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Given a network G, the importance of groups can be modeled by group centrality measures. Freeman’s
centralization is a way to normalize any given centrality or group centrality measure, which enables us
to compare individuals or groups from different networks. We focus on a degree-based measure of group
centrality and centralization, presented by Krnc and Škrekovski (2020). We describe its efficient imple-
mentation and study the behaviour of various real-world networks within this context. We conclude that
very small groups, as well as very big ones, are not very central, i.e. as the group is growing, its value is
increasing but, at some point it starts decreasing. Such unimodular behaviour is confirmed by our analysis
of of group degree centralization of six real-world networks. At the end, we provide some challenges for
future work.

Povzetek: Glede na podano omrežje G lahko pomembnost skupin modeliramo s pomočjo mer skupinske
centralnosti. Freemanova centralizacija predstavlja način normalizacije za poljubno obstoječo mero cen-
tralnosti, kot tudi za poljubno obstoječo mero skupinske centralnosti. Omenjena normalizacija omogoča
primerjavo posameznikov oz. skupin različnih omrežij. Članek se osredotoča se na mero centralnosti in
centralizacije skupine, ki temelji na stopnji, kot je predstavljeno v Krnc in Škrekovski (2020). Opišemo
njegovo učinkovito izvajanje in preučimo obnašanje različnih omrežij v resničnem svetu, glede na to mero.
Ugotavljamo, da zelo majhne skupine, kot tudi tudi zelo velike, nimajo velike centralnosti — ko skupina
raste, njena vrednost narašča, a na neki točki začne upadati. Takšno unimodularno vedenje potrjuje naša
analiza centralizacije skupinske stopnje šestih omrežij iz realnega sveta. Na koncu podamo nekaj izzivov
za prihodnje delo.

1 Introduction

In most networks some vertices are more central than the
others. To model this intuitive feeling, centrality indices
were introduced. The first mathematical concept of cen-
trality of graphs was introduced almost 150 years ago by
Jordan [13]. There are many ways to provide a measure of
the relative “importance” of a node in a network, thus dif-
ferent motivations lead to different centrality measures that
were developed in several areas of science.

A social network is typically represented as a graph,
where individual persons or nodes are represented as ver-
tices and the relationships between pairs of individuals as
edges. In the paper, we will therefore freely interchange the
terms vertex/node and graph/network, without any mean-
ingful difference. Various vertex-based measures of cen-
trality have been proposed to determine the relative impor-
tance of a vertex within a graph.

Arguably, the most common branch of centrality indices
is based on the distance between the nodes of the net-

work. Some of the standard centrality indices from this
branch are degree, betweenness, closeness and eccentric-
ity. Among other measures of node centrality, a few bet-
ter known in network analysis are: eigenvector centrality,
Google PageRank, Katz centrality, Alpha centrality, and
others. For detailed definitions and discussions on various
centrality indices, we refer the reader to [5, 1, 2, 14, 22, 23].

In large networks, measuring a vertex centrality with re-
spect to the whole network is often not relevant, nor com-
putationally feasible. In this sense, another concept of ver-
tex centrality with respect to some subset of vertices has
been introduced and studied throughout the last decade.
The personalization, introduced in 2003 (see [25]), is a
measure that shows how central an individual is accord-
ing to a given subset R (group of important people) in
a given social network. In 2005, the subgraph centrality
[6] was introduced, which characterizes the participation
of each node in all subgraphs in a network and is calcu-
lated from the spectra of the adjacency matrix of the net-
work. In the same year, Everett et al. [8] introduced the
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core centrality measure, where they evaluate the extent to
which a network revolves around a core group of nodes. Fi-
nally, very recently Bell [3] introduced the concept called
the subgroup centrality, where centrality (of one vertex) is
calculated only on a restricted set of vertices. Arguably,
the most basic measure is the degree of a vertex, which we
study in this paper.

