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Internet of Things (IoT) is gaining momentum now a days to real time operational environment. The 

related technologies of IoT is converging to the main stream of industrial applications and replacing the 

conventional models of data acquisition, analysis, visualization and control in continuous manufacturing 

process industries. In this paper, we are proposing an IoT based model platform for acquiring various 

data that is generated in a continuous process manufacturing plant. This includes data from mobile 

devices and ERP systems as well. This is analyzed using machine learning and artificial intelligence 

technologies which leads to visualization of Key Performance Indicators (KPIs). It can be displayed on 

plant level as well as head office level in static and mobile devices. Control instructions can also be given 

from static devices as well as from mobile devices. Along with proposed platform concept, a prototype is 

also developed for cement manufacturing plant which is a core engineering continuous process 

manufacturing industry. The general KPIs in cement plants are explained and the KPIs generated in 

visualizing devices by the prototype platform are also provided in this paper.   

Povzetek: Članek predlaga model IoT platforme za analitiko ključnih kazalnikov uspešnosti (KPI) v 

industriji kontinuiranih procesov, ki vključuje integracijo podatkov iz mobilnih naprav in ERP sistemov, 

uporabo strojnega učenja in AI za vizualizacijo KPI-jev v proizvodnji cementa.

1 Introduction 
In continuous process industry [1], raw material moves 

from the beginning of the process and advances through 

each production step before converting to a final product. 

Once the process is initiated, the parameters such as 

pressure, temperature, speed, humidity etc. need to be 

controlled within the limits. The sensors can collect the 

data, compare that with requirements and take corrective 

actions wherever required. Cement manufacturing is an 

example of continuous manufacturing process industry. 

Professionals working in continuous process 

manufacturing plants are expected to monitor 

performance of various machines and process parameters 

continuously. This should also be controlled in real time 

basis. The man power required for this activity is very 

high. In addition to this, there are possibilities of human 

error while monitoring manually. Presently, most of the 

continuous manufacturing process plants are reasonably 

automated. Their operations are with Programmable 

Logic Controllers (PLC) [2] or Distributed Control 

Systems (DCS) [3] and monitoring can be done from the 

control room. A PLC [4], is a ruggedized computer used 

for industrial automation. These controllers can automate 

a specific process, machine function, or even an entire 

production line. DCS [5] is a computerized control system 

for a process or plant that consists of a large number of 

control loops, in which autonomous controllers are 

distributed throughout the system with a central operator 

supervisory control. 

 

 

Even though some level of autonomous control 

operations system is implemented in some manufacturing 

facility, the human experts need to be physically deployed 

in all areas of operation. If data collection, analysis, 

display and control can be done without human 

intervention, it will ensure less error in operations and 

activities can be done in a faster pace. The service of 

professionals who are presently involved in data 

collection, processing, analyzing and controlling 

activities can be utilized in other important focus areas 

like development of process and control, that meets future 

product, customer and environmental requirements.  

Presently engineers and managers are having access to 

smart phones and have reliable Internet connectivity in 

most of the places where plants are located. If they can 

get process information on their mobile phone, the need 

to be present in the control room all the time can be 

avoided. This will improve the flexibility of these 

personnel and hence it will result in improving open 

thinking and productivity.  A platform that can acquire 

data from DCS or PLC [6] in real time, with capability to 

analyze and visualize on static as well as mobile devices 

with alerts for manual interventions as needed, can 

support industry to meet this requirement. As the sensors, 

wireless connectivity, computing and visualizing 

capabilities are in the developed phase, an Internet of 

Things (IoT) [7] based platform will be the right choice 

for meeting this requirement. IoT refers to a system of 

interrelated, Internet-connected things that are able to 

collect and transfer data over a network without human 
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intervention. The things can be sensor, actuator or any 

equipment connected each other and to the Internet 

normally wireless and sometimes wired.  The Industrial 

Internet of Things (IIoT) [8] refers to the extension and 

use of the IoT in industrial sectors and applications. This 

can be either connected to the Internet or work as an 

independent industrial network. An example for IIoT is 

the smart electrical grid which is interconnected with 

power generation, transmission and distribution with 

sensors, control system and actuators. IIoT needs to 

follow the components and communication standards 

required for that particular industry in which, it is 

implemented. 

