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To obtain a better representation for human detection, edge, color, and texture information have been com-
bined and employed. However, this combination results in an extremely high-dimensional feature space.
The large number of feature descriptors results in expensive feature extraction and requires a dimension
reduction process. Frameworks based on general purpose graphics processing unit (GPU) programming
have been successfully applied in computer vision problems and in this work we model the human detec-
tion problem so that multi-core CPUs and multiple GPU devices can be used to speed-up the process. The
experimental results show significant reduction on computational time when compared to the serial CPU
based approach.

Povzetek: Članek obravnava prepoznavanje ljudi na slikah s pomočjo grafičnega procesorja.

1 Introduction
Human detection is a topic of interest in computer vision
since people’s locations play an important role in applica-
tions such as human-computer interaction and surveillance.
However, detecting humans in single images is a challeng-
ing task due to both inter- and intra-person occlusion and
variations in illumination and individual’s appearances and
poses.

There are two main approaches to human detection:
part-based [15, 8, 6] and subwindow-based [1, 2, 16]. The
first class of methods consists of a generative process where
parts of the human body are combined according to a prior
model. The latter class of methods aim at effectively de-
ciding if a human is located in a window by combining
low-level features extracted from subwindows (or blocks).

The work of Dalal and Triggs [2] obtained high detection
rates employing histograms of oriented gradients (HOG) as
feature descriptors. Subsequent improvements in human
detection have been achieved mostly by using combina-
tions of low-level descriptors [7, 9, 16, 18]. A strong set
of features provides high discriminatory power.

Edge, color and texture information are among the char-
acteristics able to distinguish between humans and back-
ground [13]. These clues can be captured by low-level
descriptors: the original HOG descriptors with additional
color information, called color frequency, and features
computed from co-occurrence matrices.

To allow more location and pose flexibility within the
detection window and to capture information at different
scales, features are extracted at different sizes, using over-
lapping blocks.

In order to augment the information of edge-based fea-

tures, we combine the original HOG with features provid-
ing texture and color information. Texture is measured us-
ing classical co-occurrence matrices [4], which have been
used previously for texture classification. To capture color
information we use a simple color extension of HOG fea-
tures, called color frequency. A consequence of augment-
ing the HOG features with color and texture features is an
extremely high-dimensional feature space.

Even though good results can be achieved using the de-
scribed feature combination (as we will show in the exper-
iments), the computational cost is directly influenced by
the large number of features considered; therefore, feature
extraction and dimensionality reduction become very ex-
pensive processes and need to be optimized.

GPU devices have become a powerful computational
hardware for a given price and multiple of such devices
may be attached to a single computer. This results in a pow-
erful computational tool when the application can be split
in several independent parts suitable to run in parallel. The
subwindow-based approach for human detection is suitable
for GPU implementation since the detection windows for
different regions in the image are independent and therefore
can be considered in parallel. Therefore, this work models
the human detection problem so that multi-core CPUs and
multiple GPU devices can be used to speed-up the process.

This paper is organized as follows. Section 2 describes
works related to the proposed one. Section 3 describes the
serial approach for the problem of human detection. Then,
in Section 4 we present the proposed parallel approach for
the problem. Experimental results comparing the serial and
parallel approaches are shown in Section 5. Finally, Sec-
tion 6 concludes with some final remarks.
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2 Related Work
Frameworks based on general purpose GPU programming
have been applied in computer vision problems and have
provided high performance computation in problems such
as feature tracking and matching [14], real-time stereo [5,
19], background subtraction [3], and motion detection [20].

To speed-up the detection process, we design the hu-
man detector implementation in such a way that we are
able to exploit parallel computational power provided by
multi-core CPUs and GPU devices. Our design also avoids
redundant computation of features shared by different de-
tection windows. As demonstrated in the experimental re-
sults, the proposed approach leads to a significant reduction
on the computational time.

Figure 1: Serial approach. For each detection window
in the image, features extracted using feature combina-
tion concatenated and analyzed by the partial least squares
(PLS) model to reduce dimensionality, resulting in a low
dimensional vector. Then, quadratic discriminative analy-
sis (QDA) is used to classify this vector as either human or
non-human. Finally, the probability of the detection win-
dow be classified as a human is output.

The work developed by Zhang and Nevatia [21] also uses
GPU for human detection. However, they do not exploit
the computational power of the multiple cores available in
nowadays CPUs and the availability of multiple GPU de-
vices attached to the computer, as we propose in this work.
In addition, since Zhang and Nevatia implement the work
proposed in [2], only features based on HOG are imple-
mented, which leads to poor results (as it will be shown in
the experimental results).