In 1999, Everett and Borgatti [7] introduced the concept
of group centrality which enables researchers to answer
questions such as “how central is the engineering depart-
ment in the informal influence network of this company?”
or “among middle managers in a given organization, which
are more central, men or women?” With these measures
we can also solve the inverse problem: given a network of
ties among organization members, how can we form a team
that is maximally central? In [7], the authors introduced
group centrality for measures of degree, closeness and be-
tweenness centrality, which we use in this paper. In 2006,
Borgatti introduced an important group centrality measure
(usually called KPP) that is motivated by the key players
problem (see [4]). In his paper he focused on finding a
set of vertices for the purpose of optimally diffusing infor-
mation through the network by using selected vertices as
seeds, or to maximally fragment the network by removing
the key nodes. Interestingly, Borgatti claims that previously
mentioned group closeness and betweenness are not proper
tools to define KPP centrality. He therefore used tools such
as graph fragmentation and information entropy to define
KPP centrality.

In his study, Freeman [10] realized that despite all of the
vertex-centrality indices defined up to that point, there was
a need for a normalization which could measure a relative
importance of a given vertex in a network and would be
based on any chosen centrality index. Hence, he defined
a centralization measure based on normalized variance in
vertex centrality of any chosen centrality measure, with an
aim to allow a comparison of whole networks on the basis
of their highest vertex-centralization scores. One may also
consider his approach as another type of vertex-centrality
which measures the extent of how some vertex in a net-
work stands out from others in terms of a given centrality
index. This is useful since it arguably allows us to compare
the centralization scores of nodes that belong to different
networks.

In the same paper Freeman remarked that the centraliza-
tions of degree centrality, betweenness centrality and close-
ness centrality achieve their maximum if and only if G is
a star. The statement was later proved in detail by Everett,
Sinclair and Dankelmann [9]. In order to compare central-
ization values of graphs with different sizes, in the defini-
tion of centralization, Freeman used a normalized formula,
where the normalizing divisor is based on the theoretically
largest centrality variance in any graph from a given class
of graphs [10].

1.1 Related work
Following Freeman’s approach, the group centralization
notion was introduced in [16], where the authors stud-
ied some extremal graphs regarding several group central-
ity measures, including group degree centralization. They
showed that the maxumum value of group degree central-
ization is attained in a star graph, with centrality value of
(k + 1)

(
n−1
k+1

)
, see Proposition 2.

Our work is related with the domination theory. Among
the relevant papers Miyano et al. [21] discussed the prob-
lem of finding the best group for the so called k-vertex
maximum domination problem (or k-maxVD, in short). Al-
though they claim that k-maxVD is a new variant of vertex-
domination problem, it is in fact equivalent to maximizing
the group degree centrality (introduced 12 years earlier by
Everett and Borgatti [7]), with the score further increased
by a constant k. In the paper authors reduce the problem to
a Maximum Coverage problem, which is nicely discussed
and analyzed by Vorha and Hall [24], or by Hochbaum and
Pathria [12].

In [15] authors provide a conceptual description of a
greedy procedure for estimating maximal k-group degree
centralization values, for any value of k. Those results are
based on a greedy appriximation algorithm for MAX COV-
ERAGE or MAX k-VERTEX DOMINATION problems (see
[21, 12]). While this greedy approach gives approximation
ratio of 1− 1/e for both mentioned algorithms, it is shown
in [15] that any such constant is not attainable for the k-
group degree centrality.

The historical overview of the above-mentioned results
is illustrated in Table 1, while the approximability and time
complexity of Algorithm 1, is described as follows.

Theorem 1 (Krnc and Škrekovski [15]). Given a graph
G, the greedy algorithm for k-group degree centrality over
all set sizes 1 ≤ k ≤ n altogether runs in linear time and
achieves the k-group degree centrality value of at least (1−
1/e)(w∗ − k), where w∗ is the maximizing k-group degree
centrality of G.

