
Informatica 35 (2011) 499-511 499

Aspect-Oriented Reengineering of an Object-oriented Library in a
Short Iteration Agile Process

Adrian O’Riordan
Computer Science Department, University College Cork, Cork, Ireland
E-mail: a.oriordan@cs.ucc.ie

Keywords: aspect-oriented software development, reengineering, agile development, software metrics, refactoring

Received: June 24, 2011

Aspect-oriented reengineering aims to modularize crosscutting concerns in an existing system using a
new abstraction called an aspect. Code concerns may be tangled and scattered throughout an existing
code base thus hampering maintenance. This paper describes the reengineering of an object-oriented
software library called GEF using aspect-oriented techniques as an integral activity in an agile process.
Graph Editing Framework (GEF) is a medium-sized open source Java library for the construction of
graph editing applications. We evaluated both the original and reengineered code by applying a set of
appropriate software metrics to measure to what extent aspect-oriented refactoring affected modularity
attributes such as coupling, cohesion and complexity. To mirror a real world setting, analysis, re-
design, and semi-automated refactoring was performed in three-week iterations typical of agile
development using tools freely available on the Eclipse platform. We found that only marginal
improvements in modularity were possible in that timeframe and argue that fully-automated aspect
mining and refactoring tools are needed to bolster aspect-oriented reengineering.

Povzetek: Članek opisuje predelavo knjižnica z agilnim aspektno usmerjenim programiranjem.

1 Introduction
Aspect-oriented software development (AOSD) promises
to improve the modularity of software by the separation
of concerns into aspects during system development.
This paper presents a study of aspect-oriented
reengineering involving the analysis, re-design and
refactoring of an existing medium-sized object-oriented
library. This was done in a way that was authentic or
faithful to industry practice where refactoring is an
integral part of agile methods [1]; analysis, re-design,
and refactoring are performed in short iterative cycles
using tools widely available. Recently developed
research tools in automated code transformation and
aspect mining that are as yet not common in industry
were thus not employed. The time spend in the
refactoring phases of development was not changed from
that commonly spend in conventional object-oriented
refactoring despite the introduction of aspect technology.

We carried out the aspect-oriented refactoring or
aspectization in a semi-automated manner as part of an
agile development process. Agile methods have become
popular and already incorporate refactoring in their
development process and hence are a suitable approach
for introducing aspect-oriented refactoring into a
reengineering process. We employed the AspectJ
language and associated development tools for
refactoring. The two developers were experienced in
Java development but only recently familiar with AOSD
and AspectJ. We applied a metric suite to both the
original and reengineered library, comparing the two sets
of results in order to establish any improvements in the

areas of reduced complexity, reusability, and
maintainability. Conclusions are drawn on the efficacy of
this approach.

1.1 Aspect-oriented software development
A reality of modern software is the requirement for
continuous change. This change can be instigated
externally by the discovery of bugs or changing customer
needs or internally to an organization for technological or
institutional reasons. Software evolution and
maintenance is hampered by the types of decomposition
used in coding and design: separation of concerns is a
long standing challenge in software engineering [2]. A
key problem in software evolution is that software
designs tend to have a dominant kind of modularization.
This could be feature-based (e.g. transactional) or
paradigmatic (object-oriented). But changes that affect a
particular feature or concern (such as security for
example) may favour an alternate decomposition [3]. In
particular, the limitations of object orientation are now
becoming more apparent – such as in feature segregating
or in applying domain-specific knowledge [4]. AOSD is
a technology that addresses the separation of concerns in
software at the code level.

The concept of an aspect originated at Xerox PARC
in the form of aspect-oriented (AO) programming [5],
and has gone on to receive significant attention in the
software engineering research community [6]. AOSD
developed out of work in object-oriented (OO)
programming, reflection, and the meta-object protocol
[5]. The aim of AOSD is to modularize crosscutting
concerns in a system to manage the structural

500 Informatica 35 (2011) 499–511 A. O'Riordan

relationship between representations of a concern. These
code concerns or areas of interest can be scattered and
tangled (intermixed) throughout the design and
implementation; common examples include error
handling, logging, and security. Concerns can relate to
functional or non-functional requirements. Crosscutting
concerns are claimed to make systems difficult to
maintain, increase the complexity of the system and
reduce the reusability of the code [7]. By applying AO
techniques, these concerns can be put into separate
modules called aspects, untangling them from each other.
Though the AO approach was developed as a
programming method, it has been extended to encompass
more stages of the software development lifecycle [8].

AOSD tackles areas not addressed in a purely object-
oriented OO approach to software development. For
existing software to benefit it will be necessary to
support the migration of legacy systems to AO solutions.
Just as the adoption of OO software development lead to
the need to reengineer legacy systems, as for example in
[9]; the wider adoption of AOSD will require a similar
effort. Laddad advocates a safe adaptation path for
AOSD where AO refactoring is applied before AOSD is
exploited from a project’s inception [10]. There is less
experience of applying AOSD in industry and few
experience reports published as yet, see Section 5.

1.2 Overview of paper
The paper is structured as follows. Section 2 introduces
background material on AO programming, the GEF
library and the metric suite. Section 3 presents the
reengineering implementation. Section 4 contains the
evaluation. The paper finishes with a summary and
conclusions.

2 Background

2.1 Aspect-oriented programming in
AspectJ

AO programming introduces a number of unfamiliar
concepts to programmers. These concepts offer
additional functionality to assist with the modularization
of crosscutting expressions by encapsulating a concern in
one place that would otherwise cross existing units of
modularity such as class, subprogram and package. We
follow the formulation and terminology of AspectJ
throughout this paper.

AspectJ is described as a seamless extension to the
Java programming language [14]. AspectJ is free open
source software available under an EPL (Eclipse Public
License). The major Java extension called an aspect has a
Java class style syntax. All legal Java programs are
upwardly compatible with AspectJ and all AspectJ
programs run on any Java Virtual Machine. The process
of linking classes and aspects together is called weaving.
In the case of AspectJ, this produces executable
bytecode. The bytecode produced by the AspectJ
compiler should be comparable to the bytecode produced
by a Java compiler used on an equivalent (scattered and

tangled) Java implementation [11]. The AspectJ
Development Tools (AJDT) 1 provide Eclipse platform
based tools for editing, building and debugging AspectJ
programs. Whereas Eclipse has good support for AOSD,
other IDEs have lagged behind. Alternatives to AspectJ
include Hyper/J but AspectJ is by far the most widely
deployed example of aspect technology at present.

Here is a brief summary of the operation of AspectJ;
see [10] or [12] for a more detailed description. An
aspect is a new unit of modularity providing
encapsulation and abstraction and allowing tangled or
scattered code to be removed from classes while still
maintaining overall functionality. Join points are events
that occur during the runtime execution of a program, for
example each time a method or a constructor is called or
a variable created. Each such run-time event is a separate
join point visible to aspects during program execution.

A pointcut is used to identify, by matching, join
points of interest. Examples of pointcut designators are
call, execution, target, this, get, set, and args. There are
both named pointcuts and property-based pointcuts that
can have wildcard expressions. Pointcut expressions can
be created with the &&, || and ! Java logical operators.
Pointcuts can also expose contextual information at the
join points that they match. Once a pointcut has matched
a join point, advice specifies what is to occur.

