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Clustering is a fundamental challenge in many data-driven application fields and machine learning 

techniques. The data distribution determines the quality of the outcomes, which has a significant impact 

on clustering performance. As a result, deep neural networks can be used to learn more accurate data 

representations for clustering. Many recent studies have focused on employing deep neural networks to 

develop a clustering-friendly representation, which has resulted in a significant improvement in clustering 

performance. We present a systematic survey of clustering with deep learning in this study. Then, a 

taxonomy of deep clustering is proposed, as well as some sample algorithms for our overview. Finally, 

we discuss some exciting future possibilities for clustering using deep learning and offer some remarks. 

Povzetek: Ta članek opisuje metode globokega združevanja v skupine in predlaga taksonomijo globokega 

združevanja v skupine. 

 

1 Introduction
Clustering is one of the most important aspects of 

unsupervised machine learning. Its main goal is to 

separate a data set into subsets or clusters so that data 

values in the same cluster have some common 

characteristics or attributes. It aims to divide the data into 

groups (clusters) of similar objects. The objects in the 

same cluster are more identical to each other than to those 

in other clusters. Clustering is widely used in Artificial 

Intelligence, pattern recognition, statistics, and other 

information processing fields. The input of a cluster 

analysis system is a set of samples and a measure of 

similarity (or dissimilarity) between two samples. The 

output is a set of clusters that form a partition, or a 

structure of partitions of the data set. Generally, finding 

clusters is not a simple task and the current clustering 

algorithms take a long time when they are applied to large 

databases [1]. 

In addition, the transformation of input data into a 

feature space where separation is easier concerning the 

problem's context, dimensionality reduction, and 

representation learning has been widely applied to 

clustering, because the similarity measurements utilized in 

these procedures are ineffective. 

Existing data transformation methods generally 

include linear transformations such as Principal 

Component Analysis (PCA) and non-linear 

transformations such as kernel approaches and spectral 

methods [2]. 
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To solve this problem, Deep Neural Networks 

(DNNs) are used to train non-linear mappings that allow 

the data to be transformed into clustering-friendly 

representations because they have a significant non-linear 

transformation feature. In this paper, we refer to clustering 

approaches involving deep learning as deep clustering for 

simplicity. 

In our research, we focus on Deep Clustering, which 

represents a family of clustering algorithms that adopt 

deep neural networks to learn cluster-oriented features [3]. 

Deep clustering has recently become popular as a method 

for data classification and feature representation 

discovery, a solution for large-scale and high-dimensional 

learning problems [4,5] 

We were particularly interested in the studies 

conducted in deep clustering for image recognition. We 

give an overview of deep clustering to review most 

methods and implementations in this field. 

The main contributions treated in this paper are: 

• use of a deep autoencoder for embedding the data 

into a lower-dimensional space; 

• integrate the extracting intermediate features 

phase and the performing phase of the traditional 

clustering algorithm; 

• employ the similarity of the representation 

features if they are assigned to the same cluster; 

• add dimensionality reduction and temporal 

clustering into a single unsupervised learning 

framework; 
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• apply the impressive ability to deal with 

unsupervised learning for structure analysis of 

high-dimensional visual data; 

• find a solution to the problem of subspace 

clustering by partitioning data drawn from a 

union of multiple subspaces. 

The contribution of this study is (1) to provide an 

overview of various deep learning-based clustering 

algorithms. It includes an explanation of the most recent 

improvements in unsupervised clustering; (2) propose a 

taxonomy of methods that use deep learning for clustering. 

We chose to synthesize studies published in the 

previous 3-4 years since they used deep learning to 

increase unsupervised clustering performance. On the 

MNIST dataset, several algorithms achieve more than 

96% accuracy without using a single labeled datapoint. 

However, for more difficult datasets like CIFAR-10 and 

ImageNet, they are still a long way from achieving good 

accuracy. 

We'll go over all of the most recent deep learning-

based clustering approaches in this article. The aim of 

most of these strategies is to discover feature 

representation and solve the problem of large-scale, high-

dimensional learning, as well as to respond to the 

contributions mentioned above. 

The rest of the paper is organized as follows. In the 

next section, we survey in brief the literature on deep 

clustering overviews. We present the most recent works 

using unsupervised deep learning in section 3, with a 

synthesis of all of this work in section 4. In section 5, we 

describe the proposed taxonomy of clustering with deep 

learning algorithms and we introduce some representative 

methods. Section 6 includes a conclusion and proposals 

for further research.  

2 Related work 
Several custom taxonomies for clustering with deep 

learning have been proposed in the literature. In this 

section, we outline the best known and most recent ones:  

[6] focus on a review of deep learning for multimodal 

data fusion, which provides readers with the fundamentals 

of the multimodal deep learning fusion methods. This 

study summarizes the representative architectures— 

DBN, SAE, CNN, and RNN—which are fundamental to 

understanding multimodal deep learning fusion models. 

This work summarizes the pioneering multimodal deep 

learning fusion models from the task, model framework, 

and data set perspectives, and groups them by the deep 

learning architecture used.  

[2] divide deep clustering algorithms into four 

categories: AE-based (Autoencoder), CDNN-based 

(Clustering DNN), VAE-based (Variational encoder), and 

GAN-based deep clustering (Generative Adversarial 

Network). Each category has some representative methods 

as well. 

• (a) AE-based has a (1) Deep Clustering Network 

(DCN), which combines an autoencoder with 

the k-means algorithm; (2) Deep Embedding 

Network (DEN) to extract effective 

representations for clustering, which utilizes a 

deep autoencoder; (3) Deep Subspace 

Clustering Networks (DSC-Nets) which 

introduces a novel autoencoder architecture;  (4) 

Deep Multi-Manifold Clustering (DMC);  (5) 

Deep Embedded Regularized Clustering 

(DEPICT); and (6) Deep Continuous Clustering 

(DCC); 

• (b) CDNN-based deep clustering algorithms can 

be divided into three categories according to the 

way of network initialization, i.e., unsupervised 

pre-trained (Deep Nonparametric Clustering 

(DNC), Deep Embedded Clustering (DEC), 

Discriminatively Boosted Clustering (DBC)), 

supervised pre-trained (Clustering 

Convolutional Neural Network (CCNN)), 

randomly initialized (non-pre-trained) 

(Information Maximizing Self-Augmented 

Training (IMSAT), Joint Unsupervised 

Learning (JULE) and Deep Adaptive Image 

Clustering (DAC)); 

• (c) VAE-based deep clustering, which can be 

considered as a generative variant of AE. It 

presents two algorithms: (1) Variational Deep 

Embedding (VaDE) and (2) Gaussian Mixture 

VAE (GMVAE); 

• (d) GAN-based deep clustering contains a (1) 

Deep Adversarial Clustering (DAC), (2) 

Categorial Generative Adversarial Network 

(CatGAN), and (3) Information Maximizing 

Generative Adversarial Network (InfoGAN). 

[7] propose a taxonomy of clustering algorithms that 

employ deep learning. Their taxonomy helps the user to 

see what methods are available and to create new ones by 

combining the best characteristics of existing methods in 

a simple context. This taxonomy's main principle is 

representation learning with DNNs and using these 

representations as input to a specific clustering approach. 

Every method is divided into the following parts, each of 

which has a variety of options: (1) Architecture of the 

main neural network branch (Multilayer perceptron 

(MLP), Convolutional neural network (CNN) and Deep 

Belief Network (DBN)); (2) Set of deep features used for 

clustering (one layer, several layers); (3) Non- clustering 

loss (No non-clustering loss, Autoencoder reconstruction 

loss); (4) Clustering loss (No clustering loss, k-Means 

loss, Cluster assignment hardening, Balanced assignments 

loss, Locality-preserving loss, Group sparsity loss, Cluster 

classification loss, and Agglomerative clustering loss); (5) 

Method to combine the losses (Pre-training, fine-tuning, 

Joint training and Variable schedule); (6) Cluster updates 

(Jointly updated with the network model, and 

Alternatingly updated with the network model); (7) After 

network training (Clustering a similar dataset and 

Obtaining better results). The methods which use this 

taxonomy are Deep Embedded Clustering (DEC), Deep 

Clustering Network (DCN), Discriminatively Boosted 

Clustering (DBC), Joint Unsupervised Learning of Deep 

Representations and Image Clusters (JULE), and 

Clustering CNN (CCNN). 



Unsupervised Deep Learning: Taxonomy and Algorithms Informatica 46 (2022) 151–168 153 

[8] propose a simplified taxonomy based on deep 

clustering algorithms' overall procedural structure or 

design. Deep Clustering techniques can be classified into 

three broad families according to this taxonomy: (a) 

Sequential multistep Deep Clustering approaches: these 

approaches have two basic steps. The first stage involves 

learning richer deep (also known as latent) representation 

of the input data, followed by clustering on this deep or 

latent representation in the second step; (b) Joint Deep 

Clustering approaches: Instead of two independent 

processes for representation learning and clustering, this 

family of approaches includes a step where the 

representation learning is intimately associated with the 

clustering. Tight coupling is usually achieved by 

optimizing a combined or joint loss function that promotes 

good reconstruction while accounting for some sort of 

data grouping, clustering, or codebook representation; (c) 

Closed-loop multistep Deep Clustering approaches: 

Similar to the first family (sequential multistep Deep 

Clustering), this family of algorithms has two key phases 

that alternate in an iterative loop rather than being 

conducted in a single feedforward linear approach. 