Platform [9] [10] is a digital hub which integrates the 

inputs from sensors, analyze the data and provides output 

for visualization or actions. In addition to automated 

sensor data, the inputs can be provided by manual 

intervention based on the policies and requirements.  The 

development of IoT platform with capability of data 

acquisition, analysis and visualization in static and mobile 

devices will reduce human efforts, improve speed and 

will support for taking the right manual decisions when 

required. In an IoT enabled factory, there are many 

individual components like sensors, actuators etc. These 

may be interdependent components of a production line 

and will be aware of each other’s activity in real time. So, 

the entire manufacturing process will become more 

efficient as well as much easy to monitor and manage with 

the platform. Data analytics [11] [12] [13] is the process 

of systematically applying statistical and/or logical 

techniques to describe and illustrate, condense, and 

evaluate data. In IIoT, the data collected by various 

sensors are processed, some process happens at the sensor 

end itself which is known as edge processing [14].  This 

is transferred to platform in which detailed analysis 

happen and the output is given for human visualization 

and/or for actuators to take actions. Many software tools 

such as, Python, R Programming, Hadoop etc. are used 

for analysis. For visualization software such as Tableau, 

Power BI etc. are used for Human Machine Interface 

(HMI) [15].  Predictive analytics capability on the 

platform will be able to predict possible breakdown 

scenarios well in advance and will help to take corrective 

actions.  

2 Related work 
PLC can be programmed for effective operation of the 

process with productivity, accuracy, precision and 

efficiency [16].  Before the introduction of PLC, the relay 

logic and contactor logics (RLC) were used [2] which 

include human intervention and resulted in errors. The 

introduction of microprocessors, microcontrollers, PLCs, 

Supervisory Control & Data Acquisition (SCADA) [17] 

[18] and DCS [19] have improved the control of 

manufacturing operations. These systems reduced human 

intervention and increased the flexibility in the process 

control. By automation, the working of a process or 

repetitive works can be done efficiently by proper 

controls within acceptable range. DCS made IoT 

implementation practically feasible. The communication 

from DCS to processor can be via Message Queuing 

Telemetry Transport (MQTT) protocol [20] [21]. For a 

robust system, the security enhancements should be 

compatible with MQTT Application Programming 

Interfaces (API) [22]. Open Platform Communications 

United Architecture (OPCUA) protocol [23] is another 

protocol which is getting wider acceptability in the 

industry.  IIoT receives very large amount of data from 

sensors and other sources. IIoT search engines [24] are 

also presently available. Big data analytics can be used for 

analysis of these data. Predictive and prescriptive 

analytics [25] can be done by adding this to the 

operational processes. The sensor driven data analytics 

which is used for decision making will improve and 

optimize the process industry. An analytical platform [26] 

can support the collection, storage, processing and 

visualization of data. Such a platform will be able to 

connect to the existing plant environment and use the data 

gathered to build predictive functions to optimize the 

production process. 

3 Background 
Continuous manufacturing process industries like 

cement, steel, paper, sugar, petrochemicals, fertilizers etc. 

have a matured manufacturing process. In this industry, 

once capital equipment in the manufacturing facility is 

installed, it is expected to provide continuous service for 

next 30-40 years. Not much of the technical upgradations 

or changes are possible in this life span. During the earlier 

days, all the process in continuous manufacturing 

industry were sensed, measured and required changes 

were done manually. Later, mechanical automation for 

sensing temperature, pressure, volume and suitable 

automatic systems were introduced [27]. An example of 

this is automatic coal fire reduction when steam pressure 

reaches required value.  With the wide use of electricity 

in industries, electro-mechanical sensing and automation 

systems were introduced. Electric switch cut-off with a 

thermostat when it reaches the preset heat is an example 

of this application.  These systems were of unidirectional, 

which means that it does not have the capability to adjust 

the process, based on the feedback from output or other 

variable parameters.  More over this control system 

hardware need to be custom developed as per the 

individual manufacturing plant or industry requirements.  

