalized value of 𝑤𝒹. Hence, 𝛼 has no 

effect on the final result and the weights can similarly 

considered 1, 2, …,𝒟 + 1. 

3.5 Discussions 

In this subsection, some properties of the proposed model 

are discussed from different viewpoints. The proposed 

ensemble approach has several desirable properties that 

make it a promising method for solving classification and 

regression tasks.  

The proposed ensemble approach can be considered as an 

ensemble model of (𝐷 + 1) 𝑑-structures with weights 

𝑤0, 𝑤1, … , 𝑤𝐷, respectively. Each 𝑑-structure corresponds 

to a tree with a constant depth 𝑑 in all branches.  

In addition, the proposed model is flexible and can be 

adapted to different types of datasets and tasks. There is 

no parameter introduced by this paper for implementing 

the proposed ensemble model. The only parameters are 

related to the construction of the MT, such as the number 

of branches of an internal node for continuous pivot 

features or the maximum depth the MT can be expanded 

to. These parameters can be adjusted based on the specific 

characteristics of the dataset and the computational 

resources available. 

3.5.1 Extra expansion 

One of the challenges in using the proposed ensemble 

approach is determining the value of the maximum depth 

𝐷 of the MT. The value of 𝐷 can be chosen based on the 

characteristics of the dataset and the computational 

resources available.  

It is worth noting that the maximum depth 𝐷 is equivalent 

to the Maximum Depth of the tree (MxD) used in a 

regression tree with a single stopping condition. In both 

cases, the tree is expanded up to a certain depth. However, 

the main difference between a regression tree with a single 

stopping condition based on MxD and the proposed 

method is in reasoning. In the former, the target value is 

predicted by just using the value or model assigned to the 

leaf node corresponding to the query instance. However, 

in the proposed method, a weighted average of predictions 

in the leaf node and its ancestors is used as the final result. 

This weighted average takes into account the contribution 

of each node to the final prediction. In increasing and 

decreasing weighting, general and specific rules, 

respectively, have more effects on the output to achieve 

more generalization on test data or precision on learning 

training data 

Expanding the nodes more than necessary can cause 

overfitting on the training set. This weighting method 

aggregates general (short) and specific (long) rules to 

make a good decision. Specifically, if the MT is overfitted 

on the training data by deep leaves, it can be compensated 

to some extent by the shallower nodes in the test phase. 

The shallow nodes capture the general patterns and rules 

in the data, while the deeper nodes capture more specific 

and detailed patterns. The proposed ensemble approach 

aggregates the predictions of all nodes, taking into account 

their weights, to make a final prediction for a query 

instance. This aggregation ensures that the contribution of 

each node to the final prediction is proportional to its 

importance. In decreasing weighting, overfitting is 

addressed by ensuring that the weights of deeper nodes are 

smaller than the weights of shallower nodes.  

3.5.2 Single representative tree 

One concern with the proposed ensemble approach is the 

time-complexity of tree construction and reasoning during 

the training and test phases, respectively. However, the 

tree construction process in this approach is similar to a 

simple regression tree, including feature selection, finding 

splitting points, node expansion, and value or model 

assignment to the leaves. In contrast to using a regression 

model in just the leaves (e.g., in M5), the proposed method 

requires learning a model for all nodes, including the 

leaves and internal nodes. Each internal node at depth 𝑑 is 

treated as a leaf node in a 𝑑-structure, and a model is 

learned on the instances that reach this node. However, all 

these models are tuned in the offline training phase, rather 

than during the online testing phase. 

One of the main concerns with the proposed ensemble 

approach is the time-complexity of the reasoning process 

during the online testing phase. Each query instance must 

be fed to all the models associated with the met nodes in 

the path to compute their outputs, which can be time-

consuming. To address this issue, the computation can be 

transferred to the training phase. Specifically, let Q be the 

set of instances (not limited to the training set) that reach 

the leaf node 𝑛𝐷(𝑄). Each instance in Q deterministically 

meets all and only the ancestors of 𝑛𝐷(𝑄) in the path from 
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the root to the leaf node (𝑛0(𝑄), . . . , 𝑛𝐷(𝑄), where 𝑛𝑑(𝑄) 

is the node in depth 𝑑 that is met by Q). 