Here we briefly explain the function of the
designators that are used in the example code in Section
3.The execution designator picks out each method
execution join point and target picks out each join point
where the target object is of a specified type. The within
designator limits the lexical scope of the join point and
the this designator checks runtime type. A cflow picks
out a join point within the dynamic context of another.

Advice is unnamed as it is implicitly invoked. There
are three main types of advice. Before advice is advice
that executes before a join point whereas after advice
executes immediately after a join point. Around advice
runs in place of the join point and is the most flexible
type of advice since it can change contextual
information. In general terms, an AO programming
implementation is characterized by its join point model
which dictates the location of joint points (where advice
can run), quantifies joint points (how they are matched)
and specifies what to do (for example run advice).

AspectJ also has inter-type declarations (ITDs),
formerly introductions. ITDs are declarations that affect
a program’s static structure. They are mainly used to
provide definitions of fields and methods within an
aspect on behalf of other classes. ITDs can be viewed as
enabling open classes allowing structural additions. Note
that aspects intercept base code without needing to
modify it. This thus makes AO refactoring possible even
when the base code cannot be changed.

2.2 Reengineering
Reengineering aims to restructure legacy software.
Without comprehensive design specifications
maintaining legacy code can be a major burden. Even
where extensive documentation exists, reengineering and

ASPECT-ORIENTED REENGINEERING OF… Informatica 35 (2011) 499–511 501

software evolution can entail making changes throughout
a software system, and has been found to be both
difficult and tedious [13]. Reengineering is the
examination and alteration of a system to reconstitute it
in a new form and the subsequent implementation of this
new form [14]. Reengineering generally consists of some
reverse engineering or design discovery (often to achieve
a more abstract representation) followed by restructuring.
Existing OO reengineering does provide some techniques
for dealing with tangled code. Refactoring [15] enables
OO code restructuring and is an integral part of agile
software development methods [16]. Agile methods such
as Extreme Programming advocate a culture of
continuous reengineering [17].

Many IDEs, such as Eclipse, now have support for a
semi-automated refactoring process. Code refactoring
includes techniques for renaming, decomposing,
composing, relocating, and abstracting program code
elements such as identifiers, methods, and classes. Two
examples of code refactoring include extracting a
method, and converting conditional code into
polymorphic code. The aim is to improve quality
measures such as “understandability”, reusability, and
maintainability; not to fix bugs or introduce new features.

But there are limits to the application of OO
refactoring and the extent to which conventional
refactoring can disentangle code [18]. To give just one
indicative example, behaviour can be delegated to a
separate class, but new problems can consequently be
created because delegation decreases cohesion and adds
additional components [19]. In addition, there are
scenarios where it is very difficult to separate out a
concern using conventional OO techniques, thus
impacting ease of maintenance. This may lead to updates
being required for unrelated modules for a minor change.

2.3 GEF library overview
The object-oriented software library that was reworked is
GEF (Graph Editing Framework), a medium-sized free
open source Java library for the construction of graph
editing applications 2. GEF is not a complete drawing
program but it supports the construction of custom
drawing programs. ArgoUML3 is a popular open source
UML modelling tool built using GEF. GEF (Version
0.12.3) was chosen for the reengineering project for two
main reasons: (i) as a medium-sized application it is
nontrivial but manageable: and (ii) because it is already
well-designed using conventional OO design, any
reengineering can focus on the benefits of AO
restructuring.

Figure 1 shows screen captures of a simple demo
application that uses GEF. GEF is designed using the
Model-View-Controller architecture separating the graph
models from the display information in Java SWING.
GEF was developed to be easy to use and extend without
modifying the underlying framework. A flexible Node-
Port-Edge graph model is employed for drawing objects.

Briefly stated GEF supports selection, grouping, layering
and views but not zooming and undo. GEF specifies data
as generic properties using JavaBeans. XML-based file
formats are employed based on the PGML standard. GEF
is a Java counterpart to graph editing libraries such as
Unidraw (C++) and HotDraw (Smalltalk).

Figure 1: Screenshots of GEF demo application.

The most important classes are now briefly introduced;
many of these are referred to in the refactoring in Section
3. Editor is the central class of the Graph Editing
Framework. There is one instance of Editor for every
diagram that is displayed on the screen. Editor does not
handle input events, or modify a diagram; instead it
passes events and messages to supporting objects. An
Editor has a LayerManager which manages a stack of
Layers. Layers contain the objects to be drawn, which are
called Figs. Layers group Figs into transparent overlays.
Figs are drawable objects that can be shown and
manipulated in the Editor such as rectangles, lines,
circles, and text. FigGroup is the class for groups of Figs
to be treated as single items. When a Fig is selected the
SelectionManager holds a selection object. Selections are
objects used by the Editor when the user selects one or
more Figs. Selections indicate the target of the next
command. The behaviour of the Editor is determined by
its current Mode. The Editors ModeManager keeps track
of all the active Modes. Modes interpret user input events
and decide how to change the state of the diagram.
Examples of Modes are ModePopup which deals with
right mouse button events and shows a popup menu and
ModeSelect which allows one to select one or more figs.
Cmd is an abstract class for all editor commands. Classes
starting with Cmd (CmdSelectAll, CmdCopy, etc.) are
classes that define a doIt() method that performs some
action in the Editor. In total GEF consists of 302 classes
and 30835 lines of code, broken up into 14 different
packages. There is little documentation apart from the
Javadoc API. Figure 2 shows the major classes of GEF in
a reverse engineered MVC architectural design view that
serves as the starting point for the re-design.

502 Informatica 35 (2011) 499–511 A. O'Riordan

2.4 Software metrics employed
Metrics for assessing modularity cannot be analyzed

independently of other metrics of program quality. For
example, a software system implemented as a single
module has no inter-module communication but may be
deficient in many other regards. Many software metrics
have been devised based around the concepts of
coupling, cohesion and complexity. In the broadest sense
modularity relates to API compatibility, testability,
maintainability and extensibility. A summary of the
metrics employed in this study is given below. We
employed Aopmetrics4, an open source metrics tool for
OO and AO programming. It provides AO extensions to
many common OO metrics which can be used to measure
the code base and make predictions on reuse and
maintenance. Most of the metrics fit into the categories
of size metrics, coupling metrics, cohesion metrics and
complexity metrics, comparable to the Chidamber and
Kemerer (C&K) OO metrics [20]. Additional package
dependency and aspect-specific metrics are also present.
Note that we use the Java terms class and method in the
following summary descriptions where the Aopmetrics
documentation has the terms module and operation.

Size metrics
Lines of Class Code (LOCC): LOCC gives the total non-
blank and non-commented lines of class code.

Complexity metrics
Weighted Operations per Module (WOM): WOM counts
the number of methods in a given class, capturing the

internal complexity of a class which is an indicator of
how much time and effort is required to maintain the
class. Classes with a large number of methods may be
too complicated or very application specific thus limiting
reuse. Response for a Module (RFM): RFM of a class is
the number of methods and advices that potentially can
be executed in response to a message received by the
class. If a large number of methods can be invoked in
response to a message, the testing and debugging of the
class becomes more complicated.