The rest of this paper is structured as follows. In Prelim-
inaries we provide notations and definitions from [16, 15]
that we use. We give definitions for Freeman centralization
of group degree centrality and centralization. And revisit
some relevant results from the field. In the next section we
develop an efficient greedy algorithm for finding a group
with approximate maximal degree centralization over all
group sizes k from 1 to n and altogether runs in linear
time. We describe the procedure in detail and provide com-
plexity analysis of the algorithm. In Section 4 we continue
our exposition by describing the behaviour of the imple-
mented algorithm when used on some real-world complex
networks. We describe the experiments made with six net-
works, ranging up to 3.9 million vertices and 16 million
edges. We present the datasets used and discuss the results.
In experiments we observe that, in the examples studied,
there seems to be only one candidate for optimal value of
k in each network. In other words, the shape of a function
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Combinatorial Optimization
1993 Vorha and Hall [24] Maximal covering location
1998 Hochbaum and Pathria [12] problems and analysis
2011 Miyano and Ono [21] Max k-vertex domination

Network Analysis
1869 Jordan [13] Network centrality
1979 Freeman [10] Network centralization
1999 Everett and Borgatti [7] Group degree centrality
2004 Everett et al. [9] Extremal networks for degree centrality

2015 Krnc and Škrekovski [16] Group degree centralization

2020 Krnc and Škrekovski [15] Conceptual description of algorithm

Present paper Big data empirical analysis

Table 1: The milestones from the fields of Network Analysis and Combinatorial Optimization, leading to the present
paper.

of group degree centralization over a group size seems to
contain only one evident local minimum. We conclude the
paper with remarks and future work.

2 Preliminaries
Let Gn be a family of all graphs on n vertices, let G ∈ Gn
be a graph on m edges, and let S ⊆ V (G). According to
[7], the group degree centrality is defined as

GDG(S) =

∣∣∣∣∣⋃
v∈S

N(v) \ S

∣∣∣∣∣ .
Given a graph G and integer k, let S∗k be one of the sets
from

(
V (G)

k

)
that achieves the maximum value of group

degree centrality, i.e. GDG(S∗k) = max
S∈(V (G)

k ) GDG(S).
Whenever the graph G is known from the context, we omit
the subscript from the notations of centrality or centraliza-
tion.

According to [10, 16], GD1(S,G) stands for the group
degree centralization. Define k := |S|, and observe that
GD1(S,G) is equal to∑

S′∈(V (G)
k ) (GDG(S)− GDG(S′))

maxH∈Gn
∑

S′′∈(V (H)
k ) (GDH(S∗k)− GD(S′′))

. (1)

According to Freeman [10], the denominator is needed
to efficiently normalize centralization to the interval [0, 1],
for better relative comparison. Clearly GD1(S,G) is max-
imized whenever GD(S,G) is maximized, and by Krnc et
al. [16] we have that the maximum value of the denomi-
nator corresponds to the star graph Sn and a maximizing
set S∗k corresponds to any k-set containing the center of the
star. In Fig. 1 the calculation of the group degree central-
ization is demonstrated.

Denote the maximizing group size dc(G) to be the posi-
tive integer for which S∗dc(G)

achieves the maximum value
of the group degree centralization, i.e. GD1(S∗dc(G)

, G) =

maxk∈[n] GD1(S∗k , G), and also denote S∗ := S∗dc(G)
. Let

γ(G) be the minimum cardinality of any set that domi-
nates a graph G (also known as the domination number).
The notation ∆(G) stands for the highest vertex-degree,
i.e. ∆(G) = maxv∈V (G) degG(v). A function f is said to
be unimodal if it contains only a single local maximum in
f .

2.1 Evaluating degree centralization
The goal of this section is to optimize the procedure of cal-
culating the group degree centralization for a given graph
and an input integer k. To this end we need to revisit certain
important parts of its definition which will be later used in
our procedures.

In [16] authors describe the denominator of (1) in a
closed form, as follows.