For all instances in 𝑄, the same weights 𝑤0, . . . , 𝑤𝐷 and 

models 𝑦0(𝑞), . . . , 𝑦𝐷(𝑞) are used for output generation. 

However, 𝑦𝑑(𝑞1) may not be equal to 𝑦𝑑(𝑞2) for two 

different vectors 𝑞1 and 𝑞2 in 𝑄, unless a constant value is 

assigned to each node. Finally, instead of having 𝐷 + 1 

different models in the path, it is possible to generate just 

one model in each leaf by integrating the models in the 

path using equation (1). It should be noted that even the 

weights can be adaptively determined. 

By using the same weights and models for all instances in 

Q, the time-complexity of the reasoning process during the 

online testing phase may be reduced significantly. In some 

cases, such as in AID and M5 models, the outputs of all 

nodes are constant or can be represented by a polynomial 

regression model of degree M. In these cases, the final 

output can also be constant or a polynomial of the same 

degree. Therefore, instead of averaging the nodes' output 

in the path during reasoning, a constant output or 

polynomial regression model can be set to just the leaves, 

making the time-complexity of reasoning equal to that of 

a single regression tree. However, such value or model is 

not computed using only the target values of instances 

belonging to the that leaf. Other instances also contribute 

in this value respect to their roles to determine the values 

of the nodes in the path and associated weights. 

Hence, the problem of stopping condition adjustment 

changes to value/model assignment to the leaves. In other 

words, the main difference between the proposed method 

and the base regression tree is in the value/model used in 

the leaves for reasoning, with similar time-complexity. 

This computation can also be used for other regression 

models, but the weighted average of base models is not 

necessarily a model of the same type. In this case, the 

time-complexity may not be reduced. 

As the final quality evaluation, the proposed method is 

compared with general strategies for hyperparameter 

setting in Table 3. As mentioned, Evolutionary strategies 

can also be used for tree construction including 

hyperparameters [32]. But evolutionary models are highly 

time-consuming such that evaluating each solution needs 

a tree construction and evaluation. The most usual strategy 

is grid search where a limited set of values for a 

hyperparameter (often single parameter) is considered and 

the best one based on cross-validation is selected. In order 

to be sure, these values address different and all possible 

trees, entire path of the parameter may be used in the 

literature [33]. The entire path of stopping condition 

parameters can easily be extracted by traversing the 

Mother Tree; although, based on our knowledge, no 

research yet has proposed it. Ensemble of models with 

different parameters is also a good approach which is not 

indeed a search strategy [34]. However, it uses various 

models with different parameters (instead of selecting just 

one value) and aggregates their outputs. One of the 

contributions of this paper is proposing an ensemble 

model for defining the stopping condition. The main merit 

of ensemble models is their capacity to generate outputs 

by aggregation which are not even seen in each base 

model. The main drawback of ensemble models is their 

storage need and inefficiency during reasoning because 

the query instance should be fed to all base models stored 

in the memory. But the proposed method can integrate all 

the models in one structure to leverage merits of ensemble 

models along with low complexity in time and memory. 

One of the most important merits of the proposed model 

is that, for a query instance can compute the final output 

with any stopping condition parameter without need to 

reconstruct the tree using the training set. 

4 Experimental results 
In this section, the proposed ensemble approach is 

compared with single stopping conditions in decision 

trees. Other regression methods are not considered 

because, it is assumed that decision tree in a specific 

application is preferred by an expert as a regression model 

due to their accuracy, speed in reasoning, or 

interpretability. Random forests may outperform single 

trees by sacrificing speed of reasoning and interpretability. 

However, the proposed method, despite being based on an 

ensemble of trees, can be merged and described by a single 

tree. As mentioned before, even the resulted tree can be 

converted to a single tree with just labels or models in the 

leaves. 