The introduction of PLC brought great flexibility by 

providing the option of using standard programmable 

controller irrespective of manufacturing plant or industry. 

The era of DCS brought a revolution by allowing standard 

computers to monitor and control manufacturing in 

process industries [28]. This helped to get real time data 

to the centralized control rooms and these control rooms 

can take remote actions by providing inputs to the 

actuators. Various technological improvements like 

change of wired sensor system to wireless, development 

of various industrial communication standards, high 

computational & storage capabilities, display options and 

control capabilities brought an IoT revolution to 

continuous process manufacturing industry.   
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3.1 State of the art 

The new generation of sensors and actuators are small, 

energy efficient, accurate, reliable and identifiable 

electronically. The identification systems like beacons, 

Radio Frequency Identification (RFID) [29] [30], Near 

Field Communication (NFC) [31] [32] etc. helped for 

easy and accurate sensing. The development of industrial 

wireless communication standards as well as computation 

and control systems, initiated Industry 4.0, which is the 

digital factory concept. With the introduction of Industry 

4.0 [33], manufacturing plants started real time sensing of 

data with sensors installed in various equipment as well 

as throughout the environment.  This system has created 

an environment called Cyber Physical System (CPS) [34].  

By connecting this system to Internet, IIoT came into 

existence.  Presently IIoT is getting implemented in many 

industries with very less or controlled exposure to 

communication through Internet. Dependability and 

standardization are essential to the adoption of Wireless 

Sensor Networks (WSN) [35] in industrial applications. 

Communication standards such as ZigBee [36], Wireless 

HART [37], ISA100.11a [38] and WIA-PA [39] are well 

accepted presently. The development of technology for 

computing at the sensing point itself and transfer of data 

to central control room for supervisory and management 

analysis as per the required Key Performance Indicators 

(KPIs) [40] paved the way for the revolution of IIoT. Key 

Performance Indicator (KPI) is a quantifiable measure of 

performance over time for a specific objective. KPIs 

provide milestones to measure progress that help people 

across the organization to take right decisions. Most of the 

industry and organizations monitor and compare their 

performance based on the KPIs set up for that particular 

segment.  KPIs are important for monitoring the 

performance and to identify opportunities for 

improvement of the industry. KPIs can be defined for 

individual equipment, sub processes as well as for the 

whole plant. Performances related to energy, raw 

material, final product, process control, operation, 

maintenance, etc. can be monitored by KPI. 

Benchmarking KPIs with similar equipment and plants is 

one method of setting industrial segment KPI standards. 

The outputs received as KPIs, are displayed at plant levels 

as well as at the head office.  The KPIs from other plants 

also reach the head office for analysis at that level and 

comparison. The corrective and control instructions [41] 

can also be given from head office or plant level to 

supervisory or to the actuator level. 

4 Problem identification 
Covid-19 the pandemic, restricted employees and 

professionals in travelling to factories and offices as well 

as for conducting physical meetings. In this situation, 

information flow from continuous manufacturing plants 

to supervisory and management team became important 

for taking right decisions and running the operations 

smooth. The present infrastructure of PLC, DCS or IoT 

enabled manufacturing industries are having data 

visualization and process control facility available only in 

static devices located in plant control rooms or at offices. 

In this situation, to continue the manufacturing process 

seamlessly, there is a need of integrating mobile devices 

to the existing control system infrastructure for accessing 

the continuous process data and other operational 

information. The process control facility needs to be 

provided with authorized mobile devices and it should be 

capable of operating from anywhere in the world. To 

achieve this, the right connectivity methods matching 

present available infrastructure as well as ensuring 

security needs to be developed. The integration of 

existing IIoT to mobile devices meeting the security 

requirements is a challenge identified by continuous 

process manufacturing organizations. 