Coupling metrics
Coupling on Method Call (CMC): CMC is the number of
classes or interfaces declaring methods that are possibly
called by a given class. Usage of a high number of
methods from many different classes indicates that the
function of the given class cannot be easily isolated from
the others. Coupling between Modules (CBM): CBM is
the number of classes/aspect or interfaces declaring
methods or fields that are possibly called or accessed by
a given class. Excessive coupling between classes is
detrimental to modular design and prevents reuse. Depth
of Inheritance Tree (DIT): DIT is the length of the
longest path from a given class/aspect to the class/aspect
hierarchy root. The deeper a class is in the hierarchy, the
greater the number of methods it is likely to inherit,
making it more complex to predict its behaviour.

Afferent Coupling (Ca): Ca measures the number of
classes outside a package that depend on classes inside
the package [21]. Efferent Coupling (Ce): Ce measures

Figure 2. Reverse Engineered MVC Design of GEF.

ASPECT-ORIENTED REENGINEERING OF… Informatica 35 (2011) 499–511 503

the number of classes inside a package that depend on
classes outside the package.

Cohesion metrics
Lack of Cohesion in Operations (LCO): LCO measures
the number of methods within a class that access one or
more of the same attributes. Low LCO is desirable.

Package dependency metrics
Normalized Distance from Main Sequence (D): D is the
distance of a package from the idealized line
Abstractness + Instability = 1 where Abstractness is
defined as the ratio of the number of abstract classes to
the total number of classes in the package and Instability
is the ratio of efferent coupling (coupling outside
package) to the total coupling. D is an indicator of a
package’s balance between abstractness and stability.
This metric has a range 0 < D < 1, where a 0 indicates
ideal package design.

Aspect-oriented metrics
Crosscutting Degree of an Aspect (CDA) CDA is the
number of classes affected by the pointcuts and by the
inter-type declarations in a given aspect. CDA measures
all classes possibly affected by an aspect. High values of
CDA are usually desirable.

3 Reengineering the GEF Library

3.1 Adoption risks and process overview
There is significant adoption risk associated with AO
technology: (i) lack of tool support; (ii) lack of
education; (iii) implementation issues; (iv) unpredictable
behaviour due to code injection; and (v) security issues
[14]. Many of these issues will dissipate as tools and
methods mature and gain wider acceptance. Issue (iv) is
of particular relevance to AO reengineering as existing
code bases with agreed upon contracts can be altered.
Supporting processes and techniques, such as embodied
in test-driven development help ensure unanticipated
behaviour is not introduced. Introducing any major new
technology has been found to cause an initial decrease in
programmer productivity [22]. Laddad in [10]
recommends a cautionary approach for AOSD adoption
first employing simple AO techniques for common
concerns such as logging and exception handling, to be
followed by the more complex techniques for trickier
concerns. Applying AO techniques to legacy systems can
pose difficulties for various reasons: large code size, lack
of documentation, complexity and inconsistencies of
implementation and the need to preserve behaviour. A
recent review endorses an incremental adoption path
[23].

As yet there is no established process for software
reengineering. Organisations have typically adapted their
standard development process; for example, NASA [24].
We employed an agile process of short development
iterations where refactoring is a major component.
Adopting an agile approach, two engineers worked in
four approximately three-week, development iterations
consisting of analysis, design discovery and two

iterations of AO code refactoring. Agile methods, such as
Scrum and Extreme Programming, use refactoring to
improve software quality and enhance project agility.
The typical approach in agile development is to first
write tests, by means of automated unit testing, which are
subsequently used to verify that code transformations are
behaviour preserving.

A refactoring process suitable for reengineering is
described by Kataoka et al., where refactoring is done in
iterations or “clumps” [25]. Pizka took a similar
approach of short iterations of discovery, application and
test [26]. In particular, similar approach we followed
was: (i) Identify code to be refactored; (ii) Determine
which changes to apply and to where; (iii) Write tests;
(iv) Apply refactoring; (v) Assess effects and check that
change is behaviour preserving. This mirrors the typical
process required to manage incremental change in OO
refactoring: determine change, locate relevant code and
determine the change’s extent, and carry out impact
analysis.

For each new aspect we introduced we examined
relevant source code call method calls, constructors, and
blocks of code. Once an aspect was introduced, its
functionality and purpose were reviewed and adjustments
made to further refine how it interacted with and
contributed to the existing classes, as well as adjusting
the classes in the library that the newly created aspect
was now advising. An aspect that starts off interposing a
single class can be used to interpose multiple classes.
This process was repeated for each crosscutting concern
that was identified. Static and dynamic tests were
performed to guarantee that software behaviour was
preserved, that is to ensure that for the same set of input
values, the resulting set of outputs were the same before
and after refactoring. Stronger notions of behaviour
preservation are needed for domains such as real-time
and embedded systems where performance and other
properties such as safety could be affected. This was not
an issue with GEF.

3.2 Refactoring GEF
We carried out two iterations of AO refactoring using the
semi-automated techniques. In the first refactoring
iteration we concentrated on basic concerns and solutions
within our limited time window. Common AO
refactorings that we used included Extract Feature into
Aspect and Extract Fragment into Advice [27]. We
measured the restructured software after this phase. In
the second iteration we did further refactoring primarily
based on the AO implementation of established design
patterns and re-ran the metric suite so the modularity of
the software was again measured at this final stage.
Design patterns are an attractive proposition for software
design but while the benefits to the design are well
documented [28], their implementations “tend to vanish
in the code” [29], failing to “capture the concern
explicitly” in the code [30]. AO implementations of
design pattern retain explicitness while offering the
desired benefit.

504 Informatica 35 (2011) 499–511 A. O'Riordan

AO code refactoring differs from and is more
pervasive than he conventional OO refactoring
techniques mentioned in the introduction [31]; for
example, while extract method simply moves code into a
new method replacing it with a method invocation, using
aspects you can take an additional step and take out those
invocations in the source code altogether. You can make
changes not possible with just a Java compiler such as
moving out try/catch blocks into a separate aspect. Many
of the guidelines and practices in OO refactoring, carry
forward to AO refactoring. As stated in [32], AO
refactoring “augments and not replaces conventional
refactoring.” AO refactoring techniques have been
developed to modularize exception handling,
concurrency, lazy initialization, contract enforcement,
and a number of other design constraints. Catalogues of
AO refactorings have been developed [27, 31, 33, 34].
These are often described in the template format
popularized by the design pattern community.

We used the aforementioned Eclipse tools, AJDT
and JUnit for writing unit tests. The AspectJ graphical
structure browser and the Visualizer allowed us to
identify concerns without the use of a dedicated aspect
mining tool. Tool-supported refactoring can greatly
reduces the effort of manually scanning and changing
code. We return to the issue of automated aspect mining
and automated refactoring in Section 5. Note that we
used only a subset of the AspectJ language features.
Indeed, as of 2010, most industrial applications of AOSD
have used only basic features [23, 35]. We followed the
guidelines given by Colyer [16] where pointcuts are
named and individual pointcut definitions are kept
simple. Named pointcuts can thus be reused. We placed
all pointcuts in an aspect next to the associated advice. In
AJDT you can handily associate run-time tests with each
item of advice.