Proposition 2 (Krnc and Škrekovski [16]). LetG be a star
on n vertices with the center c, and let S∗ ∈

(
V (G)

k

)
such

that c ∈ S∗. Then∑
S′∈(V (G)

k )

[GD(S∗)−GD(S′)] = (k + 1)

(
n− 1

k + 1

)
.

In order to compute the sum
∑

S′∈(V (G)
k ) GD(S′, G)

from (1) efficiently, we need the following claim.

Proposition 3 (Krnc and Škrekovski [15]). Let G be a
graph on n vertices, and let k ≤ n be a positive integer.
It holds that

∑
S′∈(V (G)

k ) GD(S′, G) is equal to

n ·
(
n− 1

k

)
−

∑
v∈V (G)

(
n− deg(v)− 1

k

)
.
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Figure 1: The Eiffel-tower graph and the calculation of its group degree centralization for groups of sizes one and two.

In particular, the sum
∑

S′∈(V (G)
k ) GD(S′, G) can be com-

puted in O(n).

The results from Propositions 2 and 3 can be joined to
further develop (1), i.e. GD1(S,G) evaluattes to

(
n
k

)
·GD(S,G) +

∑
v∈V (G)

(
n−deg(v)−1

k

)
− n ·

(
n−1
k

)
(k + 1) ·

(
n−1
k+1

) ,

(2)
which can be computed in O(n) steps.

It is easy to see that finding the best possible group S∗

that maximizes the group degree centrality (and hence the
group degree centralization) can be computed in O(nk+1),
traversing over all k-tuples and computing group degree
centrality at each step. Note that, since an input integer k is
in the exponent, this straightforward approach is far from
polynomial.

In fact it is easy to see that the mentioned problem is
NP-hard. This can be done reducing a well-known NP-
problem of determining the existence of a k-dominating set
to our problem of finding S∗k . Let us assume that there ex-
ists a polynomial algorithm for finding a k-set S∗k ⊆ V (G)
such that

GDG (S∗k) = max
S∈(V (G)

k )
GDG (S) .

Now observe that the existence of a k-dominating set is
equivalent to the property

GDG (S∗k) = n− k.

As group degree centrality of a given fixed set S∗k can be
computed in polynomial time O(nk), it is clear that the
set S∗k provides us an answer regarding the existence of a
k-dominating set. This trivially implies:

Proposition 4. The problem that determines a set S∗k for a
given input graph G and an integer k is NP-hard.

In the last section we present an efficient algorithm that
achieves the best possible linear-time approximation for
calculating group degree centrality scores for all group
sizes.

3 Algorithmic approach

For reasons described in Introduction, finding the group
with the biggest degree centralization may be needed for
many real-world networks, which can be very large in some
cases (the largest network from the experiments contains 16
million edges). As shown in (2), calculating the group de-
gree centralization for a given set S can be computed effi-
ciently, while on the other hand, finding a maximizing set is
NP-hard (see Proposition 4). In this section we present an
efficient implementation and demonstration of calculating
an estimate of the group degree centralization for a given
network. In particular we implement and study in detail a
greedy approximate algorithm presented in [15], for find-
ing a group with maximal degree centralization.

To calculate the group degree centralization efficiently,
in [15] authors use a greedy algorithm for Maximum Cov-
erage Problem which is a polynomial time (1 − 1/e)-
approximation algorithm, see [12] or [21]. Here we de-
scribe the implementation of such algorithm in more de-
tail, while retaining the same time efficiency. Particularly,
more emphasis is given on efficient calculation of group
centralization, as not all details are described in [15]. An
implementation of the procedure that calculates an approxi-
mation for the group with the biggest degree centralization,
for all meaningful group sizes, is given by Algorithm 1. Let
us now describe the parts of the algorithm.