In the conducted experiments and comparisons, six 

datasets presented in Table 4, were used. Two of these 

datasets, "Stock portfolio performance" and "Concrete 

Compressive Strength," have two target values for 

prediction. As a result, eight datasets in the experimental 

results were used. The proposed ensemble approach was 

compared with single decision trees using different 

stopping conditions, such as Maximum Depth of the tree 

(MxD), Maximum Error per leaf (MxE), and Minimum 

Relative Promotion in error (MnRP). The experimental 

results show that the proposed ensemble approach 

outperforms single stopping conditions.  

In this paper, two types of regression trees were 

implemented based on AID and M5. Each tree 

construction has two phases: in the first phase, the tree is 

constructed by selecting the best features and splitting 

points, while in the second phase, a model is assigned to 

the leaves. Based on AID, a constant value (mean of the 

target value of belonging instances) is assigned to each 

leaf. In M5, although the tree is constructed similarly, a 

linear regressor is finally assigned to each leaf. In other 

words, based on constant and fast regressors, the tree is 

constructed, and finally, a linear regressor is modeled on 

the instances of each leaf.  The use of constant regressors 

in AID-based trees and linear regressors in M5-based trees 

allows for flexible modeling of the target variable, 

depending on the nature of the dataset. In this paper, each 

feature is partitioned into two branches in an internal node. 

However, it is permitted to use it again as the pivot feature 

in descendants, indirectly supporting partitioning to more 

than two branches. 

The proposed trees were tested on all datasets 

addressed in Table 4, with the only stopping condition 

being Maximum Depth of tree (MxD). In the first 

experiment, Mean Square Errors (MSE) of prediction by 
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both AID and M5 were computed vs. MxD, using five-

fold five-times cross-validation. In Fig. 4, for each MxD, 

the number of datasets for which AID or M5 had better 

functionality than the other one was reported. For 

example, for MxD of at most two, M5 defeated AID on all 

datasets. However, as depth increased up to 20, the 

number of datasets on which AID achieved better 

prediction also increased. The main reason for this is that, 

by increasing the depth of the tree, the complexity of the 

tree also increases. In such situations, simpler models in 

the leaves have better generalization on unseen data. The 

best model for each dataset can often be easily detected by 

cross-validation. Therefore, to be fair, the best model was 

used for each dataset (i.e., M5 was used on "Housing" and 

"Concrete-Slump", while AID was applied on the others). 

 

 

Figure 4: The number of wins of AID (Morgan, 

1963) and M5 (Witten, 2005) in competition on the 

datasets addressed in Table 4 vs. MxD. 

 

Table 5 reports the normalized MSE of predictions on the 

datasets with different values of MxD. The MSE has been 

normalized by Mean Square of the target value under 

prediction, to diminish the scaling effect of target values 

on the error. The last two rows of the table show the 

minimum normalized MSE and associated depth for each 

dataset.  

While using maximum depth as a stopping condition has 

some merits, it also has some drawbacks. On the one hand, 

this parameter is simple and has a practically finite set of 

values (positive integers less than an acceptable bound), 

which makes it easy to implement and tune. On the other 

hand, this parameter acts similarly in all branches, 

whereas two nodes at similar depths may have completely 

different situations with respect to the number of 

associated instances, variance of target values, and 

separability of instances in the next expansion. As a 

consequence, finding the proper value of MxD for a 

dataset is a challenge, and it may not work properly in all 

parts of the tree.  

In the next experiment, the best regression tree for each 

dataset (AID/M5) was constructed with another stopping 

condition, such that one node would not be expanded 

unless the Sum Square Error (SSE) of associated instances 

was greater than a predefined threshold. This threshold is 

referred to as Maximum Error (MxE) in this paper. The 

results of this experiment are reported in Table 6, with 

respect to normalized MSE vs. 10 different values of MxE 

with various granularities. The two last rows of the table 

present the minimum error and corresponding value of 

MxE for each dataset.  