In particular the following separate of concerns
(SoCs) were addressed wherein one or more aspects were
introduced to deal with each.

 SoC1: Exception Handling
 SoC2: Logging
 SoC3: Notification Services
 SoC4: Event Handling
 SoC5: Design Pattern Concerns

o Composite
o Strategy
o State

3.2.1 AO refactoring iteration 1
A summary of the five aspects introduced in the first
iteration of refactoring are given next.
ThrowableException is an aspect introduced to deal with
SoC1. Following are additional aspects dealing with
SoC2, SoC3 and SoC4 in turn.

ThrowableException aspect (SoC 1)
This is the simple aspect. Calls to printStackTrace() are
made by some catch clauses in the original code. Such
code snippets occur in multiple packages. We created a
new package called exception, modularizing the

crosscutting code into an aspect called
ThrowableException. This will be single aspect instance
– by default all aspects are singletons. Pointcut
expressions are created matching join points that can
occur in the Java source code. Around advice executes at
the matched join points. As the program executes, the
pointcuts match events in the runtime of the application
triggering a stack trace method to execute. This allows
duplicated source code to be removed, providing benefits
such as improving the readability of the base code,
having the exception throwing all in one place, and
supporting future additions which may need to
implement calls to printStackTrace(). This example uses
the execution, target and args pointcut designators. The
args designator used here captures contextual
information, in this case the arguments passed to
methods at an execution joinpoint.

package exception;

public aspect ThrowableException{

pointcut printingStackTrace(Throwable aCause):
execution (* printStackTrace()) &&

target(aCause);

// other pointcuts elided

void around(Throwable cause)
:printingStackTrace(cause){

proceed(cause);
if (cause != null){
 System.out.println("Caused by:");
 cause.printStackTrace();
}

}
//other advice elided
}

ExceptionHandler aspect (SoC1)
Exception handling occurs throughout a number of
classes in the util package of the GEF library. Within this
package we have modularized all try-catch clauses into a
second aspect called ExceptionHandler. Exception
handling also occurs in classes in other packages of the
library but its use is applied in an inconsistent manner
and so it was not possible to modularize into this aspect.
Within the util package there existed a number of try-
catch clauses in classes tangled with other logic in the
class. We moved all this exception handling code into the
aspect.

LoggingCalls aspect (SoC2)
Logging is used by a number of classes in the GEF
library for debugging purposes. Logging is not applied
uniformly throughout the library but instead is used on an
ad hoc basis in a number of different classes.

It was possible to modularize checks that were done
before a message was logged. Before a message is
logged with debug priority (Log.debug(“message”)), a
check is made to ensure that debug logging is enabled
(Log.isDebugEnabled()). If the result of this check is true
then the message is logged, if the result is false then
logging is ignored. This check occurs in 70 different
locations throughout the library, in a different classes and
packages. Since this check is not a primary concern of

ASPECT-ORIENTED REENGINEERING OF… Informatica 35 (2011) 499–511 505

the classes in which it occurs, it was moved to an aspect.
The aspect contains a pointcut that matches any join
points that occur when a call is made to Log.debug() in
GEF. When a match is made, contextual information is
extracted from the join point; the Log object is extracted
and made available to the aspect. A check is then made
using around advice, which results in control returning to
the join point if debug logging is enabled. If debug
logging is not enabled, messages are not logged and
control returns to the code after the join point.

PropertyChangeHandler aspect (SoC3)
In GEF the Globals class stores global information that is
needed by all Editors. Within the Globals.java class,
listener notification is implemented. A hashtable is
created which keeps track of a number of
PropertyChangeListeners for Figs. It allows for
PropertyChangeListeners to be added to Figs. Any
changes to the properties of a Fig will result in a
notification being sent to its listeners. A Fig can have up
to four listeners. There are five methods implemented in
the Globals class that manage these
propertyChangeListeners.

The methods for managing the properties are not
scattered across the library but we decided to modularize
these methods since they are specific to Figs and are not
the primary concern of the Globals class. By
modularizing them into an aspect,
PropertyChangeHandler, the code in the Globals class
becomes less complex and more robust if changes need
to be made to the way listeners are handled.

public aspect PropertyChangeHandler{

private static Log Globals.LOG =
LogFactory.getLog(Globals.class);

private static Hashtable Globals._pcListeners =
new Hashtable();

private static PropertyChangeListener
Globals.universalListener = null;

public static int Globals.MAX_LISTENERS = 4;

public static void
Globals.addPropertyChangeListener (Object

src, PropertyChangeListener l){
PropertyChangeListener listeners[]=

(PropertyChangeListener[])_pcListeners.get(src);
if (listeners == null){

listeners = new
PropertyChangeListener[MAX_LISTENERS];
 _pcListeners.put(src, listeners);

}
for (int i = 0; i < MAX_LISTENERS; ++i)

if(listeners[i] == null) {
 listeners[i] = l;
 return;
}

}

public static void
Globals.addUniversalPropertyChangeListener

(PropertyChangeListener pcl) {
universalListener = pcl;

}

public static void
Globals.removeUniversalPropertyChangeListener(){

 // code cut for brevity
}

public static void
Globals.firePropChange(Object src, String
propName, boolean oldV, boolean newV){

firePropChange(src, propName, new
 Boolean(oldV), new Boolean(newV));

}
// overloaded methods cut for brevity
}

This example also shows how the observer pattern is
quite naturally implemented in AO programming. Also
an alternative option, OO refactoring involving
delegation, is not an attractive option here because of the
added level of indirection and complexity. The trade-off
between using and not using inheritance or delegation is
an on-going area of debate. Empirically measuring
generalization costs against reuse savings has proved
difficult. An interesting proposed solution involves a
cost-benefit approach to develop a suitable metric [36].

UseActionEvents aspect (SoC4)
There are classes in the GEF library, UseReshapeAction,
UseResizeAction and UseRotateAction, which
implement almost identical event listening methods.
These classes deal with allowing an Editor to perform
certain actions on groups of objects that are currently
selected. These actions are a resize action, rotate action
and reshape action. Since this is an area of the library
where there may possibly be future additions of new
classes that provide additional actions, we modularized
this duplicated code which is crosscut among these
classes into an aspect.