3 Contributions of deep clustering 
In recent years, we have noticed that there are many 

applications in the field of deep learning using 

unsupervised learning algorithms for image recognition. 

We now discuss some of the most common deep 

clustering approaches. 

[9] find that existing deep clustering algorithms either 

do not take advantage of convolutional neural networks 

well enough or do not preserve the local structure of data-

generating distribution in the learned feature space 

sufficiently. In this research, they suggest a deep 

convolutional embedded clustering method as a solution 

to this problem. They create a convolutional autoencoder 

structure to learn embedded features from start to finish. 

Then, using embedded features, a clustering-oriented loss 

is created to accomplish feature refinement and cluster 

assignment simultaneously. They keep the decoder, which 

can preserve the local structure of data in feature space, to 

avoid feature space being affected by clustering loss. In 

summary, they minimize both the reconstruction and 

clustering losses of convolutional autoencoders. Mini-

batch stochastic gradient descent with back-propagation 

can effectively solve the resulting optimization issue. 

Experiments on benchmark datasets (MNIST-full, 

MNIST-test, and USPS) empirically verify the usefulness 

of local structure preservation and the power of 

convolutional autoencoders for feature learning in terms 

of accuracy (acc) and the normalized mutual information 

(NMI). 

DeepCluster [10] is a clustering algorithm developed 

by the authors that learn both the parameters of a neural 

network and the cluster assignments of the generated 

features. DeepCluster uses a typical clustering technique, 

k-means, to iteratively group the features and uses the 

following assignments as supervision to update the 

network's weights. They use DeepCluster to train 

convolutional neural networks unsupervised on big 

datasets like ImageNet and YFCC100M, using accuracy 

criteria evaluation. On all typical benchmarks, the 

generated model exceeds the present state of the art by a 

significant margin. 

This study's [11] concern is that data representation 

affects the performance of subspace clustering. Subspace 

clustering data representation translates data from one 

space to another with higher separability. In recent years, 

a slew of new data visualization techniques has emerged. 

Low-rank representation (LRR) and an autoencoder are 

two examples. LRR is a low-rank constraint linear 

representation method that captures the global structure of 

data. An autoencoder, on the other hand, uses a neural 

network to nonlinearly map data into a latent space by 

minimizing the difference between the reconstruction and 

the output. The authors of this work suggest a unique data 

representation approach for subspace clustering that 

combines the benefits of an LRR (globality) and an 

autoencoder (self-supervision-based locality). The low-

rank constrained autoencoder (LRAE) method introduced 

in this research causes the neural network's latent 

representation to be of low rank, and the low-rank 

constraint is derived as a prior from the input space. One 

of the most significant advantages of the LRAE is that the 

learned data representation not only preserves the data's 

local properties but also serves as a precursor to the 

underlying low-rank global structure. Extensive subspace 

clustering tests were carried out on a variety of datasets 

(MNIST, COIL-100, and ORL), using ACC, NMI, and the 

adjusted rand index (ARI). They showed that the 

suggested LRAE outperformed state-of-the-art subspace 

clustering approaches significantly. 

The researchers in this paper [12] created a hybrid 

autoencoder (BAE) model for image clustering by 

combining three AE-based models: the convolutional 

autoencoder (CAE), adversarial autoencoder (AAE), and 

stacking autoencoder (SAE). The MNIST and CIFAR-10 

datasets are used to test the suggested models' results and 

compare them to those of other researchers. The proposed 

models outperform others in the numerical experiment, 

according to the clustering criteria: ACC, NMI, and ARI. 

GANs have demonstrated great performance in a 

variety of unsupervised learning problems, and clustering 

is unquestionably an important unsupervised learning 

challenge. While the latent-space back-projection in 

GANs could be used to cluster, they show that the cluster 

structure is not preserved in the GAN latent space. 

ClusterGAN is a new mechanism for clustering using 

GANs proposed by the authors in this study [13]. They 

achieve clustering in the latent space by sampling latent 

 

Figure 1: The structure of proposed Convolutional 

AutoEncoders (CAE) for MNIST [9]. 
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variables from a mixture of one-hot encoded variables and 

continuous latent variables, together with an inverse 

network (which projects the data to the latent space) 

trained jointly with a clustering specific loss. GANs can 

maintain latent space interpolation across categories, even 

though the discriminator is never exposed to such vectors, 

according to their findings. They compared their results to 

a variety of clustering benchmarks (MNIST, Synthetic, 

Fashion-10,6 Fashion-5, 10x_73k, and Pendigits) and 

showed that they outperformed them on both synthetic and 

real-world datasets according to the following evaluation 

criteria: ACC, NMI, and ARI. 

This work [14] proposes a new approach to this study, 

in which the embedding is performed using a 

differentiable model such as a deep neural network. They 

create a fully differentiable loss function that can be 

minimized concerning both the embedding parameters 

and the cluster parameters via stochastic gradient descent 

by rewriting the k-means clustering method as an optimal 

transport problem and adding an entropic regularization. 

They show that by including limits on cluster sizes, this 

new formulation generalizes a previously suggested state-

of-the-art soft-k-means technique. According to empirical 

evaluations of image classification benchmarks (MNIST, 

CIFAR-10), their optimum transport-based technique 

provides greater unsupervised accuracy and does not 

require a pre-training step when compared to state-of-the-

art methods. 

The researchers of this work [15] present a deep 

Generative Adversarial Clustering Network 

(ClusterGAN) in this publication, which addresses the 

challenges of unsupervised deep clustering model 

training. ClusterGAN is made up of three networks that 

include a discriminator, a generator, and a clustered (i.e. a 

clustering network). They use an adversarial game 

between these three players to use the generator to 

synthesize actual samples given discriminative latent 

variables, and the clustered to learn the inverse mapping 

of the real samples to the discriminative embedding space. 

Furthermore, they use a conditional entropy minimization 

loss to increase/decrease Intra/inter-cluster sample 

similarity. Because the ground-truth similarities in the 

clustering task are unknown, they offer a new balanced 

self-paced learning algorithm for gradually incorporating 

data into training from simple to tough while taking into 

account the diversity of selected samples from all clusters. 

Their unsupervised learning approach allows them to train 

clusters with a lot of depth quickly. On numerous datasets 

(MNIST, USPS, FRGC, CIFAR-10, and STL-10), 

ClusterGAN produces competitive outcomes when 

compared to state-of-the-art models, according to 

experimental results, using accuracy criteria evaluation 

Acc and NMI. 

The main topic of this work [3] is that deep clustering 

outperforms conventional clustering by combining feature 

learning and cluster assignment. Although several deep 

clustering algorithms have been developed for various 

purposes, the majority of them fail to learn robust cluster-

oriented features, resulting in poor final clustering 

performance. The authors suggest a two-stage deep 

clustering technique (ASPC-DA) that incorporates data 

augmentation and self-paced learning to overcome this 

challenge. They discover robust features in the first stage 

by training an autoencoder with examples that have been 

enhanced by random shifting and rotating the clean 

instances. Then, in the second stage, they alternate 

between finetuning the encoder with augmented examples 

and modifying the cluster assignments of the clean 

examples to encourage the learned features to be cluster-

oriented. The center of the cluster to which the clean 

example is assigned is the target of each augmented 

example in the loss function during finetuning of the 

encoder. The targets could be computed improperly, and 

the encoder network could be misled by instances of 

inaccurate targets. They use adaptive self-paced learning 

to select the most confident instances in each iteration to 

stabilize the network training. Extensive testing shows 

that their algorithm outperforms the competition on four 

image datasets (MNIST-full, MNIST-test, USPS, and 

Fashion) in terms of ACC and NMI. 

The authors of this study [16] present a system for 

improving unsupervised clustering performance using 

semi-supervised models called Kingdra. To use semi-

supervised models, they must first create pseudo-labels, 

which are automatically generated labels. Prior 

approaches to creating pseudo-labels have been found to 

degrade clustering performance due to their low precision. 

 

Figure 3: Kingdra overview . They train all the models 

using the unlabeled samples, in step 1. In step 2, they 

construct a graph modeling the pairwise agreement of the 

models. In step 3, they get k high confidence clusters by 

pruning out data points for which the models do not agree. 

In step 4 they take the high confidence clusters and 

generate pseudo labels. In step 5 they train the models 

using both unlabeled samples and pseudo labeled 

samples. They iterate from step 2 to step 5 and final 

clusters are generated [16]. 

 

 

Figure 2: ClusterGAN Architecture [13]. 
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Instead, they generate a similarity graph using an 

ensemble of deep networks, from which they extract high-

accuracy pseudo labels. The method of employing 

ensembles to find high-quality pseudo-labels and training 

the semi-supervised model is iterated, resulting in 

continual improvement. For numerous image and text 

datasets, they show that their approach beats state-of-the-

art clustering findings. To evaluate their method, they 

used the accuracy evaluation criteria and five datasets 

(MNIST, STL, CIFAR10, Reuters, and 20news). They 

reached 54.6 % accuracy for CIFAR-10 and 43.9 % for 20 

news. 