5 Proposed solution 
The solution that we propose to the identified problem is 

the development of industrial platform which can access 

data from wireless sensors, mobile devices, DCSs, PLCs, 

ERP and text files. In the proposed platform, data could 

be analyzed as per the KPI requirements. The machine 

learning and artificial intelligence algorithms [42] [43] 

need to be incorporated for taking autonomous regular or 

corrective actions. The platform can also provide 

predictive analysis outputs that can be utilized for 

advance actions. The analysis output, meeting the KPIs 

formats should be displayed in mobile devices as well as 

in static devices as per the requirement. It should also be 

able to provide control instructions from mobile devices. 

5.1 Automation landscape 

In a continuous process industry, the data is collected 

from sensors and actuators to take actions based on the 

inputs from PLC, Proportional Integral Derivative (PID) 

controller, DCS or Supervisory Control and Data 

Acquisition (SCADA). A PID controller is an instrument 

used in industrial control applications to regulate 

temperature, flow, pressure, speed and other process 

variables. PID controllers use a control loop feedback 

mechanism to control process variables and are the most 

accurate and stable controller. A SCADA [44] is an 

automation control system that is used in industries such 

as energy, oil and gas, water, power, and many more. This 

system can be a centralized one to monitor and control 

individual sites and all connected sites. Manufacturing 

Execution Systems (MES) are software solutions that 

ensure quality and efficiency. This is built into the 

manufacturing process and are proactively as well as 

systematically enforced. Enterprise Resource Planning 

(ERP) is a software system that utilizes a centralized 

database that contains all the necessary data in one 

location. Information Technology (IT) automation is the 

process of creating software and systems to replace 

repeatable processes and reduce manual intervention. 

With IT automation, software is used to take care of 

repeat instructions, process, or policies to save time and 

free up IT staff for some other strategic work. Operational 

technology involves hardware and software that detects 

or causes a change, through the direct monitoring and/or 
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control of industrial equipment, assets, process and 

events. Figure 1 shows the convergence zone of operation 

/automation and information technology. The operation / 

automation technology involves sensors, actuators, PLC, 

PID, personnel computers and SCADA.  ERP and MES 

combines to form the information technology area. The 

proposed platform will be in the convergence zone.   

Various operational technology channels are explained in 

Table 1 and information technology channels are 

described in Table 2. 

 

 

Figure 1: Convergence zone of operation/automation 

and information technology. 

Table 1: Operational technology channels. 

Operational 

Technology 

Channel 

Description 

OPC (Open 

Platform 

Communications) 

Handles OPC connections using either OPC 

Unified Architecture (UA) specifications or 

OPC Data Access (DA) specifications. UA 
security is secured using certificates. DA 

security permissions can be applied using 

DCOM settings. 

OPC Server Acts as an OPC UA server. It can be accessed by 

a classic OPC client using a COM wrapper. 

XML Connects via a local or remote XML file. 

CSV Connects via a local or remote CSV file. 

Webservice Supports SOAP and REST communication and 

provides SOAP/REST host services. It runs as 
a server sending and receiving XML messages. 

MQTT Supports the ISO standard (ISO/IEC PRF 

20922) protocol. ATS Bus supports encryption 
between the MQTT channel and the MQTT 

broker using X509 certificates. 

RFID Uses the Octane SDK to communicate with 

Impinj Speedway readers. The channel 

connects to the reader using a raw TCP/IP 

socket. These TCP/IP connections are not 

secured using certificates. 

MTConnect Supports communication with MTConnect 

agents that exchange information with CNC 

machines. 

Socket A bidirectional (client/server) TCP/IP 
communication channel. It can be used to 

process CSV, text or binary data. As a server 

the channel binds to a port. As a client the 
channel connects to a host name and port. It 

does not provide data encryption. 

Serial Port A bidirectional (client/server) RS-232 
communication channel. It supports CSV, text 

and binary data payloads. COM ports can be 

virtual or physical. 