3.1 Algorithm description

We start with k = 0 and in each step of the main while
loop increment the size of group S. Every time when k
increases, we add some greedily chosen vertex to the set S
and remove it from G while maintaining some dictionaries
that we use (contribution and histogram, in particular).
Note that by the data structure of a dictionary D we mean
thatD is a set of keys with additionally defined valuesD [i]
for each i ∈ D.

In the first phase of Algorithm 1 (throughout lines 1–12),
we construct graph G from an input graph G′ by orienting
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Algorithm 1 Finding a group with the maximal degree centralization

Input: a graph G′.
Output: a list centralization of group degree centralization scores, where centralization[i] is an approximation of

max
S∈(V (G′)

i ) GD(S,G′).

1: n← |V (G′)|, S ← ∅ . Centrality variables initialization.
2: dominated← ∅, histogram← ∅
3: G←a directed instance of graph G′

4: for all v in V (G′) do
5: add v to histogram[degG′(v)]
6: dominated[v]← False

7: centralization← ∅ . Centralization variables initialization.
8: A← 1/(n− 1)
9: C ← n/(n− 1)

10: for all i ∈ histogram do
11: sum[i]← 1/(n− 1)
12: degDistribution[i]← |histogram[i]|
13: for all 0 ≤ k ≤ n do . Main loop
14: v ← any vertex from histogram with the highest contribution
15: S ← S ∪ v
16: k ← k + 1
17: GD ← GD+CONTRIBUTION(v)
18: for all u ∈ N−G (v) do
19: DECREASECONTRIBUTION(u)
20: for all u ∈ N+

G (v) do
21: DECREASECONTRIBUTION(u)
22: dominated[u]← True
23: for all w ∈ N−G (u) do
24: DECREASECONTRIBUTION(w)
25: E(G)← E(G)− uw
26: G← G− v
27: UPDATECENTRALIZATIONVARIABLES()
28: centralization[k]← A · GD +B − C . Computing centralization.
29: return centralization
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every edge of G′ in both directions. We also initialize the
starting values of all dictionaries and other variables. In the
main loop (lines 13–28) we first chose the vertex v to add
to our group S, update variables S and k accordingly (lines
14–16), and then calculate the group degree centrality for
the increased set S (in line 17). Then, throughout the lines
18–26 we update the dictionary histogram, and also re-
move v and some additional directed edges from the graph.
Finally, in lines 27 and 28, we update some centralization
variables and calculate the Freeman centralization of the
centrality from the line 17. We now present some details of
how we maintain some values and graph properties.

For each group, we efficiently calculate the group de-
gree centralization using Propositions 2 and 3. While the
directed graph G that we work with is changing with each
iteration, notice that the original instance of the original
graph G′ stays the same throughout the algorithm. Let S
be the group of vertices whose group degree centralization
we are calculating, and set k := |S|. Note that we initially
have deg−G(v) = deg+

G(v) = degG′(v) for all vertices in
the network. Before the beginning of each iteration of the
main loop, the existence of a directed edge uv means that

– in the initial graph G′, we have uv ∈ E(G′),

– neither of v, u is a member of S, and

– in the initial graph G′, vertex v is not connected with
any vertex from S, i.e. v /∈ ∪v∈SN(v).

For any vertex v ∈ V (G) \ S, we define the contribution
of v to be the value GD (S ∪ {v} , G)−GD (S,G) and ob-
serve that

GD (S ∪ {v} , G)− GD (S,G)

evaluates to{
deg+

G(v), if v is not dominated,
deg+

G(v)− 1, otherwise.

The calculation of the value of the contribution is done by a
short function contribution (see Algorithm 3). As differ-
ent nodes have various contributions, we define the dictio-
nary histogram, initialized in line 5 of Algorithm 1, where
the keys are all possible values of contribution (for any key
i, it clearly holds that −1 ≤ i ≤ ∆(G)), and the values
are unordered sets of nodes with corresponding contribu-
tions. While the dictionary histogram is initially indeed
a degree histogram, we update it with each modification of
variables G or S. The goal of the algorithm is to calculate
the value of (2) for each S. We implement this by intro-
ducing variables A,B,C,GD, each of them assigned to a
different part of the expression (2), in particular,

A =
n

(n− k) (n− k − 1)
,

GD = GD(S,G),

B =
(n− k − 2)!