A new aspect called UseActionEvents was created
which matches the execution of any actionPerformed()
methods in the above classes. When the pointcut defined
in the aspect matches a call to this method during the
runtime execution of the class, control is passed to the
aspect, which then executes some event listening logic
depending on where the call originated from. Once the
aspect is finished executing, control is passed back to the
class.

public aspect UseActionEvents{

pointcut
handlingActionEvents(UseReshapeAction aReshape):

execution (public void actionPerformed(..))
&& target(aReshape);

// other pointcuts elided

void around (UseReshapeAction reshape):
handlingActionEvents1(reshape){
Editor ce = Globals.curEditor();
SelectionManager sm =
 ce.getSelectionManager();
Enumeration sels = ((Vector)
 sm.selections().clone()).elements();

while (sels.hasMoreElements()) {
Selection s = (Selection)
 sels.nextElement();
if (s instanceof Selection &&
!(s instanceof SelectionReshape)){

 Fig f = s.getContent();
 if (f.isReshapable()){
 ce.damaged(s);
 sm.removeSelection(s);

 SelectionReshape sr = new

506 Informatica 35 (2011) 499–511 A. O'Riordan

 SelectionReshape(f);
 sm.addSelection(sr);
 ce.damaged(sr);
 }
 }
}

}
//other advice elided
}

3.2.2 AO refactoring iteration 2
A summary of the four additional aspects introduced in
the second iteration of refactoring are given in the
following subsections. The first of these related to the
repaint method and addresses SoC3. The remaining three
new aspects address SoC5. Code samples of the
reengineered library are included for some of these.

Repainting (SoC3)
First we give a brief description of how the repainting of
graphical objects takes place in GEF. Mouse events,
screen damage, or changes to a figure’s boundary
necessitate repainting the screen. Damage is stored as a
list of rectangles. This is part of the RedrawManager
class’s responsibility as well as determining the object
under a given mouse point. In GEF, a Layer class can
dictate the redraw order of a group of Figs. A Layer is
responsible for notifying all dependent layers of changes.
Different layers can be hidden, locked, or grayed out
independently. A complex notification service maintains
state. We introduced a new Repaint aspect that provides
an aspect-based implementation of this notification
mechanism. This is again based on the Observer pattern
and operates similar to the PropertyChangeHandler
described in Section 3.1. This necessitated moving and
reworking code in RedrawManager.

Composite pattern for handling FigGroups (SoC5)
FigGroup has methods that perform various actions, such
as setting and removing properties on all of the Figs in a
FigGroup. In the original library different iterators
process the list of Figs for each of these. We introduce an
aspect to perform these updates. Note that the update
operation requires contextual information in the form of
the particular type of update operation.

static aspect UpdateAllFigs{
pointcut updateOp (FigGroup fg):
execution(* FigGroup.*(..)) && this

(FigGroup) && within (FigGroup);

pointcut FigGroupOperation(FigGroup fg):
cflow (updateOp);

// advice elided
}

This example uses the this, within and cfow pointcut
designators. The cflow designator specifies that the
pointcut is in the control flow of each join point picked
out by the updateOp pointcut. The pointcut expression
with the execution designator matches all executions of
any FigGroup method.

Strategies for different commands and state pattern for
changing behaviour of Editor depending on
FigModifyingMode (SoC5)

Depending on the context the various subclasses of Cmd
can be used to perform a suitable action. This part of
GEF isn’t fully developed as operations such as Undo are
not supported. During refactoring the various subclasses
of Cmd were removed from the code simplifying the
source class design by means of an aspect-oriented
implementation of the strategy design pattern [33][37].
We attach advice corresponding to each command type
as described in [33]. After advice is used to modularize
the various states of FigModifyingMode. This has the
advantage of localising future changes since this is
extensively used.

4 Evaluation
The following sections presents the metrics after
reengineering of the library was completed. Due to the
large number of classes involved and the scattered nature
of some concerns, for each metric we took average
values for the entire library, to give an indication of what
effect reengineering had on the library as a whole, with
the exception of the Lines of Class Code (LCC) metric
and the Weighted Methods per Class (WMC) metric.

4.1 Evaluation results
Table 1 gives the coupling and cohesion results.

Metrics Original Re. Iter 1 Re. Iter 2
CMC 3.205 3.140 3.013
CBM 3.246 3.181 3.126
DIT 1.383 1.383 1.383
Ca 14.81 14.67 14.67
Ce 10.90 10.90 10.90
LCO 117.6 117.6 117.9

Table 1: Coupling and cohesion results.

The coupling and cohesion results did not show dramatic
changes between the original and the reengineered code,
but the changes do give indications of the effect that the
introduction of aspects had. Overall, there is a small
reduction in coupling. The Coupling on Method Call
(CMC) metric showed approximately a two and six
percent average decrease in coupling for refactoring
iteration 1 and 2 respectively. (Aopmetrics gives results
to seven digits of precision but in all the tables here these
are rounded down to four. The percentage increases and
decreases are rounded to the nearest percentage.) The
Coupling between Modules (CBM) metric showed a
small average reduction of two and four percent between
the original and reengineered library. The Depth of
Inheritance Tree (DIT) metric remained the same for
both versions of the library due to the fact that the
introduction of aspects did not affect the class hierarchy
in the way that subclassing would through OO
refactoring. This observation has been previously
published [38]. There were small reductions in Afferent
Coupling (Ca) whereas Efferent Coupling (Ce) remained
the same. There was a slight increase in the Lack of
Cohesion in Operations (LCO) metric between the
original and reengineered library. Generally high
cohesion is a desirable property and so a reduction in
lack of cohesion would have been the preferred result.

ASPECT-ORIENTED REENGINEERING OF… Informatica 35 (2011) 499–511 507

However, the increase is relatively minimal, and since
LCO is a measure of the number of methods within a
class that access one or more of the same attributes, the
use of some inter-type declarations in aspects may have
contributed to the increase.

Metric Orig. Re. Iter 1 Re. Iter 2
LCC 30835 30422 30355
RFM 3.246 3.181 2.952
WOM 7158 7023 7010

Table 2: Size and complexity results.

Table 2 has results related to size and complexity. The
metrics Weighted Methods per Module (WOM) and
Response for a Module (RFM) are good indications of
both the internal complexity and overall complexity of
classes. The RFM decreased for the reengineered version
by approximately four and ten percent which indicates a
small reduction in complexity. The LCC metric indicated
a small reduction in code size. This small reduction is
due to the removal of replicated code into aspects as well
as the movement of some methods and fields.

The very slight increase in the LCO metric is not
significant because the overall change in this metric was
relatively small. Also there are uncertainties with respect
to the level of confidence that can be put in this metric
due to the varied results it has displayed in other studies;
see Section 6. It is best to consider the results of a set of
metrics rather than just one metric in isolation. The
results obtained for RFM and WOM support claims of a
reduction in complexity, which may have a knock on
effect for encouraging reuse and simplifying
maintenance. The D metric also provides reassurance
that the reengineering has not caused any major stability
issues in the library.

Table 3 below shows results for package stability
and dependency where there was no significant
movement.

Metrics Orig. Re. Iter 1 Re. Iter 2

D 0.426 0.427 0.427

Table 3: Package dependency results.

The crosscutting degree metric (CDA) displayed in Table
4, is not applicable for purely OO systems but comes into
play when aspects have been used.

Metrics Orig. Re Iter 2 Re. Iter 2

CDA 0 44 89

Table 4: Aspect-oriented results.

5 Discussion
The use of AO techniques to reengineer the GEF library
using semi-automated techniques in a tight timeframe
proved only marginally beneficial to the overall design
quality of the library in most areas. The results after
applying the metrics support AO programming claims of
reducing complexity and coupling but only to a small
degree. We believe this was due to the fact that only a

limited number of refactoring can be achieved in six
weeks.