Database Communicates with Microsoft SQL Server and 
Oracle databases. 

Table 2: Information technology channels. 

Information 

Technology 

Channel 

Description 

XML Connects via a local or remote XML file. 

ActiveMQ 

Connects via Apache ActiveMQ messaging service. 

Apache ActiveMQ is an open-source messaging and 
integrations patterns server. Encryption is not 

supported on this channel. 

Webservice 

Server 

Supports WCF and REST communication and 
provides WCF/REST host services. It runs as a server 

sending and receiving XML messages. 

Webservice 
Client 

Exchanges information with REST, SOAP and HTTP 
based web services. 

Extension 

Required when other IT channels don’t have the 

functionality required to communicate with a 

customer’s software. It read and write to a plug-in 
(.NET assembly) using a standard interface. It may or 

may not have secure communications depending on 

how it’s used. 

5.2 Line diagram 

The line diagram of IoT based KPI platform for the 

continuous process manufacturing industry having 

multiple plant facilities is shown in Figure 2. The 

proposed platform will be installed in each plant as well 

as in head office. The data from each manufacturing plant 

will be transmitted to the plant level KPI platform from 

DCS through MQTT/OPC/Modbus channel. The data 

from the ERP will also be transferred similarly. Each 

plant will be connected to head office KPI platform 

through the Internet. Firewall will be placed at the point 

where each plant is connected to Internet as well as where 

the head office is connected to Internet. 

 

 

Figure 2: Line diagram of IoT based KPI platform. 
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5.3 Platform architecture 

In the proposed IIoT platform, the operation/automation 

and the Information Technology will converge. Figure 3 

shows the architecture of proposed KPI platform. 

 

Figure 3: Architecture of KPI platform. 

The proposed architecture has modules for acquiring 

inputs from various data sources. These sources can be 

sensor data, Industrial Control Systems (ICS), ERP, 

mobile applications etc. It can accept manual input data 

which comes as flat file as well as social media data which 

will be in the unstructured format. The data adaptor can 

be OPC, Modbus, MQTT etc. The data integration 

module integrates the data and will be made available for 

analysis. The artificial intelligence and machine learning 

applications are incorporated in data processing and 

analytics module. The output of this will be made 

available to dashboards. The security, monitoring, 

notifications, development, quality and operation 

modules will be common to all modules. 

6 Implementation in cement 

manufacturing 
Cement manufacturing [45] is highly automated 

continuous manufacturing process industry. The main 

stages of cement manufacturing are lime stone crushing, 

raw material handling, raw mill, kiln, coal mill and 

cement mill. The process needs to be monitored and 

controlled from starting point to final product end. Figure 

4 shows the process of cement manufacturing. 

 

 

Figure 4: Process of cement manufacturing. 

 

The identified KPIs [46] [47] normally using in cement 

manufacturing industry are provided.  Table 3 explains 

the KPI for critical process parameters [48]. Table 4 

shows the KPIs related to environment. Table 5 shows the 

material stock KPI. Table 6 explains the KPI for quality 

control parameters. These KPIs will be generated by the 

platform based on the inputs from IoT sensors.   

 

Table 3: KPI for critical process parameters. 