(n− 1)!

∑
v∈V (G)

(n− deg(v)− 1)!

(n− k − deg(v)− 1)!
,

C =
n

n− k − 1
.

Hence, for algorithmic purposes (see Propositions 2 and 3,
and Eq. (2)), we may write

GD1(S,G) = A · GD +B − C.

Clearly, whenever the group S increases, the values of
A,B,C,GD also change. To handle the change of variable
B, we introduce dictionaries degDistribution and sum.
The keys of both are all possible degrees of the vertices in
G, and the values are defined as

sum[i] =
(n− i− 1)!

(n− k − i− 1)!
· (n− k − 2)!

(n− 1)!
,

degDistribution[i] = |{v : degG(v) = i}|.

Algorithm 2 Updating variables A,B,C and sum.

1: function UPDATECENTRALIZATIONVARIABLES
2: A← n

(n−k)(n−k−1)
3: C ← n

n−k−1
4: for all i in sum do
5: sum[i]← sum[i] · n−i−k−1n−k−2

6: B ←
∑

i sum[i] · degDistribution[i]

Note that sum needs to be refreshed with every change
of k. We first initialize both dictionaries before entering the
main loop, and then we maintain their values by using the
function updateCentralizationV ariables (we treat these
variables as global variables, therefore no parameters are
needed). To avoid using big numbers, we update the value
of sum[i] by just multiplying it by (n−k−i−1)

(n−k−2) whenever
k increases by one. Using this, B can be calculated by a
simple addition

B =
∑
i

sum[i] · degDistribution[i],

see line 6 of Algorithm 2.
Note that while the graph is changing and the group

S is increasing, the contributions of the remaining ver-
tices also change. While the initial contribution of a ver-
tex v is equal to its degree degG(v), during the main
loop the contribution of v may decrease by one several
times. We handle these changes by defining a function
decreaseContribution(v), see Algorithm 3.

4 Experiments
In this section we describe the experiments made with six
real-world networks. We present the datasets used and
describe their domain. We implement the algorithm in
C++ and Python with the help of the libraries “SNAP” and
“SNAP.Py”, respectively. Finally, we discuss the results
and establish the correlation of the results with the uni-
modality law.



Evaluating Group Degree Centrality. . . Informatica 46 (2022) 85–94 91

Algorithm 3 Functions contribution and
decreaseContribution. The former outputs the con-
tribution of v while the latter refreshes the dictionary
histogram whenever the contribution of v decreases by
one.

1: function CONTRIBUTION(v)
2: if v is dominated then
3: return deg+

G(v)− 1
4: else
5: return deg+

G(v)

6: function DECREASECONTRIBUTION(v)
7: c← CONTRIBUTION(v)
8: histogram[c]← histogram[c] \ {v}
9: histogram[c− 1]← histogram[c− 1] ∪ {v}

4.1 Datasets

Here we describe the datasets used for testing the degree
centralization algorithm. We used six real-world networks
ranging from several hundred thousand up to more than 16
million edges.