However, even for this stopping condition, as shown in 

Table 6, different thresholds can lead to the best 

performance. For example, the labels of "Stock Portfolio" 

(Stock Annual & Excess) achieve the best prediction with 

MxE=0.01, while for "Slump-Slump," the best 

performance is associated with MxE=100. This stopping 

condition also suffers from some drawbacks, including its 

scale sensitivity. If the training set is duplicated, it is not 

desired to have any modification in the decision tree. 

However, the number of instances in each node is doubled, 

and therefore, stopping conditions based on MxE or 

Minimum Instance per leaf (MnI) may be held in deeper 

nodes. To address this issue, Mean Squared Error (MSE) 

of each node may be checked as the stopping criterion 

instead of SSE. Another scaling problem is related to the 

scale of the target value. If all target values are scaled by 

α, it is desired to have a similar tree for reasoning but with 

scaled values at the leaves. However, Sum Squared Error 

and MSE of each node are scaled by 𝛼2. Hence defining a 

threshold is dependent to the scale of the target values.  

The third stopping condition investigated in this paper is 

based on Relative Promotion (RP), which is presented in 

equation (6).  

𝑅𝑃(𝑛) = 1 −
∑ 𝑆𝑆𝐸(𝑛𝑏)𝐵

𝑏=1

𝑆𝑆𝐸(𝑛)
                                    (6) 

Equation (6) defines RP as the difference between the 

sum of squared errors (SSE) of the parent node and the 

sum of SSEs of its children, divided by the SSE of the 

parent node. Here, 𝑆𝑆𝐸(𝑛) is the Sum Square Error of 

associated instances to the node 𝑛. The node 𝑛 is 

considered to be expanded to 𝐵 children 𝑛1, . . . , 𝑛𝐵. In 

other words, this metric measures how the expansion 

decreases the sum square error of prediction on associated 

instances, relative to the initial SSE of the parent node. 

The proposed approach uses RP as a stopping condition, 

such that a node will not be expanded if its RP is less than 

a predefined threshold. This threshold is referred to as 

Minimum Relative Promotion (MnRP) in this paper. 

Unlike other stopping conditions, such as MxD and MxE, 

RP is stable with respect to both the training set size and 

target value scaling. Table 7 shows the normalized MSE 

of experiments using the proposed stopping condition with 

different values of MnRP for tree construction on the 

datasets. 

Based on the results, although less oscillation of 

normalized errors can be seen in comparison with 

previous metrics, and there is a proper value of MnRP (i.e., 

0.2) for most of the datasets, the final results are not 

sufficiently good. Table 8 compares the best results 

(minimum normalized MSE) of the stopping conditions in 

Tables 5-7, which can provide insights into the relative 

performance of each stopping condition for different 

datasets.  

Table 8 ranks the stopping conditions based on their 

achieved results for each dataset. Each stopping condition 
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is assigned a rank equal to the number of other stopping 

conditions with less error plus one. For example, on 

"Yacht Dynamics," both MxD and MxE achieved the best 

rank, and MnRP gets the third rank. The last column of the 

table shows the average rank of each stopping condition 

across all datasets. Based on the results, MxD could be the 

best stopping condition on all datasets except for "Stock 

Excess," where it achieved the second rank. MxE could 

achieve the best error on four datasets, whereas it could be 

better than MxD on just "Stock Excess." However, MxE 

was the worst stopping condition on other datasets. MnRP 

could never be the best stopping condition on any dataset, 

but on average, it achieved a better rank than MxE on these 

datasets. Due to the stability of results based on MnRP 

(presented in Table 7), it can be an acceptable stopping 

condition when the user does not know the best value of 

the parameter. In the case of having a chance to find out 

the best parameter, MnRP is better than MxE on average, 

but cannot compete with MxD.  