In [17], discriminative models are the most common 

in the literature, and they produce the best results. These 

algorithms learn a deep discriminative neural network 

classifier with latent labels. As is common in supervised 

learning, they typically use multinomial logistic 

regression posteriors and parameter regularization. 

Discriminative objective functions (e.g., those based on 

mutual information or KL divergence) are generally 

thought to be more flexible than generative approaches 

(e.g., K-means) in that they make fewer assumptions about 

data distributions and, as a result, produce much better 

unsupervised deep learning results. Several contemporary 

discriminative models may appear to be unrelated to K-

means at first glance. Under mild conditions, these models 

are similar to K-means, common posterior models, and 

parameter regularization, as demonstrated in this paper. 

The authors show that maximizing the L2 regularized 

mutual information via an approximate alternating 

direction method (MI-ADM) for commonly used logistic 

regression posteriors is comparable to minimizing a soft 

and regularized K-means loss. Their theoretical study not 

only ties numerous recent state-of-the-art discriminative 

models directly to K-means but also leads to a novel soft 

and regularized deep K-means algorithm that performs 

well on a variety of image clustering benchmarks. They 

used the accuracy and normalized mutual information 

criteria for the evaluation of five datasets: USPS, MNIST, 

YTF, CMU-PIE, and FRGC.  

The researchers [18] introduced a new clustering 

objective that develops a neural network classifier from 

the start using only unlabeled input samples. In eight 

unsupervised clustering benchmarks spanning image 

classification and segmentation, the model discovers 

clusters that accurately match semantic classes, delivering 

state-of-the-art performance. These include STL10, an 

unsupervised ImageNet variation, and CIFAR10, which 

outperformed their closest competitors by 6.6 and 9.5 

absolute percentage points, respectively. The strategy isn't 

limited to computer vision and can be applied to any 

paired dataset sample; in their studies, they used random 

transforms to generate a pair from each image. Instead of 

high-dimensional representations that require further 

processing to be useable for semantic clustering, the 

trained network outputs semantic labels directly. The goal 

is simple: to maximize the mutual information between 

each pair's class assignments. It's simple to use and is 

firmly rooted in information theory, so it easily avoids the 

degenerate solutions that other clustering algorithms are 

prone to. The experiments used four datasets: STL10, 

CIFAR10, CIFAR 100-20, and MNIST. They examine 

two semi-supervised settings in addition to the 

unsupervised mode. The first achieves a global state-of-

the-art of 88.8% accuracy in STL10 classification, 

surpassing all current approaches (whether supervised, 

semi-supervised or unsupervised). The second reveals that 

it can withstand 90 percent reductions in label coverage, 

which is useful for applications that just need a few labels. 

In [19], the authors of this paper discuss a variant of 

variationally-oriented autoencoders where the 

superstructure of latent variables is on top of the features 

of the autoencoders. Their model is based on a tree 

structure that consists of multiple super latent variables. 

When there is only one active variable in the 

superstructure, it generates a model that assumes the latent 

features of that variable are generated by the Gaussian 

mixture model. The model, known as the Latent Tree 

Variational AutomaticEncoder (LTVAE) learns by 

creating multiple partitions of data, each containing a 

super latent variable. It is a type of deep learning method 

that produces multiple partitions of data. This method 

allows us to partition high-dimensional data into multiple 

ways. To evaluate this model, they used four datasets: 

MNIST, STL-10, Reuters, and HHAR, the criteria for 

clustering accuracy. 

In [20], to resolve the problem of high-dimensional 

dataset clustering difficulties, the authors of this paper 

describe a clustering approach that simultaneously 

conducts nonlinear dimensionality reduction and 

clustering. A deep autoencoder embeds the data in a 

lower-dimensional space. As part of the clustering 

process, the autoencoder is optimized. The resulting 

network generates data that is clustered. The proposed 

method, Deep Continuous Clustering (DCC) does not rely 

on knowing the number of ground-truth clusters in 

advance. The optimization of a global continuous 

objective is used to combine nonlinear dimensionality 

reduction and clustering. As a result, they avoid the 

discrete reconfigurations of the objective that previous 

clustering algorithms are known for. Experiments on six 

datasets (MNIST, Coil100, YTF, YaleB, Reuters, and 

RCV1) using the accuracy evaluation criteria (AMI) show 

that the proposed approach outperforms current clustering 

approaches, including deep network-based approaches 

like k-means, DBSCAN, AC-W, SEC, LDMGI, GDL, and 

RCC.  

Deep clustering through a Gaussian-mixture 

variational autoencoder (VAE) with Graph embedding is 

proposed by the authors in [21]. They use the Gaussian 

mixture model (GMM) as the prior in VAE to make 

clustering easier. They use graph embedding to handle 

data with a complicated spread. Their hypothesis is that 

graph data, which captures local data structures, is a great 

complement to deep GMM. When they're combined, the 

network can develop more powerful representations that 

adhere to global models and local structural restrictions. 

As a result, their method unites model-based and 

similarity-based clustering methodologies. They propose 

a novel stochastic extension of graph embedding to 

combine graph embedding with probabilistic deep GMM: 

they consider samples as nodes on a graph and minimize 
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the weighted distance between their posterior 

distributions. The distance is calculated using the Jenson-

Shannon divergence. They integrate the deep GMM's 

divergence minimization and log-likelihood 

maximization. They came up with formulations to achieve 

a unified goal that allows deep representation learning and 

clustering to happen at the same time. Their findings on 

four datasets (MNIST, STL-10, Reuters, and HHAR) in 

terms of accuracy reveal that their suggested DGG 

outperforms recent deep Gaussian mixture approaches 

(model-based) and deep spectral clustering techniques 

(similarity-based). The benefits of integrating model-

based and similarity-based clustering, as advocated in this 

paper, are highlighted by their findings. 

The authors [22] present a shared learning paradigm 

for discriminative embedding and spectral clustering in 

this research. To embed the inputs into a latent space for 

clustering, they first build a dual autoencoder network that 

enforces the reconstruction requirement for the latent 

representations and their noisy variants. As a result, the 

learned latent representations may be more noise-resistant. 

Then, to give more discriminative information from the 

inputs, mutual information estimation is used. 

Furthermore, a deep spectral clustering method is used to 

embed the latent representations in the eigenspace and 

then cluster them, allowing for optimal clustering 

outcomes by fully exploiting the link between inputs. 

Experiments on benchmark datasets (MNIST-full, 

MNIST-test, USPS, Fashion-10, and YTF) reveal that 

their strategy outperforms state-of-the-art clustering 

algorithms significantly (k-means, NMF,...) in terms of 

ACC and NMI. 

The researchers [23] offer a unique clustering 

framework called deep comprehensive correlation mining 

(DCCM) in this paper for analyzing and exploiting various 

types of correlations behind unlabeled data from three 

perspectives: 1) Pseudo-label supervision is presented as 

an alternative to employing only pair-wise information to 

examine category information and develop discriminative 

features. 2) The resilience of the features to picture 

alteration in the input space is completely studied, which 

aids network learning and boosts performance greatly. 3) 

For the clustering problem, triplet mutual information 

among features is introduced to lift the recently discovered 

instance-level deep mutual information to a triplet-level 

formation, which aids in the learning of more 

discriminative features. Extensive tests on a variety of 

tough datasets (CIFAR-10, CIFAR-100, STL-10, 

ImageNet-10, Imagenet-dog-15, and Tiny-ImageNet) in 

terms of ACC, NMI, and adjusted rand index (ARI) reveal 

that their method works well, with 62.3 % clustering 

accuracy on CIFAR-10, which is 10.1 % better than the 

state-of-the-art results (k-means, AE,...). 

By jointly maximizing a clustering loss and a non-

clustering loss, deep clustering algorithms combine 

representation learning with clustering. In such systems, a 

deep neural network is combined with a clustering 

network to learn representations. Rather than using this 

framework to increase clustering performance, the 

researchers [24] offer a simpler method of maximizing the 

entanglement of an autoencoder's learned latent code 

representation. They define entanglement as the distance 

between pairs of points belonging to the same class or 

structure and pairs of points belonging to different classes 

or structures. They employ the soft closest neighbor loss 

and expand it by adding an annealing temperature factor 

to assess the entanglement of data points. The test 

clustering accuracy was 96.2% on the MNIST dataset, 

85.6% on the Fashion-MNIST dataset, and 79.2% on the 

EMNIST Balanced dataset when they used their proposed 

approach, beating their baseline models. 

The Matching Priors and Conditionals for Clustering 

(MPCC) is a GAN-based model featuring an encoder for 

inferring latent variables and cluster categories from data 

and a flexible decoder for generating samples from a 

conditional latent space, according to the researchers of 

[25]. They show via MPCC that a deep generative model 

may compete/outperform discriminative approaches in 

clustering tasks, outperforming the state of the art across a 

variety of benchmark datasets (MNIST, CIFAR10). In 

CIFAR10, their tests show that adding a learnable prior 

and increasing the number of encoder updates improves 

the quality of the generated samples, resulting in an 

inception score of 9,49± 0,15 and a 46,9% improvement 

in the Fréchet inception distance above the state of the art. 