Facebook is the smallest dataset in experiments contain-
ing 4039 nodes and 88,234 edges. It is anonymized data
collected by survey participants using a Facebook applica-
tion with ten ego networks combined. The dataset was gen-
erated to study social circles in ego networks [19]. Since it
is generated by combining 10 ego networks, we expect its
maximal centralization results to be relatively high. Cobiss
dataset is a graph of scientific co-authoring of the complete
national research database in Slovenia from 1970 to 2013.
Two authors are connected if they publish at least one pa-
per together. The graph contains 25,301 nodes and 316,587
edges. The dataset was generated by using the database
maintained by ARRS (Slovenian Research Agency) and
IZUM (Institute of Information Science, Maribor, Slove-
nia). Twitter dataset contains a graph of followers, with
81,306 nodes and 1,768,149 edges. The dataset was col-
lected from public sources for the purpose of analyzing
the social circles [19]. Amazon dataset is a graph of fre-
quently co-purchased products based on the Amazon web-
site in June, 2003. The mentioned graph has 403,394
nodes and 3,387,388 edges and was generated for the study
of viral marketing dynamics [17]. YouTube dataset con-
tains a graph of user subscriptions. The graph contains
1,134,890 nodes and 2,987,624 edges. The dataset was
prepared by Mislove et al. [20]. Patents dataset is a cita-
tion graph of patents granted between 1975 and 1999. The
graph contains 3,923,922 nodes (patents) and 16,522,438
edges (citations). The dataset was generated for the pur-
pose of studying graph evolution [18], using the U.S. patent
dataset maintained by the National Bureau of Economic
Research [11].

4.2 Experimental results
Figure 2 shows the values of the centralization with dif-
ferent sizes of the group, while Table 2 gives precise val-
ues of results and optimal dataset sizes. In Cobiss network
(Figure 2b) the maximal centralization is attained by a rel-
atively small group size, and after that point adding mem-
bers to the group causes a drastic decrease of the centraliza-
tion. Amazon (Figure 2d) has a similar shape, but increas-
ing and decreasing of centralization is less intensive. In
YouTube network (Figure 2e), a relatively small group size
has a high degree centralization. Further increase of the
group size slowly increases centralization, which is maxi-
mal only after the group dominates all the nodes. In Face-
book network (Figure 2a) the maximal centralization is also
achieved when the group dominates all the nodes. Patents
network (Figure 2f) is similar to YouTube, but the maximal
centralization is achieved before the nodes are dominated
by the group. In Twitter (Figure 2c), network centraliza-
tion increases up to the maximal point and then decreases
with the same intensity.

By its construction, the group degree centralization is
comparable among various groups from different networks.
Among the analyzed networks, one can observe that the
biggest centralization score (0.9) is attained by the Face-
book network, with the corresponding group of size 10.
This result was expected, since the Facebook network was
generated by combining 10 ego networks and the centers
of the ego networks are the group members identified by
our algorithm. YouTube and Twitter have relativity similar
and high maximal centrality, which is obtained by 214,003
and 803 group members, respectively. Cobiss and Amazon
graphs are in the middle range of our centralization experi-
ments, while the lowest maximal centrality has the Patents
network, which is also the largest and the sparsest network
among our experiments.

By looking at the centralization values for all networks in
the experiments and thousands of different sizes of groups,
we observed a correlation between the plots in Figure 2 and
the unimodality law. Indeed, the shape of most of the plots
in Figure 2 is unimodal, i.e. it is monotonically increasing
up to a maximizing group size, while at the value dc(G) the
plot begins to have a negative slope. As discussed above,
this confirms the natural intuition regarding the group cen-
trality scores, mentioned in unimodality law. While this
property is certainly not present in all networks, as it is easy
to find many graphs that do not follow the unimodality law,
we believe that many of the real-world networks should in-
deed have this unimodality property and that it should be
studied further.

5 Discussion
With respect to the important branches of the centrality the-
ory mentioned above, we seek to identify the most ‘cen-
tral’ group of nodes in a network, without assuming that
we know in advance its cardinality. For a given network G,
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(f) Patents

Figure 2: The graphic representation of the Freeman centralization of the group degree centrality of six networks with
different sizes of groups.

G |V (G)| |E(G)| dc(G) GD1(S∗dc(G), G) GD(S∗dc(G), G)

Facebook 4,039 88,234 10 0.905393 4029
Cobiss 25,301 316,587 204 0.654997 19635
Twitter 81,306 1,768,149 803 0.773615 78,811
Amazon 403,394 3,387,388 12,810 0.542647 320,133
YouTube 1,134,890 2,987,624 214003 0.777639 920,887
Patents 3,923,922 16,522,438 464,298 0.470009 3,105,485

Table 2: Some statistics and centrality results from our experiments.

we mainly deal with three correlated questions:

Q1. For a fixed k, which k-subset S of members of G rep-
resents the most influential group?