3 Serial Approach
In this section we review the serial approach for human
detection, based on the work of Schwartz et al. [13]. The
diagram shown in Figure 1 illustrates the steps of the serial
approach for human detection. We decompose a detection
window, di, into overlapping blocks and, extracting a set of

features for each block, we construct the feature vector vi,
describing di.

3.1 Feature Extraction

To capture texture, features extracted from co-occurrence
matrices are used [4]. These matrices provide informa-
tion regarding homogeneity and directionality of patches,
which are important in human detection once a person
tends to wear clothing composed of homogeneous textured
regions and there is a significant difference between the
regularity of clothing texture and background textures.

Edge information is captured using histogram of ori-
ented gradients, which captures gradient structures that are
characteristic of local shape [2]. In HOG, the orientation of
the gradient for a pixel is chosen from the color band cor-
responding to the highest gradient magnitude. Some color
information is captured by the number of times that each
color band is chosen. A three bin histogram is build to tab-
ulate the number of times that each color band is chosen.
This feature is called color frequency [13].

3.2 Dimensionality Reduction

To handle the high dimensionality resulting from the com-
bination of features, a statistical method called partial least
squares (PLS) [17] is employed as a linear dimensionality
reduction technique. PLS provides dimensionality reduc-
tion for even hundreds of thousands of variables, account-
ing for class labels in the process.

The basic idea of PLS is to construct a set of projec-
tion vectorsW = {w1,w2, . . .wp} given the standardized
data summarized in the matrix X of descriptor variables
(features) and the vector y of response variables (class la-
bels). The objective of the procedure is to derive a small,
relevant set of latent variable vectors that captures the in-
formation inherent in the matrix X of descriptor variables
in a compact form [12].

The dimensionality reduction is performed by projecting
the feature vector vi extracted from a detection window
di onto the latent vectors W = {w1,w2, . . .wp}. Vector
zi (1 × p) is obtained as a result. This vector is used in
classification.

3.3 Classification

Once the feature extraction process is performed for all
blocks inside a detection window di, features are concate-
nated creating an extremely high-dimensional feature vec-
tor vi. vi is then projected onto set of latent variables W
resulting in a low dimensional vector zi. For each vec-
tor zi, we use quadratic discriminant analysis to estimate
probabilities for the two classes, human and non-human.

PLS tends to produce latent vectors that provide an ap-
proximately linear separation of the two classes. This en-
ables us to use simple classifiers, such as QDA. Figure 2
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Figure 2: First two components of zi obtained from pro-
jecting feature vectors into latent vectors for human and
non-human classes. It is possible to see the clear separa-
tion between both classes provided by PLS used as a linear
dimensionality reduction technique.

shows the first two components of vectors zi for the dif-
ferent classes extracted from the training data. We see that
the classes do not overlap much, even in a 2-dimensional
projection space. One of the advantages of using a simple
classifier as QDA is that the computational time to perform
the classification task is very low.
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Figure 3: Parallel approach. Processing modules are exe-
cuted simultaneously in CPU and GPU devices. Data struc-
tures used in co-occurrence and HOG methods are created
in CPU. Such structures are used during the feature extrac-
tion and dimensionality reduction process performed on
GPU. Finally, the low dimensional features resulting from
multiple GPUs for each detection window are combined
and classified.

4 Parallel Approach
Designs like the one illustrated in Figure 1 are not able to
take advantage of the full computational power provided
by current computers. Therefore, it is of interest to design
a detection approach that accomplishes the same task in a
parallel fashion.

To exploit parallelism, we propose the approach illus-
trated in Figure 3. This design distributes the processing
among the CPU and GPU devices available in the system
to reduce the idle time of the processors. In the follow-
ing subsections we describe the modules composing this
approach.

4.1 Data Structure Creation
Before performing feature extraction, some data structures
need to be created for each input image. Integral his-
tograms are created for HOG and matrices for the co-
occurrence methods.

Once the time to create the data structures is substan-
tially smaller than the feature extraction and dimensionality
reduction (as we will show in the experiments), these two
set of operations may be decoupled and executed in parallel
increasing the use of the computational resources. The data
structure creation is performed on the CPU and the fea-
ture extraction and dimensionality reduction on the GPU.
To synchronize between these devices, we add a queue so
that once the data structures are created for an image, they
are stored in the queue until the GPU devices become avail-
able to process that particular image.