Based on these experiments, it seems that MxD can be a 

good stopping metric if there is enough knowledge to find 

the best value of MxD. However, the proposed model 

claims that an ensemble of trees with different depths may 

achieve better results on average without any knowledge 

requirement. To evaluate this claim, the proposed model 

has been compared with a set of trees with depths ranging 

from 0 to 7 in Table 9. The proposed model combined all 

of these eight trees in a single tree with MxD=7 and five 

aggregation strategies: Middle, Median, Mean, Incresing 

weighting, and Decreasing weighting. The methods have 

been compared based on the resulting normalized MSE.  

In addition to normalized MSE, the rank of each method 

for each dataset has been computed and shown in 

parentheses. The last columns of the table show the 

average rank and error of each method across all datasets.  

The results indicate that ensemble methods significantly 

outperform fixed depth trees. The worst average error of 

proposed models (0.1349) is achieved for Middle 

representative which is better than the best one for single 

depth models (0.1352 for depth 2). The best average error 

is 0.1049 for Decreasing Weighting. 

Considering the ranks, just on "Housing" and "Yacht" the 

best method is a single depth model with depths five and 

six, respectively. On other datasets, the best rank of a 

single depth model is 4th. Four depths 0-4, no model can 

achieve a rank better than 5th on any dataset. With any 

fixed depth, there is at least one dataset for which, the 

model is ranked 10th or more. Whereas Decreasing 

Weighting model is the 1th model on four datasets and at 

most 8th model on others.  The Mean model is 2nd or 3rd 

rank on all datasets except of "Yacht". This is why; the 

best average rank is achieved for Mean and the second one 

is Decreasing Weighting. In Fig. 5, average of ranks for 

fixed depth models on each dataset is compared with the 

proposed ensemble models. As depicted, ensemble 

models significantly outperform the fixed depth ones on 

all datasets except of "Yacht". 

 
Figure 5: Comparing average of ranks of fixed-depth 

models with ensemble ones on datasets 

 

 
Figure 6: Differences between the normalize MSE of 

the 1st rank method and each one of "Mean" & 

"Decreasing Weighting" methods on datasets 

  

In order to have a better comparison between rival 

proposed methods, "Mean" and "Decreasing Weighting", 

Fig. 6 is designed to present the difference between the 

normalized MSE of each method respect to the best one 

on each dataset. Because the "Mean" method is not the 

best on any dataset, this difference is always non-zero for 

"Mean". Although, "Mean" is the 2nd rank on 

"Challenger", but this difference is significant about 0.08. 

However, "Decreasing Weighting" method, not only is the 

best on four datasets, but also has not difference with the 

best method greater than 0.02.  

 

5 Conclusion 
In this paper, a new approach is proposed to ensemble 

regression trees that are different in maximum depth. The 

trees are integrated into a single tree using some weighting 

methods, and all the outputs are merged into a single crisp 

tree. Based on the experimental results, the proposed 

methods can achieve better results than even the tree with 

the best maximum depth on most of datasets, indicating 

the importance of considering an ensemble of trees with 

different depths rather than using a fixed stopping 

condition for all datasets. Moreover, the proposed method 

achieves significantly better average rank compared to 

trees constructed up to a fixed maximum depth, with the 

time complexity of a single crisp tree. Future research 
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directions may include investigating other reasoning 

methods, weighting methods, stopping conditions, and 

making the final function continuous. These extensions 

can further improve the performance and interpretability 

of regression trees in various applications. 
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Table 1: Comparing categories of the regression methods 

Regression 
Methods 

Interpretability Storage 
Training 

time 
Reasoning 

time 
Performance Description 

Deep Low  Complex  High  Good  High  Need large training data 

Neural 
Network Low  Good  Good  Low   High  

Local Optima, high capacity 
of learning 

Model Based Low  Good  Good  Low   Good  Global Information 

Prototype 
Based Good  Complex  Low   High  High  

Local information, storing 
all prototypes 

Rule Based High  Low  Good  Good  Good  
Need to evaluate by all 

rules 

Random 
Forest Good  Good  Good  Good  High  

Need to evaluate by all 
trees 

Decision Tree High  Low   Low   Low   Good  
Interpretable, Compact, 
Simple, Fast, Accurate 