Q2. Among all possible values of k find the one for which
the corresponding set S from Q1 is most influential.

Q3. How to efficiently compute both k and S from Q2 in
real-world scenarios?

Group centrality measures often have the property that,
for a given group S, one can find a person x /∈ S, such that
S∪x has higher centrality score than S. While this intuition
applies to most of known group centrality indices, it does
not provide the desired result, as the best group will in most
cases correspond to the whole network. In the sense of Q2,
it seems natural that groups of very small sizes should not
be very influential, and we would expect the influence to
grow while the size of the group increase. Stating this more
explicitly, we have:

Law of small groups. For most small groups S and any
person x /∈ S, the extended group S ∪ x should be more
central than S.

However, at some point we would like to notice that the
further increase of the group size starts decreasing its score
in the sense of given group centrality measure, as the group
is too big and consequently less tractable. The intuitive
phenomena mentioned above is expressed by the following
rules:

Law of large groups. For most large groups S and any
person x /∈ S, the extended group S ∪ x should be less
central than S.

Of course above two laws are not meant to hold strictly,
and are therefore stated in a rather mathematically non-
precise way. Anyway, in order to capture both above laws,
a shape of the plot of group centrality measure with respect
to the group size should resemble the shape of unimodal
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functions, i.e. as the group S is growing, its value is in-
creasing but, at some point it starts decreasing (see Prelim-
inaries).

Law of unimodality. A group centrality measure should
have the property of unimodality.

We believe that the Law of unimodality should naturally
hold for most of real-world networks, whenever a reason-
able group measure is used. Again, the above law is not
meant to hold strictly and is therefore not stated in a math-
ematically precise form. Although the above mentioned
laws seem very natural, we are not familiar with any group
centrality mechanism to automatically deal with the groups
of different sizes. It seems to us that the Freeman central-
ization approach [16] can be accustomed to achieve this,
and is hence encapsluated in this paper. We focus on a par-
ticular type of group centralization, namely group degree
centralization, as it is the simplest one to deal with.

Our experiments on various real-world networks shows
how the values of group degree centralization change with
respect to the group sizes. In the experiments, the law of
unimodality is observed, which suggests that the Freeman
centralization of degree may be a reasonable measure to
consider while solving Q2.

6 Conclusions and future work
With respect to the important branches of the centrality the-
ory mentioned in Introduction, we seek to identify the most
‘influential’ group of nodes in a network, without fixing the
group size k in advance. While some of the related work re-
garding group centrality measures (i.e. question Q1), is al-
ready discussed in the Group centrality section above, there
is (to our knowledge) no literature that would discuss the
questions Q2 and Q3. The main problem is, that the values
of two centrality measures may not be comparable, if the
corresponding group cardinalities are not equal. Further-
more, while Law of small groups applies to most of known
group centrality indices, this is not the case with Law of
unimodality.

With regard to this, the Freeman centralization approach
seems to be the only established method that efficiently
normalize the result, so that the centrality scores can be
compared in a meaningful way, regardless of their corre-
sponding group cardinalities.

For further work we propose the following. While in the
paper we only study the group degree centralization, one
may study group centrality measures of some other central-
ity indices such as betweenness, closeness or eccentricity.
In particular, it would be very interesting to verify whether
for real-world networks the centralization variants of those
proposed measures satisfy the above discussed laws, as
well as the unimodality property. We study the Freeman
centralization approach, as it seems the only established
procedure of normalization, compatible with Q2. Alterna-
tively, one could put aside the Freeman centralization and

consider a different type of normalization for group cen-
trality measures, that could preferably be more efficient to
calculate.
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