Similar negative results have been obtained from
experiments on conventional refactoring; see for example
[26], which used a medium sized Java code base and also
a tight developer timeframe. Wilkin et al. also report
disappointing results [39]. In another refactoring
experiment, Bourquin and Kellen [40] note that code size
reduced by ten percent but only after seven months of
refactoring, though this involved a much larger code base
(140 KLOC of Java) but the team size is not specified.
Previous experience of more extensive reengineering,
where a software system is modified by above 20 to 25
percent, has been found to be counterproductive [41].
Chen et al. has data on the human effort of OO
refactoring, although this was restricted to exception
handling [42]. 41 man-hours were spent refactoring 14
KLOC of Java with 371 LOC being modified. They
deem the effort to be worthwhile based on a cost-benefit
analysis calculated as the estimated savings in
maintenance cost minus development costs (man-hours
by engineer's pay per hour).

Though there are a number of case studies on aspect-
oriented refactoring, see Section 6, unfortunately there is
little concrete information provided in how many man-
hours were involved in the various tasks. This early-stage
work has so far, understandable, concentrated on
methods and tools.

Some difficulties we encountered while
reengineering are worth mentioning. A lot of time was
spent analysing and re-designing GEF, for example
identifying sites where an AO approach could be taken.
Possibly because the system is a library as opposed to an
actual application, a lot of classes were already relatively
independent and modularized, limiting where aspects
could be used. In many applications there are stand-out
crosscutting concerns such as database access and
security/authentication that are good candidates for AO
refactoring. Persistence is another common concern that
is amenable to an AO solution [30] that did not feature in
the GEF library. In parts of the library it was difficult to
cleanly remove all the code associated with some
concerns such as logging. During the modularization of
exception handling in the util package, additional lines of
code and contextual data had to be extracted from the
join point into the aspect, which was not ideal.

Here we briefly discuss two limitations of our
methodological approach. While we did some we did not
do widespread OO refactoring prior to the AO
refactoring. It has been stated that initial code
restructuring such as via OO refactoring can aid
subsequent AO refactoring [43]. Capturing some
concerns as aspects may necessitate restructuring of the
base code to expose suitable join points. Second, we did
not measure stability in the face of actual changes.
Greenwood et al. performed an extensive empirical study
of design stability in the face of system changes that are
typically performed during software maintenance tasks
finding that AO implementations tend to have a more
stable design than purely OO implementations [44].

508 Informatica 35 (2011) 499–511 A. O'Riordan

Tools to automate AO reengineering have begun to
appear but are still at the research stage of development.
Aspect mining techniques are vital to automate the aspect
discovery phase. Kellens et al. provide a comprehensive
survey of emerging aspect mining techniques [45].
Different approaches are being tried to help identify
aspect candidates such as text analysis, dynamic program
analysis, code slicing and natural language techniques.
Research tools such as DynaAMiT, DelfSTof, Dynamo,
and AOPMigrator have recently been developed
[45][46]. Work is needed to make these more scalable,
more usable and more widely known so as to transfer the
technology to industry.

Fully-automated refactoring is the second major
component needed to enable full automation. In
automated refactoring, refactoring consists of program
transformations that satisfied specified preconditions. At
present AO refactoring is mostly done by hand or in the
semi-automated way because of the immaturity of
automated AO refactoring support tools and the fact that
those that do exist cannot guarantee they are behaviour
preserving [45]. IDEs such as Eclipse currently support a
user-guided (or semi-automated) approach but a lot of
human effort and expertise is still required. Research in
fully automating OO refactoring is actively ongoing.

A property of software that can be affected by any
type of refactoring is performance. Generally AO
programming has been found to have a negligible effect
on performance [10]. Some research has even shown
unanticipated performance improvements after OO
refactoring [47]. We ran the original and refactoring GEF
Demo application are there was no noticeable
performance differences.

5.1 Related studies of aspect-oriented
reengineering

The majority of empirical studies have shown that
applying AO concepts to applications can improve
modularity and provide benefits in the areas of reduced
complexity, maintainability and reusability but most of
these studies don’t explicitly state how much effort went
into the reengineering.

The very small reduction in lines of code we
observed is in line with similar studies [48, 49, 50].
Studies of the reengineering of AO software systems,
such as those by Kendall [19], have shown improvements
in modularization. This study entailed role modelling of
intelligent agent protocols and concentrated on
refactoring inter-agent communication and agent
conversation/negotiation. Note that Kendall's
reengineering used both traditional OO refactoring as
well as AO refactoring. Work in the areas of exception
handling [48, 49] have shown that the use of aspects
helped reduce code tangling and loosen class coupling.
Unlike our work, these two studies were restricted to one
functional area, exception handling. Evaluations of AOP
programming for real-time systems [50] also showed
improved modularity for crosscutting concerns. Mixed
results were obtained in a project reengineering the
Hypercast system for multicast overlay networks [51].

The original Java implementation had 300 classes and
was redesigned first using common AO programming
methods, pointcut descriptions and advice. They found
this approach led to programs that were "unnecessarily
hard to develop, understand and change." They repeated
the experiment with abstract interfaces that expose
pointcut descriptors and impose contracts and found this
easier and led to a clearer design. Zhang and Jacobson
found a 22 percent decrease in coupling in reengineered
middleware [52]. A study by Madeyski and Szala was
inconclusive [53]. While other studies show a desirable
change for the LCO metric [48], there are also studies
where lack of cohesion increased [49]. This may indicate
limitations of usefulness of this metric in AO systems or
possibly calls for modifications on how the metric is
calculated.

Using software metrics to mine aspects is a different
way of applying metrics to the refactoring process. The
explicit use of software metrics to locate problem code
for (non-AO) refactoring has been tried [54]. Cole and
Borba propose what they call AspectJ laws, a catalogue
of code transformations [55].

JHotDraw, a Java version of the HotDraw library
mentioned in Section 2.2, has been used as a test-bed for
AOSD work. Note that HotDraw is similar to GEF in
design, complexity and function. AJHotDraw is an open
source AO reengineered version of JHotDraw created to
test the feasibility of reengineering legacy code with
aspects. Ceccato et al. used JHotDraw to compare aspect
mining techniques [56]. A different development process
from ours was used, a four step process consisting of
mining, exploration, documentation, and refactoring
based on so-called crosscutting concern sorts.
Hannemann et al. show the viability of a role-based
approach to semi-automate AO refactoring by refactoring
three different design patterns - observer, singleton and
template method – also in JHotDraw [57].

6 Conclusions and Future Directions
Having analyzed the empirical results and reviewed
existing research in the area of aspect-oriented
reengineering it is clear there is potential in the areas of
reducing complexity, maintainability and promoting
reuse. There are varying degrees of success depending on
the extensiveness of the reengineering and the type of
system it is being applied to. The results we obtained
from applying a suitable metric suite to both the original
library and the reengineered library suggest that the
introduction of aspects did show slight improvements in
many fundamental measures of software quality in our
short iteration approach. The key question is if this
improvement warranted the effort. Future work is needed
on defining benefit in terms that factor in development
costs. Extensive AO re-design may be difficult within or
incompatible with the short iterations in the most
common agile processes. We conclude that without
greater automation in the form of tools and a supportive
process, AO reengineering of working OO software in an
agile process is hard to justify.