 

 

Table 2: Stopping conditions' hyperparameters of regression trees 

Stopping 
Conditions 

Merits Drawbacks 

Max. Depth Simple, Integer, Limited values 
Global effect on all nodes, Independent of 

error 

Max. Nodes 
Simple, Integer, Limited values, Using storage 

completely 
Needs priority metric, Complex training, 

Independent of error 

Min. Instances Simple, Integer, Limited values 
Sensitive to the size of dataset, Independent 

of error 

Max. Sum 
Square Error 

Considers local errors 
Floating point, Unlimited range, sensitive to 

the size of dataset and the scale of target 
values 

Max. Mean 
Square Error 

Considers local errors, insensitive to the size of 
dataset 

Floating point, Unlimited range, sensitive to 
the scale of target values, Ignores 

expandability 

Min. Error 
Promotion 

Considers local errors, Considers expandability 
Floating point, Unlimited range, sensitive to 

the scale of target values 

Min. Relative 
error Promotion 

Considers local errors, Considers expandability, 
insensitive to the size of dataset and scale of target 

values 
Floating point, Unlimited range 

Information 
theoretical 

Good for classification 
Not proper for regression and continuous 

spaces 

Hybrid 
conditions 

More control on tree construction Complex, multi parameters, Static 
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Table 3: Search strategies to find hyperparameters of a model 

Search strategies Merits Drawbacks 

Evolutionary Computation: GA, 
PSO, … 

Capable of search in complex 
spaces including parameters of 

hybrid conditions 

Inefficient: needs to measure the 
fitness of each solution by tree 
construction, Static reasoning 

Grid Search Simple 

Just one parameter, limited 
number of candidates: redundancy 

and missing values, Static 
reasoning 

Entire Path 
All possible unique values of 

parameter 
Just one parameter, Static 

reasoning 

Ensemble of models Generating various outputs 
Each parameter set needs a tree, 

Inefficient reasoning 

Proposed model 
Generating various outputs, Single 

tree, Efficient reasoning, testing 
new conditions without retraining 

 

 

Table 4: Datasets used in experiments from UCI Machine Learning Depository (Asuncion, 2007) in regression 

category. 

Dataset Attributes type # of attribute # of rows labels 
Housing Real 13 506 Housing 

Challenger USA Space Shuttle O-Ring Integer 3 23 Challenger 

Concrete Slump Test Real 10 103 Concrete Slump 

Yacht Hydrodynamics Real 7 308 Yacht Dynamics 

Stock Portfolio Performance Real 12 63 
Stock Annual 

Stock Excess 

Concrete Compressive Strength Real 9 1030 
Slump _Slump 

Slump 
Flow 
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Table 5. Normalized MSE of prediction on datasets vs. MxD 