 
No

. 
Process Parameter 

Unit of 

Measurement 

1 

Lime 

Stone 

Crusher 

Apron Feeder Speed Rotations/Minute 

Crusher Motor Load Kilowatt 

Limestone to Stacker Tons/Hour 

2 

Raw 

Material 
Handlin

g 

Limestone Reclaimer Tons/Hour 

Raw Mill Additive 
Reclaimer 

Tons/Hour 

Raw coal reclaimer Tons/Hour 

Cement Mill Additive 

Reclaimer 
Tons/Hour 

3 
Raw 

Mill 

Limestone Weigh Feeder Tons/Hour 

Bauxide Weigh Feeder Tons/Hour 

Hammetite Weigh Feeder Tons/Hour 

Raw mill Total Feed Tons/Hour 

Raw mill Motor Load Kilowatt 

Raw Mill Differential 
Pressure 

Millimeter Water 
Gauge 

Raw Fan Motor Load Kilowatt 

Raw Mill Fan Speed % 

Raw Mill Fan Flow m3/Hour 

Bag House/ESP Fan Load Kilowatt 

Bag House/ESP Fan 
Speed 

% 

Bag House/ESP Fan Flow m3/Hour 

Bag House/ESP 
Differential Pressure 

Millimeter Water 
Gauge 

Classifier Speed % 

4 Kiln 

Pre heater Fan Motor 

Load 
Kilowatt 

Pre heater Fan Speed % 

Pre heater Fan Flow m3/Hour 

PH I/L O2 % 

PH I/L CO % 

Calciner O2 % 

Calciner CO % 

Calciner NOX PPM 

Kiln I/L O2 % 

Kiln I/L CO % 

Kiln I/L NOX PPM 

Kiln Firing Coal Tons/Hour 

Calciner Firing Coal Tons/Hour 

Calciner Temperature 
Degree 
Centigrade 

Kiln Feed Tons/Hour 

Kiln motor Load Kilowatt 
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Kiln Speed Rotations/Minute 

Kiln I/L Temperature 
Degree 

Centigrade 

Burning Zone 

Temperature 

Degree 

Centigrade 

Tertiary Air Temperature 
Degree 
Centigrade  

Secondary air 

Temperature 

Degree 

Centigrade 

Kiln Hood Draft 
Millimeter Water 

Gauge 

Cooler Compartment 
Pressure 

Millimeter Water 
Gauge 

Cooler Grate Speed Rotations/Minute 

Clinker Temperature 
Degree 
Centigrade 

Cooler ESP Fan Load KW 

Cooler ESP Fan Speed % 

Cooler ESP Fan Flow M3/Hour 

5 
Coal 

Mill 

Raw Coal Weigh Feeder Tons/Hour 

Coal mill Motor Load Kilowatt 

Coal Mill Differential 

Pressure 

Millimeter Water 

Gauge 

Coal Mill Fan Motor 

Load 
Kilowatt 

Coal Mill Fan Speed % 

Coal Mill Fan Flow M3/Hour 

Bag House Fan Load Kilowatt 

Bag House Fan Speed % 

Bag House Fan Flow m3/Hour 

Bag House Differential 
Pressure 

Millimeter Water 
Gauge 

Bag House I/L O2 % 

Bag House I/L CO % 

Fine Coal Silo CO % 

Bag House I/L 

Temperature 

Degree 

Centigrade 

Classifier Speed % 

6 
Cement 
Mill 

Clinker Weigh Feeder Tons/Hour 

Gypsum Weigh Feeder Tons/Hour 

Puzzolana Weigh Feeder Tons/Hour 

Cement mill Total Feed Tons/Hour 

Cement mill Motor Load Kilowatt 

Cement Mill Differential 

Pressure 

Millimeter Water 

Gauge 

Cement Mill Fan Motor 
Load 

Kilowatt 

Cement Mill Fan Speed % 

Cement Mill Fan Flow m3/Hour 

Bag House Fan Load Kilowatt 

Bag House Fan Speed % 

Bag House Fan Flow m3/Hour 

Bag House Differential 

Pressure 

Millimeter Water 

Gauge 

Classifier Speed % 

 

Cement is a commonly used construction material that 

requires large number of resources to manufacture and the 

manufacturing process have significant environmental 

impact [46]. The cement industries are facing challenges 

to implement sustainable manufacturing into their 

products and processes. Cement manufacturing is an 

intensive consumer of natural raw materials, fossil fuels, 

energy, and a major source of multiple pollutants. Thus, 

evaluating the sustainable manufacturing in this industry 

has become a necessity [49]. To meet the environmental 

requirements, the parameters related to manufacturing 

operations need to be monitored and is included as one of 

the KPIs.  

Table 4: KPIs related to environment. 