ASPECT-ORIENTED REENGINEERING OF… Informatica 35 (2011) 499–511 509

Constraints and limitations of this study where
discussed in Section 5. Future work needs to look at
issues surrounding the practical application of AO
refactoring in agile development including team
development, training, tool support, testing, and quality
control. Beuche and Beushe highlighted major issues
with transferring aspect technology into practice [58] that
can serve as a guide to needed work in the area. They
state that AO programming has yet to prove its value in
terms of making software development cheaper and that
AO programming might be useful for certain functions
but not all. Ascertaining how AO refactoring can be most
judiciously employed and incorporated into existing
processes is an important factor. It is also worth noting
that AO programming is still little used outside the Java
community and large-scale success stories are few; but
there are island of success, see [47, 59, 23] for the state-
of-the-art in large-scale deployment. For large code bases
it can be difficult to balance the amount of time spent
investigating areas where AO can be introduced, and the
overall benefit gained from doing so. In such cases prior
developer knowledge of the system being reengineered
could be advantageous to tip the balance in favour of AO
refactoring as well as use of the automation tools
discussed in Section 5.

Acknowledgments
I would like to thank the MSc student Mark Donnelly

who worked with me on the AspectJ coding.

References
[1] Dyba, T., Dingsoyr, T. 2009. What do we know

about agile software development? IEEE Software ,
26(5), pp.6-9.

[2] Parnas, D. 1972. On the criteria to be used in
decomposing systems into modules.
Communications of the ACM, 15(1).

[3] Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M.,
1999. N degrees of separation: multi- dimensional
separation of concerns, in: International Conference
on Software Engineering, IEEE Press, New York,
NY, pp. 107-119.

[4] Elrad, T., Filman, R.E., Bader, A., 2001. Aspect-
oriented programming introduction.
Communications of the ACM, 44(10), 2001.

[5] Kiczales, G., Lamping, J., Mendhekar, A., Maeda,
C., Videira Lopes, C., Loingtier, J.M., Irwin, J.,
1997. Aspect-oriented programming, in: Aksit, M.,
Matsuoka, S. (Eds.), ECOOP 1997: LNCS, vol.
1241, Springer, Heidelberg, pp. 220 – 242.

[6] Katz, S., Mezini, M., Kienzle J., (Eds.), 2010.
Transactions on Aspect-Oriented Software
Development VII - A Common Case Study for
Aspect-Oriented Modeling. Lecture Notes in
Computer Science 6210, Springer, Heidelberg.

[7] Kulesza, U., Sant’Anna, C., Garcia, A., Coelho, R.,
von Staa, A., Lucena, C., 2006. Quantifying the
effects of aspect-oriented programming: a

maintenance study, in: Proc. IEEE International
Conference on Software Maintenance, pp. 223-233.

[8] Araújo, J., Baniassad, E.L.A., 2007:.Guest editors'
introduction: early aspects - analysis, visualization,
conflicts and composition. T. Aspect-Oriented
Software Development 3: 1-3

[9] Fanta, R., Rajlich, V., 1999. Restructuring legacy C
code into C++. in: International Conference on
Software Maintenance, IEEE Press, New York, NY,
pp. 77-85.

[10] Ladded, R., 2003. AspectJ in Action, Manning,
Greenwich, CT.

[11] Kiczales, G., 2004. The AOP report card, Software
Development, January, CMP Media.

[12] Colyer, A., Clement, A., Harley, G., Webster, M.,
2004. Eclipse AspectJ: Aspect-Oriented
Programming with AspectJ and the Eclipse AspectJ
Development Tools, Addison-Wesley Professional,.

[13] LaToza, T.D., Venolia, G., DeLine, R., 2006.
Maintaining mental models: a study of developer
work habits, in Proceedings of the 28th
international Conference on Software Engineering
(ICSE '06), ACM Press, New York, NY.

[14] Chikofsky, E., Cross, J., 1990. Reverse engineering
and design recovery: A taxonomy, IEEE Software,
7(1), pp. 13-18.

[15] Fowler, M., Beck, K., Brant, J., Opdyke, W.,
Roberts, D., 1999. Refactoring: Improving the
Design of Existing Code, Addison-Wesley
Professional, Boston, MA.

[16] Martin, R.C., 2002. Agile Software Development:
Principles, Patterns, and Practices, Prentice Hall,
Upper Saddle River, NJ.

[17] Beck, K., 2000. Extreme Programming Explained:
Embrace Change, Addison Wesley.

[18] Lippert, M., Roock, S., 2006. Refactoring in Large
Software Projects: Performing Complex
Restructurings Successfully, Wiley.

[19] Kendall, E.A., 2000. Reengineering for separation
of concerns, in: Tarr, P., Finkelstein, A., Harrison,
W., Nuseibeh, B., Ossher, H., Perry, D. (Eds.),
Workshop on Multi-Dimensional Separation of
Concerns in Software Engineering at ICSE 2000.

[20] Chidamber, S.R. Kemerer, C.F. 1996. A metric
suite for object-oriented design, IEEE Transactions
on Software Engineering, 20(6), pp. 476–493.

[21] Martin, R.C., 1994. OO design quality metrics: an
analysis of dependencies, in: Workshop Pragmatic
and Theoretical Directions in Object-Oriented
Software Metrics, OOPSLA 1994, ACM Press,
New York, NY.

[22] Weinberg, G., 1997. Quality Software
Management: Anticipating Change, 4, Dorset
House, New York, pp. 13-20.

[23] Rashid, A., Cottenier, T., Greenwood, P.,
Chitchyan, R., Meunier, R., Coelho, R., Sudholt,
M., Joosen, W., 2010. Aspect-Oriented Software
Development in Practice: Tales from AOSD-
Europe, IEEE Computer, 43(2), pp.19-26.

[24] Rosenberg, L.H., Hyatt, L.E., 1997. Hybrid re-
engineering, in: Third IEEE International

510 Informatica 35 (2011) 499–511 A. O'Riordan

Symposium on Requirements Engineering (ISRE),
IEEE Press, New York, NY.

[25] Kataoka, Y. Imai, T. Andou, and H. Fukaya, T.,
2002. A quantitative evaluation of maintainability
enhancement by refactoring, in: Proc. International
Conference on Software Maintenance.

[26] Pizka. M., 2004. Straightening Spaghetti Code with
Refactoring, in: Proc. of the Int. Conf. on Software
Engineering Research and Practice - SERP, CSREA
Press, pp 846- 852.

[27] Monteiro, M.P., Fernandez, J.M., 2006. Towards a
catalogue of refactorings and code smells for
AspectJ, in: A. Rashid and M. Aksit (Eds.),
Transactions of Aspect-Oriented Software
Development I: LNCS 3880, Springer,
Heidelberg, pp. 214 – 258.

[28] Gamma, E,. Helm, R., Johnson, and R., Vlissides,
J., 1994. Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley
Professional.

[29] Denier, S., Comte, P., 2006. Understanding design
pattern density with aspects, Software Composition
5th international symposium.