The researchers of [26] show that greedy or local 

methods of maximizing mutual information (such as 

stochastic gradient optimization) identify local optimal for 

the mutual information criterion; as a result, the resulting 

representations are less-than-ideal for complex 

downstream tasks. This problem has not been identified or 

addressed in previous research. They introduced deep 

hierarchical object grouping (DHOG), which generates 

representations that better optimize the mutual 

information objective by computing many separate 

discrete representations of pictures in a hierarchical 

sequence. They also discovered that these representations 

are more suited to the task of grouping objects into 

underlying object classes. They put DHOG to the test on 

unsupervised clustering, which is a natural downstream 

test given that the target representation is discrete data 

labeling. They produced new state-of-the-art scores on the 

three key benchmarks (CIFAR-100-20, STL-10, and 

SVHN) without any of the pre-filtering or Sobel-edge 

detection that many earlier approaches needed to work. 

They obtained accuracy improvements of 4,3% on 

CIFAR-10, 1,5% on CIFAR-100-20, and 7,2% on SVHN. 

The researchers in this work [27] tackle the problem 

of Federated Learning (FL), where users are spread and 

partitioned into clusters. This configuration represents 

scenarios in which separate groups of users have their own 

goals (learning tasks), but by aggregating their data with 

those of others in the same cluster (same learning task), 

they can take advantage of the power of numbers to 

execute more efficient Federated Learning. They present 

the Iterative Federated Clustering Algorithm (IFCA), a 

new framework that uses gradient descent to estimate user 

cluster identities and improve model parameters for user 

clusters. They investigated the algorithm's convergence 

rate in a linear model with squared loss, as well as for 

generic strongly convex and smooth loss functions. They 

demonstrate that IFCA converges at an exponential rate in 



Unsupervised Deep Learning: Taxonomy and Algorithms Informatica 46 (2022) 151–168 157 

both scenarios with good initialization, and they explain 

the statistical error rate's optimality. They propose training 

the models by combining IFCA with the weight sharing 

strategy in multi-task learning when the clustering 

structure is uncertain. They show that our technique can 

succeed even if we reduce the initialization criteria by 

using random initialization and repeated restarts in the 

tests. They also offer practical data demonstrating the 

efficiency of our technique in non-convex problems like 

neural networks. On numerous clustered FL benchmarks 

(Rotated MNIST, Rotated CIFAR), they show how IFCA 

outperforms the baselines in terms of precision. 

The problem with this work [28] is that unsupervised 

image classification is a difficult computer vision task. 

Deep learning-based algorithms have produced excellent 

results, with the most recent technique using uniform 

embedding and class assignment losses. Because these 

processes have distinct goals fundamentally, improving 

them together may result in a suboptimal solution. To 

overcome this problem, the researchers suggest the IIC 

model (Invariant Information Clustering), a novel two-

stage approach in which a pretraining embedding module 

is followed by a refining module that does both embedding 

and class assignment simultaneously. When evaluated 

with different datasets (CIFAR-10, CIFAR-100-20, and 

STL-10), their model outperforms SOTA in unsupervised 

tasks, with an accuracy of 81.0% for the CIFAR-10 dataset 

(an increase of 19.3% points), 35.3 % for CIFAR-100-20 

(9.6 pp), and 66.5 % for STL-10 (6.9 pp). 

Deep clustering has demonstrated an excellent ability 

to deal with unsupervised learning for structure analysis of 

high-dimensional visual data by learning visual features 

and data grouping at the same time. Local learning 

constraints based on inter-sample relations and/or self-

estimated pseudo labels are commonly used in existing 

deep clustering algorithms. This is vulnerable to 

unavoidable errors that spread throughout the 

neighborhood, as well as to error propagation during 

training. Based on the observation that assigning samples 

from the same semantic categories into different clusters 

reduces both intra-cluster compactness and inter-cluster 

diversity, i.e. lower partition confidence, the authors of 

[29] propose to solve this problem by learning the most 

confident clustering solution from all possible separations. 

In particular, they present PartItion Confidence 

MAximisation, a unique deep clustering method (PICA). 

It is based on the principle of learning the most 

semantically plausible data separation, in which all 

clusters may be mapped one-to-one to the ground-truth 

classes, by increasing the "global" partition confidence of 

the clustering solution. This is accomplished by 

introducing a differentiable partition uncertainty index 

and its stochastic approximation, as well as a principled 

objective loss function that minimizes such an index, all 

of which, when combined, allow for direct application of 

traditional deep networks and mini-batch based model 

training. Extensive testing on six frequently used 

clustering benchmarks (CIFAR-10, CIFAR-100, STL-10, 

imageNet-10, ImageNet-dogs, and Tiny-ImageNet) 

demonstrates that their model outperforms a wide range of 

state-of-the-art techniques in terms of ACC, NMI, and 

ARI. 

The challenge with this study [30] is that there is no 

obvious easy-cost function that can capture the major 

variables of differences and similarities in unsupervised 

learning. Because natural systems feature smooth 

dynamics, if an unsupervised objective function remains 

static during the training process, an opportunity is 

missed. Smooth dynamics should be introduced in the 

absence of concrete monitoring. Dynamic goal functions, 

as opposed to static cost functions, enable greater use of 

the progressive and unpredictable knowledge gained 

through pseudo supervision. In this study, they present 

Dynamic Autoencoder (DynAE), a new deep clustering 

model that eliminates the clustering reconstruction trade-

off by gradually and seamlessly removing the 

reconstruction objective function in favor of a 

 

Figure 4: Methods for unsupervised image classification. 

(a) The sequential method embeds and assigns data 

points to classes one by one, whereas (b) the joint 

technique embeds and organizes data points into classes 

all at once. (c) The proposed technique performs 

embedding learning as a pretraining step to determine 

suitable initialization, then optimizes the embedding and 

class assignment processes simultaneously. During the 

pretraining stage of their two-stage design, they 

experience distinctive losses [28]. 

 

Figure 5: Unsupervised deep clustering using the 

proposed PartItion Confidence mAximisation (PICA) 

approach. (a) Given the input data as well as the CNN 

model's decision bounds, (b) Using a mini-batch of data 

and its randomly perturbed copy, PICA computes the 

cluster-wise Assignment Statistics Vector (ASV) in the 

forward pass. (c) To reduce the partition uncertainty 

index as much as possible (PUI), (d) PICA is taught to 

use a specific objective loss function to distinguish the 

ASV of all clusters on the hypersphere to discover the 

most confident and potentially promising clustering 

solution [29]. 
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construction one. In comparison to the most relevant deep 

clustering algorithms, experimental evaluations on 

benchmark datasets (MNIST-full, MNIST-test, USPS, 

and Fashion-MNIST) reveal that our methodology 

achieves state-of-the-art outcomes in terms of ACC and 

NMI. 

The problem addressed in this paper [31] is: 

Clustering with deep autoencoders has received a lot of 

attention in recent years. Current methods rely on learning 

embedded features and clustering data points in the latent 

space at the same time. Although many deep clustering 

algorithms beat shallow models in achieving good 

findings on a variety of high-semantic datasets, a major 

flaw in such models has gone unnoticed. The embedded 

clustering objective function may distort the latent space 

by learning from faulty pseudo-labels in the absence of 

concrete supervisory signals. As a result, the network can 

learn non-representative features, lowering its 

discriminative ability and resulting in inferior pseudo-

labels. Modern autoencoder-based clustering articles 

advocate using the reconstruction loss for pretraining and 

as a regularizer during the clustering phase to mitigate the 

effect of random discriminative features. Feature Drift 

can, however, be caused by a clustering reconstruction 

trade-off. The authors suggest ADEC (Adversarial Deep 

Embedded Clustering), a novel autoencoder-based 

clustering model that uses adversarial training to handle a 

dual problem, namely, Feature Randomness and Feature 

Drift. They use benchmark real datasets (MNIST-full, 

MNIST-test, USPS, Fashion-MNIST, Reuters-10K, and 

Mice Protein)  to empirically illustrate the applicability of 

their model for dealing with these difficulties. The 

researchers' model outperforms state-of-the-art 

autoencoder-based clustering approaches in terms of ACC 

and NMI. 

For image clustering, the authors of [32] suggest a 

self-supervised Gaussian ATtention network 

(GATCluster). GATCluster delivers semantic cluster 

labels without further post-processing, rather than 

extracting intermediate features first and then conducting 

the standard clustering technique. The Label Feature 

Theorem is used to ensure that the learned features are 

one-hot encoded vectors and that trivial solution are 

avoided. They created four self-learning tasks with the 

restrictions of transformation invariance, separability 

maximization, entropy analysis, and attention mapping to 

train the GATCluster unsupervised. The transformation 

invariance and separability maximization tasks, in 

particular, are used to understand the relationships 

between sample pairs. The goal of the entropy analysis 

task is to avoid finding simple solutions. They created a 

self-supervised attention method that incorporates a 

parameterized attention module and a soft attention loss to 

capture object-oriented semantics. During the training 

process, all of the clustering guiding signals are self-

generated. Furthermore, they create a memory-efficient 

two-step learning approach for grouping large-size 

images. Extensive trials show that their suggested method 

outperforms the current state-of-the-art image clustering 

benchmarks (CIFAR-10, CIFAR-100, STL-10, imageNet-

10, ImageNet-dogs, and Tiny-ImageNet) in terms of ACC, 

NMI, and ARI. 