MxD Housing Challenger 
Concrete 

Slump 
Yacht 

Dynamics 
Stock 

Annual 
Stock 
Excess 

Slump_ 
Slump 

Slump_ 
Flow 

0 0.046 0.844 0.072 0.682 0.051 0.054 0.192 0.113 

1 0.064 0.611 0.039 0.152 0.045 0.043 0.156 0.082 

2 0.059 0.654 0.037 0.035 0.031 0.034 0.152 0.081 

3 0.044 0.751 0.03 0.009 0.03 0.033 0.189 0.09 

4 0.037 0.875 0.03 0.006 0.028 0.032 0.204 0.101 

5 0.032 0.92 0.029 0.006 0.027 0.032 0.215 0.104 

6 0.038 0.92 0.029 0.005 0.026 0.031 0.22 0.106 

7 0.034 0.92 0.027 0.006 0.026 0.03 0.22 0.112 

8 0.033 0.92 0.027 0.006 0.026 0.031 0.222 0.114 

9 0.034 0.92 0.027 0.006 0.026 0.031 0.225 0.114 

10 0.034 0.92 0.027 0.006 0.026 0.031 0.225 0.115 

Min 0.032 0.611 0.027 0.005 0.026 0.03 0.152 0.081 

Best Depth 5 1 >6 6 >5 7 2 2 

Table 6. Normalized MSE vs. 10 values of MxE 

MxE Housing  Challenger 
Concrete 

Slump 
Yacht 

Dynamics  
Stock 

Annual 
Stock 
Excess 

Slump- 
Slump  

Slump- 
Flow 

0 0.034 0.92 0.027 0.006 0.026 0.031 0.225 0.115 

0.01 0.034 0.92 0.027 0.006 0.026 0.029 0.225 0.115 

0.05 0.034 0.92 0.027 0.006 0.028 0.033 0.225 0.115 

0.1 0.034 0.92 0.027 0.006 0.03 0.032 0.225 0.115 

0.5 0.034 0.92 0.027 0.006 0.045 0.043 0.226 0.115 

1 0.034 0.775 0.027 0.006 0.051 0.043 0.226 0.114 

5 0.034 0.834 0.027 0.005 0.051 0.054 0.224 0.114 

10 0.035 0.844 0.027 0.005 0.051 0.054 0.226 0.114 

50 0.045 0.844 0.028 0.007 0.051 0.054 0.217 0.117 

100 0.044 0.844 0.028 0.008 0.051 0.054 0.214 0.115 

Min 0.034 0.775 0.027 0.005 0.026 0.029 0.214 0.114 

Best 
MxE 

[0,5] 1 [0,10] [5,10]  [0,0.01] 0.01 100 [1,10] 
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Table 7. Normalized MSE vs. values of Minimum Relative Promotion 

MnRP Housing  Challenger 
Concrete 

Slump 
Yacht 

Dynamics  
Stock 

Annual 
Stock 
Excess 

Slump- 
Slump  

Slump- 
Flow 

0 0.034 0.92 0.027 0.006 0.026 0.031 0.225 0.115 

0.05 0.033 0.92 0.027 0.006 0.026 0.031 0.225 0.115 

0.06 0.033 0.918 0.027 0.006 0.026 0.031 0.225 0.115 

0.07 0.033 0.912 0.027 0.006 0.026 0.031 0.226 0.115 

0.08 0.033 0.912 0.027 0.006 0.026 0.031 0.226 0.115 

0.09 0.033 0.911 0.027 0.006 0.026 0.031 0.225 0.115 

0.1 0.033 0.911 0.027 0.006 0.026 0.031 0.217 0.114 

0.15 0.033 0.716 0.027 0.006 0.026 0.03 0.196 0.104 

0.2 0.033 0.617 0.038 0.006 0.026 0.03 0.183 0.096 

0.3 0.04 0.617 0.072 0.006 0.039 0.048 0.189 0.092 

Min 0.033 0.617 0.027 0.006 0.026 0.03 0.183 0.092 

Best 
MnRP 

[0,0.2] [0.2,0.3] [0,0.15] [0,0.3] [0,0.2] [0.15,0.2] 0.2 0.3 

 

Table 8. Comparing MxD, MxE and MnRP based on the best Normalized MSE on datasets 

Stop. 
Metric 

Housing  Challenger 
Concrete 

Slump 
Yacht 

Dynamics  
Stock 

Annual 
Stock 
Excess 

Slump- 
Slump  

Slump- 
Flow 

Avg. 
Rank 

MxD 
0.032 

(1) 
0.611 

(1) 
0.027 

(1) 
0.005 

(1) 
0.026 

(1) 
0.03 
(2) 

0.152 
(1) 

0.081 
(1) 

1.125 

MxE 
0.034 

(3) 
0.775 

(3) 
0.027 

(1) 
0.005 

(1) 
0.026 

(1) 
0.029 

(1) 
0.214 

(3) 
0.114 

(3) 
2 

MnRP 
0.033 

(2) 
0.617 

(2) 
0.027 

(1) 
0.006 

(3) 
0.026 

(1) 
0.03 
(2) 

0.183 
(2) 

0.092 
(2) 

1.875 

 

  



A Consolidated Tree Structure Combining Multiple Regression…                                      Informatica 47 (2023) 17–34   33 

Table 9. Comparing normalized MSE of the proposed model and regression trees with fixed MxD 

MxD Housing  Challenger 
Concrete 

Slump 
Yacht 

Dynamics  
Stock 

Annual 
Stock 
Excess 

Slump- 
Slump  

Slump- 
Flow 

Avg. 
Rank 

 
Avg. 
Err. 