[30] Rashid, A., Sawyer, P., 2001. Aspect-oriented and
database systems: an effective customization
approach, IEEE Software 148(5), pp. 156-164,

[31] Hanenberg, S., Oberschulte, and C., Unland, R.,
2003. Refactoring of aspect-oriented software, in
Unland, R. (Ed.), Lecture Notes in Computer
Science, volume 2591, Springer, Heidelberg, 2003.

[32] Laddad, R., 2003. Aspect-oriented refactoring, Parts
1 and 2, The Server Side,
http://www.theserverside.com/tt/articles/article.tss?l
=AspectOrientedRefactoringPart1

[33] Demeyer, S., Ducasse, S., Nierstrasz,O., 2002.
Object-Oriented Reengineering Patterns, Morgan
Kaufmann, 2002.

[34] Binkley, D., Ceccato, M., Harman, M., Ricca, and
F., Tonella, P., 2005. Automated refactoring of
object-oriented code into aspects, in: 21st IEEE
International Conference on Software Maintenance
(ICSM 2005), IEEE Press, New York, NY, pp. 27–
36.

[35] Apel, S., 2010. How AspectJ is Used: An Analysis
of Eleven AspectJ Programs, Jounal of Object
Technology (JOT), 9(1), pp. 117-142.

[36] Henderson-Sellers, B., 1994. Book Two of Object-
Oriented Knowledge, Prentice Hall, Upper Saddle
River, NJ.

[37] Hannemann, J., Kiczales, G., 2002. Design pattern
implementation in Java and AspectJ, in: OOPSLA
‘02, ACM Press, New York, NY.

[38] Zakaria, A.A., Hosny, H., 2003. Metrics for aspect-
oriented software design, in: Third International
Workshop on Aspect Oriented Modeling at
International Conference on Aspect-Oriented
Software Development, ACM Press, New York,
NY.

[39] Wilking, D., Khan, U.F., Kowalewski, S., 2007. An
empirical evaluation of refactoring, e-Informatica
Software Engineering Journal, 1(1).

[40] Bourqun, F., and Keller, R.K., 2007. High-impact
refactoring based on architecture violations, in:
Conference on Software Maintenance and
Reengineering - CSMR , pp. 149-158.

[41] Thomas, W., Delis, A., Basili, V.R., 1997. An
analysis of error in a reuse-oriented development
Environment. Journal of Systems and Software,
38(3), 1997.

[42] Chen, C.-T., Cheng, Y.C., Hsieh, C.Y., Wu, I.-L.,
2009. Exception handling refactorings: Directed by
goals and driven by bug fixing, Journal of Systems
and Software, 82(2), pp. 333-345.

[43] Murphy, G.C., Walker, R.J., Baniassad, E.L.A.,
Robillard, M.P., Lai, A., Kersten, M.A., Does
aspect-oriented programming work?
Communications of the ACM, 44(10), pp. 75-77.

[44] Greenwood, P., Bartolomei, T., Figueiredo, E.,
Dosea, M., Garcia, A., Cacho, N., Sant’Anna, C.,
Soares, S., Borba, P., Kulesza, U., Rashid, A., 2007.
On the impact of aspectual decompositions on
design stability: an empirical study, in: Ernst, E.
(Ed.), ECOOP 2007: LNCS, vol. 4609, Springer,
Heidelberg, pp. 176 - 200.

[45] Kellens, A., Mens, K., Tanella, P., 2007. Survey of
automated code-level aspect mining Techniques, in:
Rashid, A., Aksit, M. (Eds.), AOSD IV: LNCS 460,
Springer, Heidelberg, pp. 14-162.

[46] Binkley, D., Ceccato, M., Harman, M., Tonella, P.,
2006. Tool supported refactoring of existing object-
oriented code into aspects, IEEE Transactions on
Software Engineering.

[47] Colyer, A., Clement, A., 2004. Large-scale AOSD
for middleware. in: Proceedings of the 3rd
international conference on Aspect-oriented
software development (AOSD '04). ACM Press,
New York, NY, pp. 56-65.

[48] Filho, F.C., Rubira, C.M., Maranhão Ferreira, R.,
Garcia, A., 2006. Aspectization of exception
handling: A quantitative study, in:Advanced Topics
in Exception Handling Techniques: LNCS vol.
4119, Springer, Heidelberg, pp. 255-274.

[49] Lippert, M., V. Lopes, C., 2000. A study on
exception detection and handling using aspect-
oriented programming, in: International Conference
Software Engineering (ICSE 2000), ACM Press,
New York, NY, pp. 418-427.

[50] Tsang, S.L., Clarke, S., Baniassad, E., 2004. An
evaluation of aspect-oriented programming for
Java-based real-time systems development, in: 7th
IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, IEEE Press,
New York, NY, pp. 291-300.

[51] Sullivan, K.J., Griswold, W.G., Song, Y., Cai, Y.,
Shonle, M., Tewari, N., Rajan, H., 2005.
Information hiding interfaces for aspect-oriented
designs, in: 10th European Software Engineering
Conference, ACM Press, New York, NY, pp. 166–
175.

[52] Zhang, C., Jacobsen, H., 2004. Resolving feature
convolution in middleware systems, SIGPLAN

ASPECT-ORIENTED REENGINEERING OF… Informatica 35 (2011) 499–511 511

Notices, 39(10), ACM Press, New York, NY, pp.
188–205.

[53] Madeyski, L., Szala, L., 2007. Impact of aspect-
oriented programming on software development
and design quality, IET Software, 1(5), pp. 180-187

[54] Simon, F., Steinbreuckner, F.C., Lewerentz, C.,
2001. Metrics based refactoring. in: European
Conference on Software Maintenance and
Reengineering, pp. 30-38.

[55] Cole, L. Borba, P., 2005. Deriving refactorings for
AspectJ, in: AOSD IV, ACM Press, New York,
NY, pp. 123-134.

[56] Ceccato, M., Marin, M., Mens, K., Moonen, L.,
Tonella, P., Tourwe, T., 2005. A qualitative
comparison of three aspect mining techniques, in:
13th International Workshop on Program
Comprehension, IEEE Press, New York, NY, pp.
13–22.

[57] Hannemann, J., Murphy, G., Kiczales, G., 2005.
Role-based refactoring of crosscutting concerns, in:
4th International Conference on Aspect-Oriented
Software Development, ACM Press, New York,
NY, pp. 135 -146.

[58] Beuche, D., Beust, C., in: Colyer, A.M. , Kawakami
Harrop Galvão, R., Johnson, R., Vasseur, A.,
Beuche, D., Beust, C., (Eds.) 2006.
Point/counterpoint, IEEE Software 23(1), pp. 72-
75.

[59] Wiese, D., Meunier, R., 2008. Large-scale
application of AOP in the healthcare domain: A
case study, in: 7th AOSD, ACM Press, New York,
NY.

Web References
1. http://www.eclipse.org/ajdt/
2. http://gef.tigris.org/
3. http://argouml.tigris.org/
4. http://aopmetrics.tigris.org/

512 Informatica 35 (2011) 499–511 A. O'Riordan