Deep learning has recently demonstrated its ability to 

learn strong feature representations for images. The work 

of image clustering necessitates appropriate feature 

representations to capture the data distribution and, as a 

result, distinguish data points from one another. Often, 

these two aspects are dealt with independently, and thus, 

traditional feature learning alone does not suffice in 

partitioning the data meaningfully. Variational 

Autoencoders (VAEs) naturally lend themselves to 

learning data distributions in a latent space. The authors 

[33] suggest a method based on VAEs that uses a Gaussian 

Mixture before helping cluster the images appropriately 

since they seek to efficiently differentiate between distinct 

clusters in the data. They learn the parameters of both the 

prior and posterior distributions at the same time. Their 

method represents a true Gaussian Mixture VAE. In this 

way, their system learns a prior that captures the latent 

distribution of the images as well as a posterior that aids 

in data point discrimination. They also suggest a new 

reparametrization of the latent space that includes both 

discrete and continuous variables. One important 

takeaway is that, unlike existing methods, their method 

generalizes well across diverse datasets without the use of 

pre-training or learned models, allowing it to be trained 

from scratch in an end-to-end manner. They demonstrate 

our efficacy and generalizability in the lab by achieving 

state-of-the-art outcomes on a variety of datasets using 

unsupervised approaches. To the best of their knowledge, 

they are the first to use VAEs for image clustering on real 

image datasets (MNIST, Fashion-MNIST, STL-10, 

CIFAR10, CIFAR100, and FRGCv2) in an unsupervised 

manner and the accuracy evaluation criteria. 

The authors of this research [34] deviate from current 

work by advocating the SCAN method (Semantic 

Clustering by Adopting Nearest neighbors), a two-step 

strategy in which feature learning and clustering are 

separated. To obtain semantically relevant features, a self-

supervised task from representation learning is used first. 

Second, in a learnable clustering strategy, they employ the 

collected features as a prior. They accomplish so by 

removing cluster learning's capacity to rely on low-level 

 

Figure 6: GATCluster framework. CNN is a 

convolutional neural network, GP means global pooling, 

Mul represents channel-independent multiplication, 

Conv is a convolution layer, FC is a fully connected 

layer, and AFG represents an attention feature generator 

[32]. 
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features, which are present in existing end-to-end learning 

systems. In terms of classification accuracy, they surpass 

state-of-the-art approaches by substantial margins, with 

+26,6 % on CIFAR10, +25,0 % on CIFAR100-20, and 

+21,3 % on STL10, respectively. Furthermore, their 

technology is the first to successfully classify images on a 

large-scale dataset. 

In this paper [35], the authors offer a new deep image 

clustering framework for learning a category-style latent 

representation (Deep Clustering with Category-Style 

representation (DCCS) for unsupervised image 

clustering), in which the category information is 

decoupled from the image style and may be used directly 

for cluster assignment. Mutual information maximization 

is used to embed relevant information in the latent 

representation to achieve this goal. Furthermore, the 

augmentation-invariant loss is used to separate the 

representation into two parts: category and style. Last but 

not least, the latent representation is given a prior 

distribution to ensure that the elements of the category 

vector can be used as probabilities over clusters. Extensive 

tests show that the suggested method significantly 

outperforms state-of-the-art approaches on a variety of 

public datasets (MNIST and Fashion-MNIST) in terms of 

ACC, NMI, and ARI. 

The study's authors [36] proposed Deep Robust 

Clustering (DRC). Unlike existing methods, DRC 

approaches deep clustering from two perspectives: 

semantic clustering assignment and representation 

features, which can simultaneously improve inter-class 

and intra-class diversities. Furthermore, by examining the 

internal relationship between mutual information and 

contrastive learning, they established a generic framework 

that may change maximizing mutual information into 

minimizing contrastive loss. They used it to learn invariant 

features and robust clusters in DRC with great success. 

Extensive tests on six widely used deep clustering 

benchmarks (CIFAR-10, CIFAR-100, STL-10, imageNet-

10, ImageNet-dogs, and Tiny-ImageNet)  show that DRC 

outperforms them in terms of both stability and accuracy. 

For example, on CIFAR-10, they achieved a mean 

accuracy of 71.6%, which is 7.1% higher than current 

values. 

In this research [37], they introduced Contrastive 

Clustering (CC), a one-stage online clustering algorithm 

that performs explicit instance-and cluster-level 

contrastive learning. To be more exact, the positive and 

negative instance pairs for a given dataset are created 

using data augmentation and then projected into a feature 

space. In this case, instance- and cluster-level contrastive 

learning are carried out in the row and column space, 

respectively, by maximizing positive pair similarities 

while minimizing negative pair similarities. Their main 

finding is that the feature matrix's rows can be thought of 

as soft labels, for instance, and the columns can be thought 

of as cluster representations. The model learns 

representations and cluster assignments in an end-to-end 

way by maximizing the instance- and cluster-level 

contrastive loss at the same time. On six challenging 

image benchmarks (CIFAR-10, CIFAR-100, STL-10, 

imageNet-10, ImageNet-dogs, and Tiny-ImageNet), 

extensive experimental data shows that CC beats 17 

competitive clustering approaches. On the CIFAR-10 

(CIFAR-100) dataset, in particular, CC obtains an NMI of 

0.705 (0.431), which is a performance gain of up to 19% 

(39%) above the best baseline. 

The authors of this paper [38] propose learning an 

autoencoder embedding and then searching for the 

underlying manifold using it. They then cluster this using 

a shallow clustering technique rather than a deeper 

network for simplicity. They investigated a variety of local 

and global manifold learning methods on both raw data 

and autoencoder embeddings, concluding that UMAP in 

their framework is capable of determining the optimal 

clusterable manifold of the embedding. This shows that 

using local manifold learning on an autoencoder 

embedding to find higher-quality clusters is a good idea. 

They show numerically that their method outperforms the 

existing state-of-the-art on a variety of image and time-

series datasets (MNIST, MNIST-test, USPS, Fashion, 

Pendigits, and HAR) including outperforming the current 

state-of-the-art on numerous in terms of ACC and NMI. 

They believe these findings point to a viable research 

direction in deep clustering. 

SPICE, a Semantic Pseudo-labeling framework for 

Image ClustEring, is presented in this work [39]. SPICE 

generates pseudo-labels by self-learning and directly 

employs the pseudo-label-based classification loss to train 

a deep clustering network, rather than requiring indirect 

loss functions as required by the recently proposed 

approaches. The core idea behind SPICE is to use a 

semantically-driven paradigm to improve the clustering 

network by combining the discrepancy between semantic 

clusters, similarity across instance samples, and semantic 

consistency of local samples in an embedding space. To 

train a clustering network by unsupervised representation 

learning, a semantic-similarity-based pseudo-labeling 

approach was presented initially. A local semantic 

consistency principle is employed to pick a set of 

consistently labeled samples based on the initial clustering 

results, and a semi-pseudo-labeling technique  (SPICE-

 

Figure 7: Contrastive Clustering framework. Two data 

augmentations are used to create data pairs. One shared 

deep neural network is utilized to extract features from 

distinct augmentations given data pairs. To project the 

features into the row and column space, two distinct 

MLPs (denotes the ReLU activation and denotes the 

Softmax operation to produce soft labels) are utilized to 

undertake instance- and cluster-level contrastive 

learning, respectively [37]. 
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Semi) is adopted for performance boosting. On six typical 

benchmark datasets, including STL10, Cifar10, Cifar100-

20, ImageNet-10, ImageNet-Dog, and Tiny ImageNet, 

extensive studies show that SPICE outperforms existing 

approaches. In terms of adjusted rand index, normalized 

mutual information, and clustering accuracy, the proposed 

SPICE technique improves the existing best results by 

roughly 10% on average.  

Unsupervised image clustering approaches are prone 

to incorrect predictions and overconfident outcomes since 

they use alternate objectives to indirectly train the model. 

To address these issues, the current study [40] provides a 

new RUC model that is based on resilient learning. RUC 

is unique in that it uses the pseudo-labels of existing 

picture clustering algorithms as a noisy dataset with 

potentially misclassified samples. Its retraining method 

can correct mismatched knowledge and reduce the 

problem of overconfidence in forecasts. The model's 

flexible structure allows it to be used as an add-on module 

to existing clustering algorithms, allowing them to 

perform better on a variety of datasets (CIFAR-10, 

CIFAR-20, STL-10). Extensive studies show that the 

suggested approach can improve model confidence and 

gain additional robustness against adversarial noise by 

properly calibrating it. RUC is a module that may be added 

to any off-the-shelf unsupervised learning method to 

improve its performance. RUC is motivated by a desire to 

learn more. It separates clustered data points into clean and 

noisy sets before fine-tuning the clustering results. SCAN 

and TSUC, two state-of-the-art unsupervised clustering 

algorithms, exhibited considerable performance increases 

with RUC. (STL-10 : 86.7 %, CIFAR-10 : 90.3 %, 

CIFAR-20 : 54.3 %). 