0 
0.0462 (11) 0.8443 (9) 

0.0723 
(13) 

0.6824 
(13) 

0.0508 
(13) 

0.054 
(13) 

0.1922 
(9) 

0.1133 
(13) 

12 0.257 

1 
0.0637 (13) 0.6111 (5) 

0.0391 
(12) 

0.152 
(12) 

0.0451 
(12) 

0.0429 
(12) 

0.1558 
(6) 

0.0817 
(7) 

9.9 0.149 

2 
0.0592 (12) 0.6538 (7) 

0.0366 
(11) 

0.0347 
(10) 

0.0305 
(11) 

0.0335 
(11) 

0.1523 
(4) 

0.0811 
(5) 

8.9 0.135 

3 
0.0441 (10) 

0.7508 
 (8) 

0.0298 
(9) 

0.0085 
(7) 

0.0295 
(10) 

0.0335 
(10) 

0.1886 
(8) 

0.0899 
(8) 

8.8 0.147 

4 
0.037 (7) 

0.8753 
(10) 0.03 (10) 

0.0065 
(5) 

0.0281 
(9) 

0.0318 
(8) 

0.2041 
(10) 

0.1006 
(9) 

8.5 0.164 

5 
0.0322 (1) 

0.92 
 (11) 

0.0293 
(7) 

0.0056 
(3) 

0.0271 
(8) 

0.0324 
(9) 

0.2147 
(11) 

0.1036 
(10) 

7.5 0.171 

6 
0.0378 (8) 

0.92  
(12) 

0.0289 
(6) 

0.0054 
(1) 

0.0262 
(7) 

0.0306 
(7) 

0.2197 
(13) 

0.1058 
(11) 

8.1 0.172 

7 
0.0338 (2) 

0.92 
 (13) 

0.0267 
(4) 

0.0055 
(2) 

0.0261 
(5) 

0.0305 
(6) 

0.2196 
(12) 

0.1124 
(12) 

7 0.172 

Middle 
0.0359 (5) 

0.5874 
 (4) 

0.0288 
(5) 

0.1506 
(11) 

0.0254 
(4) 

0.0271 
(4) 

0.1481 
(2) 

0.0762 
(1) 

4.5 0.135 

Median 
0.0378 (9) 

0.5853 
 (3) 

0.0248 
(3) 

0.0061 
(4) 

0.0261 
(6) 

0.0293 
(5) 

0.1538 
(5) 

0.081 
(4) 

4.9 0.118 

Mean 
0.0345 (3) 

0.5723 
 (2) 

0.0245 
(2) 

0.0288 
(9) 

0.0243 
(3) 

0.0259 
(2) 

0.1491 
(3) 

0.0768 
(2) 

3.3 0.117 

Inc. 
Weight 

0.0347 (4) 
0.6164 

 (6) 
0.0224 

(1) 
0.0078 

(6) 
0.0236 

(2) 
0.0266 

(3) 
0.1663 

(7) 
0.0813 

(6) 
4.4 0.122 

Dec. 
Weight 

0.0369 (6) 
0.4908 

 (1) 
0.0298 

(8) 
0.0237 

(8) 
0.017 

(1) 
0.0165 

(1) 
0.1456 

(1) 
0.0786 

(3) 
3.6 0.105 

  

 

 

 

 

 

 

 

 

 

 

 

 



34 Informatica 47 (2023) 17–34 E.A. Mahani et al.  

 

 

 

 

 