 No. Parameter 
Unit of 

Measurement 

1 Kiln Stack Emission mg/Nm3 

2 Coal Stack Emission mg/Nm3 

3 Cooler Stack Emission mg/Nm3 

4 Cement Stack Emission mg/Nm3 

5 Ambient Air Quality Index 

6 Water Consumption m3/hr. 

7 Waste water m3/hr. 

The information of raw material stock, material in process 

and finished goods availability is very important for 

business operations and planning. The availability of 

various chemicals and consumables using in 

manufacturing process also need to be monitored for 

optimum production to take place.   

Table 5: Material stock KPI. 

No. Description 
Unit of 

Measurement 

1 Limestone Stock Pile Ton 

2 Raw mill Additives Ton 

3 Raw Meal Silo Ton 

4 Raw Coal Stock Pile Ton 

5 Fine Coal Silo Ton 

6 Clinker Stock Pile Ton 

7 Cement Mill Additives Gypsum Ton 

8 Cement Mill Additives Fly Ash Ton 

9 
Cement Mill Performance 

Improver 
Ton 

10 Grinding Aid Ton 

11 Cement Silo Ton 

12 Water Reservoir Litre 

13 Diesel Stock Litre 
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Table 6: KPI for quality control parameters. 

No. Parameter 

1 Cao 

2 LSF 

3 Liter weight 

4 Free Lime 

5 C3S 

6 C2S 

7 Blain (OPC) 

8 Blain (PPC) 

9 
Cement Particle 

Size 

For monitoring KPIs, Data Acquisition Module (DAM) is 

installed on each site. It collects data from equipment in 

real time from various sensors.  The platform is installed 

in the server available in   customer      premises. The data 

from each site is sent to platform server over Internet. 

Platform server processes the data with intelligence and 

presents it to different types of users like support team, 

managers, top management etc. Access control is in place 

so that each user sees what is relevant to user. Figure 5 

shows the proposed architecture for deployment. This 

platform is developed based on line diagram of IoT based 

KPI platform shown in Figure 2 and architecture of KPI 

platform shown in Figure 3. 

 

Figure 5: Proposed architecture for deployment. 

The proof-of-concept platform is developed and the 

testing is done on a simulated environment. Few of the 

KPI reports generated in a mobile device are provided. 

Figure 6 shows the process parameter KPIs generated in 

visualizing device as output from platform. 

Environmental KPIs are shown in Figure 7. The material 

stock KPIs are provided in Figure 8. Quality control KPIs 

are shown in Figure 9. Production KPI is in Figure 10. 

Fuel consumption KPI is shown in Figure 11 and the 

power consumption is shown in Figure 12. Consolidation 

of data of all plants is also possible for head office 

application. Comparison of KPI between units within a 

plant or between other plants of similar size is also 

possible. 

 

Figure 6: Process parameter KPIs. 

 

Figure 7: Environmental KPIs. 
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Figure 8: Material stock KPIs. 

 

Figure 9: Quality control KPIs. 

 

Figure 10: Production KPIs. 

 

Figure 11: Fuel consumption KPIs. 
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Figure 12: Power consumption KPIs. 

7 Conclusion 
The developed platform is the solution for integrating 

mobile devices to the IoT based automation and control 

system of a continuous process industry. This platform is 

implemented at the convergence area of 

operations/automation and Information Technology. The 

platform is able to acquire various types of data, analyze 

the data collected and provide the required outputs to the 

static and mobile devices. The prototype platform 

developed is implemented in one of the cement 

manufacturing industries at the plant server and at the 

head office server as well. The KPIs required for this 

cement manufacturing plant is identified and deployed in 

this platform. This developmental model can be extended 

to steel, petrochemicals, sugar, paper, fertilizer, food, 

pharmaceutical industry etc. As a future work, the 

platform can be installed in the cloud which can be 

accessed by plants as well as head office. With the 

acceptance and popularity in industry with IoT based KPI 

platform, it can be developed in the cloud and provide 

Platform as a Service (PaaS) to customers.  
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