In the research [41], the authors use instance 

discrimination and feature decorrelation to propose a 

clustering-friendly representation learning approach. The 

principles of classical spectral clustering inspired their 

deep-learning-based representation learning method. 

Instance discrimination discovers data commonalities, 

whereas feature decorrelation eliminates redundant 

correlation between features. They employ a method of 

instance discrimination in which knowing individual 

instance classes leads to learning similarities between 

examples. They show that the methodology may be 

extended to learning a latent space for clustering through 

comprehensive experimentation and examination of the 

benchmark datasets (CIFAR-10, CIFAR-100, STL-10, 

ImageNet-10, and ImageNet-Dog). For learning, they 

create new softmax-formulated decorrelation constraints. 

Their method achieves an accuracy of 81,5% and 95,4% 

in image clustering tests using CIFAR-10 and ImageNet-

10, respectively. They also demonstrate that the softmax-

formulated constraints work with a variety of neural 

networks. 

The authors of this study [42] introduced Mixture of 

Contrastive Experts (MiCE), a unified probabilistic 

clustering approach that concurrently uses contrastive 

learning's discriminative representations and a latent 

mixture model's semantic structures. MiCE uses a gating 

function to partition an unlabeled dataset into subsets 

according to latent semantics and numerous experts to 

differentiate separate subsets of instances allotted to them 

in a contrastive learning method, which is motivated by 

the mixing of experts. They designed a scalable form of 

the Expectation-Maximization (EM) algorithm for MiCE 

and showed proof of convergence to overcome the 

nontrivial inference and learning challenges caused by 

latent variables. They tested MiCE's clustering 

performance empirically on four frequently used natural 

image datasets (CIFAR-10, CIFAR-100, STL10, and 

ImageNet-Dog). MiCE outperforms a variety of earlier 

approaches and provides a strong contrastive learning 

baseline using the criteria ACC, NMI, and ARI. 

The problem with this study [43]  is that, as measured 

by curated class-balanced datasets, unsupervised feature 

learning has made significant progress with contrastive 

learning based on instance discrimination and invariant 

mapping. Natural data, on the other hand, maybe highly 

linked and skewed. The supposed instance distinction 

clashes with natural between-instance similarity, resulting 

in inconsistency in training and poor performance. The 

goal is to identify and integrate between-instance 

similarity into contrastive learning via cross-level 

discrimination (CLD) between instances and local 

instance groups rather than instance grouping directly. 

While attraction inside each instance's augmented 

perspectives forces invariant mapping, between-instance 

similarity comes via common repulsion against instance 

groupings. The batch-wise and cross-view comparisons 

also help to increase contrastive learning's 

positive/negative sample ratio and produce improved 

invariant mapping. We impose both grouping and 

discrimination objectives on characteristics obtained 

separately from a shared representation to achieve both 

goals. For the first time, they also present normalized 

projection heads and unsupervised hyper-parameter 

adjustment. CLD is a lean and powerful add-on to existing 

methods (e.g., NPID, MoCo, InfoMin, BYOL) on highly 

correlated, long-tail, or balanced datasets, as demonstrated 

by considerable experimentation. It not only sets new 

 

Figure 8: Representation of the SPICE framework. (a) 

SPICE-Self uses pseudo labeling to train a classification 

model, with CNN fixed after pretraining using 

representation learning. (b) SPICE-Semi retrains the 

classification model by semi-pseudo-labeling, in which 

reliable labels are chosen from the SPICE-Self findings 

based on the local consistency of nearby samples. (c) A 

simple example of pseudo labeling, with red, green, and 

blue indicating different clusters [39]. 
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benchmarks (CIFAR-10, CIFAR-100, and ImageNet) for 

self-supervision, semi-supervision, and transfer learning, 

but it also outperforms MoCo v2 and SimCLR on every 

reported performance achieved with a far larger compute 

in terms of accuracy. Unsupervised learning is effectively 

extended to natural data with CLD, bringing it closer to 

real-world applications. 

4 Discussion 
Based on this short and selective survey of deep clustering 

algorithms, we make the following observations: 

• most deep clustering techniques have been tested 

in the area of image recognition; 

• performances of these techniques are great in 

terms of recognition accuracy, as the study of 

[35], where obtained recognition accuracy 

achieves 98.9 %; 

• most studies enhance the embedding of the data 

into a lower-dimensional space; 

• several researchers use the MNIST database for 

experimentation and k-means algorithm for 

results comparison; 

• we remark that the appearance of the hybrid 

version of Autoencoder gives satisfactory results 

too ; 

• deep learning is a technology that continues to 

mature and has been applied to pattern 

recognition to great effect; 

• we have identified the name of the proposed 

method, the category to which it belongs, a 

dataset of each approach with the methods of 

comparison, these are seen in table 1; 

• Table 1 summarizes the sorted works in 

chronological order. We observed in Table 1, that 

the MNIST dataset provides good results 

compared to other databases like USPS; CIFAR-

10; CIFAR-100; 

 

Table 1: General comparison of various deep clustering algorithms for image recognition. 

References Method Category Dataset Compared results with Obtained results 

[24] SNNL Soft Nearest 

Neighbor Loss  

AE MNIST; 

Fashion-

MNIST; and 

EMNIST 

Balanced. 

SNNL-2; SNNL-4; Baseline AE; 

DEC; VaDE; N2D; and 

ClusterGAN;....  

1. The best accuracy 

(acc)=96.2% with 

MNIST; 

2. The best NMI=90.3% 

with MNIST; 

3. The best ARI=91.8% 

with MNIST; 

[25] MPCC Matching 

Priors and 

Conditionals for 

Clustering  

AE MNIST; 

Onmiglot; 

FMNIST; 

CIFAR-10; and 

CIFAR-20. 

DEC; VADE; InfoGAN; 

ClusterGAN; DAC; IMSAT 

(VAT); ADC; SCAE; and IIC. 

The best accuracy (acc)= 

98.76 ± 0.03% with 

MNIST; 

[10] DeepCluster is a 

new clustering 

strategy for large-

scale end-to-end 

convent training. 

AE ImageNet; 

Places. 

The methods have a standard 

AlexNet architecture. 

The best is 73.7% on 

classification with 

deepCluster 

[11] Low-rank 

Constrained Deep 

Autoencoder for 

Subspace 

Clustering (LRAE) 

 

AE MNIST; COIL-

100, and ORL 

SSC; LRR; LRSC; LSR; AESC,  

and PARTY. 

1. The best accuracy (acc)= 

81.49 ± 2.19 with ORL; 

2. The best NMI= 90.77 ± 

2.01 with ORL; 

3. The best ARI=  73.92 ± 

2.11 with ORL; 

[12] Hybrid 

Autoencoder 

(BAE), the 

combination of 

three AE-based 

models—the 

convolutional 

autoencoder (CAE), 

adversarial 

autoencoder 

(AAE), and stacked 

autoencoder (SAE) 

AE MNIST and 

CIFAR-10. 

Fuzzy objective function 

algorithm (FCM), Spectral 

clustering algorithm (SC), Low-

rank representation algorithm 

(LRR), LSR1 and LSR2 are the 

variants of the least-squares 

regression (LSR), SLRR is the 

scalable LRR, LSC-R and LSC-

K are the variants of the large-

scale spectral clustering (LSC) 

algorithms, NMF is the non-

negative matrix factorization 

algorithm, ZAC is the Zeta 

function based agglomerative 

clustering algorithm, and DEC is 

the deep embedding clustering 

algorithm. 

1. The best accuracy (acc)= 

83.67% with MNIST; 

2. The best NMI= 80.85% 

with MNIST; 
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References Method Category Dataset Compared results with Obtained results 

[14] Clustering with 

Optimal Clustering 

(OT) is a new 

approach where the 

embedding is 

performed by a 

differentiable 

model such as a 

deep neural 

network 

GAN MNIST and 

CIFAR10 

k-means; AE + k-means; soft k-

means and soft k-means (p) 

The best NMI= 85.10% 

with MNIST; 

 

[15] ClusterGAN is a 

deep Generative 

Adversarial 

Clustering 

Network. 

GAN MNIST; 

USPS; FRGC; 

CIFAR-10 and 

STL-10. 

Kmeans; N-Cuts; SC-LS; AC-

PIC; SEC and LDMGI. 

1. The best accuracy (acc)= 

97% with USPS; 

2. The best NMI= 93.10% 

with USPS; 

3. The best accuracy (acc)= 

96.4% with MNIST; 

4. The best NMI= 92.10% 

with MNIST; 

[27] IFCA a new 

framework dubbed 

the Iterative 

Federated 

Clustering 

Algorithm  

AE Rotated 

MNIST; and 

Rotated 

CIFAR 

The global model for IFCA; and 

local model 

The best accuracy (acc)= 

95.25 ± 0.40% with 

Rotated MNIST; 

[9] Deep 

Convolutional 

Embedded 

Clustering (DCEC) 

AE MNIST -full; 

MNIST-test; 

USPS 

1. Deep Embedded Clustering 

(DEC); 

2. K-means; 

3. Stacked AutoEncoders (SAE). 

1. The best accuracy 

(acc)=88.97% with 

MNIST-full; 

2. The best NMI=88.49% 

with MNIST-full. 

[3] ASPC-DA is an 

Adaptive Self-

Paced deep 

Clustering with 

Data Augmentation  

AE MNIST-full; 

MNIST-test; 

USPS and 

Fashion 

 1. The best accuracy 

(acc)=98.8% with 

MNIST-full; 

2. The best NMI=96.6% 

with MNIST-full. 

[16] Kingdra is a 

framework that 

leverages semi-

supervised models 

AE MNIST; STL; 

CIFAR10; 

Reuters and 

20news. 

k-means; AC; DEC; Deep RIM; 

and IMSAT... 

The best accuracy 

(acc)=98.5% with 

MNIST.  

[28] A novel two-stage 

algorithm in which 

an embedding 

module for 

pretraining 

precedes a refining 

module that 

concurrently 

performs 

embedding and 

class assignment 

AE CIFAR-10; 

CIFAR-20; and 

STL-10 

Random network; k-means; 

Autoencoder (AE); SWWAE; 

GAN; JULE; DEC; DAC; 

DeepCluster; ADC; and IIC 

The best accuracy 

(acc)= 81% with CIFAR-

10; 

[29] PICA a novel deep 

clustering method 

named PartItion 

Confidence 

mAximisation 

AE CIFAR-10; 

CIFAR-100;  

STL-10; 

ImageNet-10;  

ImageNet-

Dogs and Tiny-

ImageNet 

K-means; SC; AC; NMF; AE; 

DAE; and IIC;... 

1. The best accuracy (acc)= 

87% with ImageNet-10; 

2. The best NMI= 80.2% 

with ImageNet-10; 

3. The best ARI= 76.1% 

with ImageNet-10; 

[17] MIADM is an 

approximate 

alternating 

direction method. 

AE USPS; 

MNIST-test; 

MNIST-full; 

YTF; CMU-

PIE and FRGC 

SR-K-means; DEPICT; DCN 

(K-means based) and DEC (KL 

based). 

1. The best accuracy 

(acc)=97.9% with USPS; 

2. The best NMI=94.8% 

with USPS. 

[18] IIC Invariant 

Information 

Clustering 

AE STL10; 

CIFAR10;  

CFR100-20 

and MNIST. 

Random network; Kmeans; 

Spectral clustering; Triplets; 

Variational Bayes AE and 

DeepCluster 2018,..... 

The best accuracy 

(acc)=99.2% with 

MNIST; 
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[19] LTVAE latent tree 

variational 

autoencoder. 

VAE MNIST; STL-

10; Reuters and 

HHAR 

AE+GMM; VAE+GMM; DEC 

and DCN. 

The best accuracy 

(acc)=90% with STL-

10; 

 

[37] CC Contrastive 

Clustering is  an 

online clustering 

method 

AE CIFAR-10; 

CIFAR-100; 

STL-10; 

ImageNet-10; 

ImageNet-

Dogs; and 

Tiny-ImageNet 

k-means; SC; AC; NMF; DEC; 

JULE; VaE; DCGAN; DeCNN; 

DCCM; IIC; and PICA;... 

1. The best accuracy (acc)= 

89.3% with ImageNet-

10; 

2. The best NMI= 85.9% 

with ImageNet-10; 

3. The best ARI=  82.2% 

with ImageNet-10; 

[38] N2D: (Not Too) 

Deep Clustering via 

Clustering the 

Local Manifold of 

an Autoencoded 

Embedding 

AE MNIST; 

MNIST-test; 

USPS; 

Fashion;  

pendigits; and 

HAR 

k-means; SC; GMM; DEC; 

DCN; JULE; VaDE; DEPICT; 

DBC; and ASPC-DA;... 

1. The best accuracy (acc)= 

97.9% with MNIST; 

2. The best NMI= 94.2% 

with MNIST; 

 

[30] DynAE  Dynamic 

Autoencoder, a 

novel model for 

deep clustering that 

addresses a 

clustering–

reconstruction 

trade-off. 

AE MNIST-full; 

MNIST-test; 

USPS; and 

Fashion-

MNIST 

K-Means; GMM; LSNMF; AC; 

SSC-OMP; EnSC; LMVSC; 

RBF K-Means −; DEC; JULE; 

and DEPICT;.... 

1. The best accuracy (acc)= 

98.7% with MNIST-

full; 

2. The best NMI= 96.4% 

with MNIST-full; 

[31] ADEC (Adversarial 

Deep Embedded 

Clustering) is a 

novel autoencoder-

based clustering 

model 

AE MNIST-full; 

MNIST-test; 

USPS; 

Fashion-

MNIST; 

REUTERS-

10K; and Mice 

Protein 

DEC*; IDEC*; k-means; GMM; 

LSNMF; AC; RBF k-means; ...... 

1. The best accuracy (acc)= 

98.6% with MNIST-

full; 

2. The best NMI= 96.1% 

with MNIST-full; 

[13] ClusterGAN 

method is a new 

mechanism for 

clustering using 

GANs (Generative 

Adversarial 

Networks ) 

GAN Synthetic data; 

MNIST; 

Fashion-

MNIST; 

10x_73k and 

Pendigits. 

WGAN (normal); WGAN (One-

Hot) and Info GAN. 

The best accuracy (acc)= 

95% with MNIST; 

 

[32] SPICE, a Semantic 

Pseudo-labeling 

framework for 

Image ClustEring 

AE STL10; 

ImageNet-10; 

ImageNet-Dog-

15; Cifar10; 

Cifar100-20; 

and Tiny-

ImageNet-200 

JULE; DEC; DAC; DeepCluster; 

DDC; IIC; DCCM; GATCluster; 

PIC; and CC 

1. The best accuracy (acc)= 

93.8% with STL10; 

2. The best NMI= 87.2% 

with STL10; 

3. The best ARI=  87% 

with STL10; 

[40] RUC is inspired by 

robust learning. 

RUC’s novelty is at 

utilizing pseudo-

labels of existing 

image clustering 

models as a noisy 

dataset. 

AE CIFAR-10; 

CIFAR-20; and 

STL-10 

k-means; SC; Triplets; AE; 

GAN; JULE; DAC; DEC; 

DeepCluster; IIC; TSUC and 

SCAN;... 

The best accuracy (acc)= 

90.1% with CIFAR-10; 

[33] A method based on 

VAEs where we 

use a Gaussian 

Mixture before help 

cluster the images 

accurately 

VAE STL-10; 

CIFAR10; 

MNIST; and 

Fashion-

MNIST 

k-means; AE+k-means; and DEC The best accuracy (acc)= 

98.4% with MNIST; 

[20] DCC Deep 

Continuous 

Clustering 

AE MNIST; 

Coil100; YTF; 

YaleB; Reuters 

and RCV1 

k-means++; AC-W; DBSCAN; 

SEC and LDMGI;..... 

1. The best accuracy 

(acc)=91.3% with MNIST; 

2. The best accuracy 

(acc)=98.5% with YaleB; 
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5 Proposed taxonomy of deep 

clustering 
Figure 9 illustrates the taxonomy of Deep Clustering 

techniques that we describe, which in turn indicates the 

study's structure. The basic algorithmic structure, network 

architecture, loss functions, and training optimization 

methodologies for deep clustering systems vary (or 

learning the parameters). 

We focus on deep learning for clustering approaches 

in this paper, where those approaches either use deep 

learning for grouping (or partitioning) the data and/or 

creating low-rank deep representations or embeddings of 

 

AE based 

DC 

 
DCEC 

GAN based 

DC 

 

VAE based 

DL 

 
DCN HAE DGG VaDE LTVA

E 

Taxonomy of Deep 

clustering (DC) 

 

Figure 9: The proposed taxonomy. 

[41] IDFD a clustering-

friendly 

representation 

learning method 

using instance 

discrimination and 

feature 

decorrelation. 

AE CIFAR-10; 

CIFAR-100; 

STL-10; 

Imagenet-10; 

and Imagenet-

Dog 

AE; DEC; DAC; DCCM; ID; 

IIC; IDFO; and SCAN 

1. The best accuracy (acc)= 

95.4% with ImageNet-

10; 

2. The best NMI= 89.8% 

with ImageNet-10; 

3. The best ARI=  90.1% 

with ImageNet-10; 

[42] MiCE Mixture of 

Contrastive 

Experts, a unified 

probabilistic 

clustering 

framework 

AE CIFAR-10; 

CIFAR-100; 

STL-10; and 

Imagenet-Dog 

K-means; AE; DHOG; DAC; 

DCCM; MMDC; IIC; IDFO; and 

MoCo 

1. The best accuracy (acc)= 

83.5% with CIFAR-10; 

2. The best NMI= 73.7% 

with CIFAR-10; 

3. The best ARI=  69.8% 

with CIFAR-10; 

[34] SCAN Semantic 

Clustering by 

Adopting Nearest 

neighbors 

AE CIFAR10; 

CIFAR100- 20; 

STL10; and 

ImageNet 

k-means; SC; Triplets; JULE; 

AEVB; SAE; DAE; GAN; DAC; 

and IIC 

1. The best accuracy (acc)= 

88.3% with CIFAR10; 

2. The best NMI= 79.7% 

with CIFAR10; 

3. The best ARI=  77.2% 

with CIFAR10; 

[43] CLD cross-level 

discrimination 

AE STL10; 

CIFAR10; 

CIFAR100; 

and 

ImageNet100 

DeepCluster; MoCo; Exemplar; 

Inv. Spread; NPID; and 

BYOL;.... 

1. The best retrieval= 

78.6% with CIFAR-10; 

2. The best NMI= 69% with 

CIFAR-10; 

3. The best kNN=  86.7% 

with CIFAR-10; 

[23] DCCM is a deep 

comprehensive 

correlation mining  

AE CIFAR-10; 

CIFAR-100;  

STL-10;  

ImageNet-10; 

Imagenet-dog-

15; and Tiny-

ImageNet. 

K-means; SC; AC; NMF; AE; 

and DAE;..... 

1. The best accuracy 

(acc)=60.8% with 

ImageNet-10; 

2. The best NMI=71% with 

ImageNet-10; 

3. The best ARI=55.5% 

with ImageNet-10; 

[21] DGG: Deep 

clustering via a 

Gaussian mixture 

variational 

autoencoder (VAE) 

with Graph 

embedding 

VAE MNIST; STL-

10; Reuters and 

HHAR. 

AE+GMM; DEC; IMSAT; 

VaDE; SpectralNet; and 

LTVAE. 

The best accuracy 

(acc)=97.58±0.1% with 

MNIST; 

[22] A joint learning 

framework for 

discriminative 

embedding and 

spectral clustering 

AE MNIST-full; 

MNIST-test; 

USPS; 

Fashion-10; 

and YTF. 

K-means; SC-Ncut; SC-LS; 

NMF; AC-GDL; and DASC;...... 

1. The best accuracy 

(acc)=98% with 

MNIST-test; 

2. The best NMI=94.6% 

with MNIST-test; 

[35] DCCS a novel deep 

image clustering 

framework to learn 

a category-style 

latent 

representation 

AE MNIST; and 

Fashion-

MNIST 

k-means; SC; AC; NMF; DEC; 

JULE; VaDE; DEPICT; IMSAT; 

ClusterGan; IIC; and DLS-

clustering;... 

1. The best accuracy (acc)= 

98.9% with MNIST; 

2. The best NMI= 97% with 

MNIST; 

3. The best ARI=  97.6% 

with MNIST; 

[36] DRC Deep Robust 

Clustering  

AE CIFAR-10; 

CIFAR-100;  

STL-10; 

ImageNet-10; 

Imagenet-dog-

15; and Tiny-

ImageNet 

k-means; SC; AC; NMF; DEC; 

JULE; VaDE; DEPICT; IMSAT; 

DCCM; IIC; and PICA;... 

1. The best accuracy (acc)= 

88.4% with ImageNet-

10; 

2. The best NMI= 83% with 

ImageNet-10; 

3. The best ARI=  79.8% 

with ImageNet-10; 
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the data, which could play a significant supporting role as 

a building block of supervised learning, among other 

goals. There are numerous approaches to developing a 

taxonomy of deep clustering algorithms; in this study, we 

took the approach of seeing the methods as a process. As 

a result, we provide a simplified taxonomy based on deep 

clustering algorithms' overall procedural structure or 

architecture. Beginners and experienced readers will 

benefit from the simplified classification. 

We have chosen to propose to divide deep learning 

into three categories: 

AE-based deep clustering: 

Artificial neural networks (ANNs) are a type of machine 

learning model made up of numerous nodes grouped in 

layers that compute an output depending on node 

activation mediated by weights in the connections 

between them. ANNs are capable of solving a variety of 

machine learning tasks, including classification, 

regression, and dimensionality reduction [44].    

A neural network that has been trained to duplicate its 

input to its output is called an autoencoder. It has a hidden 

layer h on the inside that defines the code used to represent 

the input. The network is made up of two parts: an encoder 

function h=f(x) and a decoder function r=g(h) that 

provides a reconstruction. Figure 10 illustrates this 

architecture. If an autoencoder only succeeds in learning 

to set g(f(x)) =x everywhere, it isn't particularly useful. 

Autoencoders, on the other hand, are meant to be 

incapable of flawless copying. They are usually limited in 

some way, allowing them to copy only roughly and only 

input that closely mimics the training data. Because the 

model must prioritize which features of the input should 

be duplicated, it frequently discovers interesting data 

attributes. The following is an overview of representative 

methods of Autoencoder: 

1. Deep Convolutional Embedded Clustering 

(DCEC): the DCEC system is composed of 

Convolutional Clustering (CAE) and a clustering 

layer that is connected to the embedded layer of 

CAE [9]. Each embedded point zi of the input 

image xi is mapped into a soft label by the 

clustering layer. The Kullback-Leibler 

divergence (KL divergence) between the 

distribution of soft labels and the precisely 

defined distribution is then defined as the 

clustering loss Lc. The clustering loss leads the 

embedded features to be resistant to forming 

clusters, and CAE is used to learn embedded 

features. 

The objective of DCEC is: 

L = Lr + γLc                             (1) 

where Lr and Lc are reconstruction loss and 

clustering loss respectively, and γ > 0 is a 

coefficient that controls the degree of distorting 

embedded space. When γ = 1 and Lr ≡ 0, (1) 

reduces to the objective of DEC. 

2. Deep Clustering Network (DCN): this method 

[45] which combines the autoencoder and the k-

means algorithm, is one of the most remarkable 

in the field. It pre-trains an autoencoder in the 

first stage. The reconstruction loss and the k-

means loss are then optimized together. Because 

k-means relies on discrete cluster assignments, it 

necessitates the employment of a different 

optimization procedure. When compared to other 

methods, DCN's goal is simple, and the 

computing complexity is modest; 

3. Hybrid Autoencoder (HAE): [46] CAE 

(convolutional autoencoder), VAE (adversarial 

autoencoder), and SAE (stacked autoencoder) 

combine the advantages of three autoencoders to 

learn low and high-level feature representation. 

GAN-based deep clustering:  

In recent years, the Generative Adversarial Network 

(GAN) has become a popular deep generative model. A 

min-max adversarial game is established between two 

neural networks in the (GAN) [47]: a generating network, 

G, and a discriminative network, D. The generative 

network attempts to map a sample z from a prior 

distribution p(z) to the data space, whereas the 

discriminative network attempts to compute the 

probability that an input is a real sample from the data 

distribution rather than one created by the generative 

network. GAN is an exciting idea since it offers an 

adversarial approach to matching the distribution of data 

or its representations to an arbitrary prior distribution. 

VAE- based deep clustering: 

[48] VAE is a generative variant of AE since it causes 

AE's latent code to follow a predetermined distribution. 

VAE blends variational Bayesian approaches with neural 

network flexibility and scalability. It applies neural 

networks to the conditional posterior and uses stochastic 

gradient descent and standard backpropagation to 

optimize the variational inference objective. It employs 

the reparameterization of the variational lower bound to 

produce a simple, differentiable, unbiased lower bound 

 

Figure 10: The structure of deep convolutional 

embedded clustering (DCEC). It is composed of 

convolutional autoencoders and a clustering layer 

connected to the embedded layer of autoencoders [9]. 
 

Figure 11: GAN-based deep clustering [47]. 
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estimator. In nearly every model with continuous latent 

variables, this estimator can be utilized for efficient 

approximate posterior inference: 

1. Deep clustering via a Gaussian mixture VAE 

with Graph embedding (DGG): [21] a new VAE-

based model that assumes the latent variables 

have a tree structure; 

2. Variational Deep Embedding (VaDE): 

introduces a VAE-based generative model that 

assumes the latent variables are a mixture of 

Gaussians with trainable means and variances 

[49];  

3. Latent Tree Variational Autoencoder (LTVAE): 

a VAE-based model that assumes the latent 

variables have a tree structure [19]. 

6 Conclusion and perspectives 
Deep learning is made up of a number of well-known and 

effective models that are used to solve a variety of 

problems [50]. 

In the context of deep clustering, we have presented, 

in this article, an introductory study of the main deep 

unsupervised learning algorithms that have been found in 

the last 3-4 years in the literature. 

We have presented an overview of clustering methods 

and algorithms for deep learning. We noticed the 

multitude of contributions developed in the area of image 

recognition and we studied and synthesized different 

recent works in this context. 

We have proposed a taxonomy of clustering with deep 

learning algorithms based on previous studies and some 

treated representative methods in the survey. 

This study is the first step of our research for which 

we can consider several future extensions, such as 

exploring the possibilities of hybridization between 

different deep clustering approaches and their application 

in evolving patterns. We will be able to make a 

comparative study of the performance of deep learning 

approaches based on the autoencoder, such as the work of 

[51]. We will be able to apply the deep clustering method 

in fields such as face recognition, etc [52]. 
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