4.2 Feature Extraction and Dimensionality
Reduction

In the serial approach, a detection window is decomposed
into overlapping image blocks from which are extracted
features to compose a feature vector. Since features for
different image blocks can be extracted independently and
a linear technique is used for dimensionality reduction, we
can exploit the multiprocessors available in GPUs to extract
features and reduce the dimensionality of multiple image
blocks simultaneously, then, at the end, combine the re-
sults to obtain a low dimensional feature vector to describe
a detection window.

In the GPU device, each multiprocessor consists of a
set of scalar processor cores and employs an architec-
ture called SIMT (single-instruction, multiple-thread). The
multiprocessor maps each thread to one scalar processor
core, and each scalar thread executes independently with its
own instruction address and register state. The implemen-
tation in this work uses the parallel computing architecture
developed by NVIDIA called Compute Unified Device Ar-
chitecture (CUDA) [11]. The extensions to C programming
language provided by CUDA allow that general-purpose
computation be performed in GPUs in a well-defined and
structured manner.
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To exploit the set of multiprocessors in a GPU, several
image blocks are processed simultaneously. This way, the
input of each GPU is a range of image blocks that need to
be processed and the intermediate results of feature extrac-
tion and dimensionality reduction are stored in an array f
containing an entry for each detection window in the cur-
rent image. f is indexed by the detection window index,
e.g. f i represents low dimensional features for the i-th de-
tection window. At the end, the results obtained from all
GPUs are combined so that the detection windows can be
classified.

Algorithm 5 Steps performed for each GPU.
Input: set of blocks {bi, bi+1, . . . , bj}.

launch simultaneously GPU processes to extract features
and reduce dimensionality of all image blocks bk ∈ {bk :
k = i, . . . , j}

Output: array f containing low dimensional feature vec-
tors for each detection window in the image.

Algorithm 5 describes the steps for each GPU device
used during human detection. According to this algo-
rithm, the feature extraction and dimensionality reduction
are scalable with the number of GPU devices available
since the image blocks can be divided among the devices
and their processing is independent.

Algorithm 5 launches a multithread process to extract
feature for each image block. Then, the dimensionality
reduction for all detection windows sharing that specific
block is performed. Once we use a sliding window to
search for humans, one image block may be shared by
several detection windows. The dimensionality reduction
needs to be performed for each one of these detection win-
dows. We describe this process as follows.

Given a image block bk, features are extracted using co-
occurrence, HOG and color frequency methods and a fea-
ture vector vk is composed. Let lk = {dk,0, dk,1, . . . , dk,l}
be the set of detection windows sharing the image block
bk. We project vk onto latent vectors (learned using PLS)
corresponding to each detection window dk,j . This com-
putes the contribution of features extracted from bk to the
detection window dk,j . Finally, we add this contribution to
fdk,i

, position corresponding to low dimensional feature
vector for detection window dk,j . Algorithm 6 shows the
steps performed to process each image block assigned by
algorithm 5.

Since the last step of Algorithm 6 adds the contribu-
tion of each image block to a detection window and multi-
ple image blocks are processed simultaneously, two mul-
tithread processes may write at the same position of f
at once. To prevent this behavior without incurring un-
wanted overhead, the image blocks are sorted so that dif-
ferent blocks being processed at the same time do not share
a common detection window.

Algorithm 6 Steps to process each image block.
Input: image block bk, list lk of detection windows shar-

ing block bk, projection vectors of PLS model for dimen-
sionality reduction.
vk ← co-occurrence, HOG and color frequency features
extracted from image block bk.
for each detection window dk,j ∈ lk do

load projection vectors for block bk for detection win-
dow dk,j
project vk onto projection vectors
add projection result to fdk,j

end for

4.3 Classification

Once the feature extraction and dimensionality reduction
is finished for an image, classification is performed. This
module is performed on the CPU because results (low di-
mensional feature vectors from GPUs) need to be com-
bined prior to the classification. Additionally, due to the
asynchronism between the CPU and GPU devices, queues
store the low dimensional feature vectors outputted from
each GPU device. After that, the feature vectors corre-
sponding to an image are added and then the classification
is performed resulting in a probability map for each image.

The addition of queues in the process also allows the use
of heterogeneous GPU devices, e.g. GPU models present-
ing different computational power.

5 Experimental Results

Implementation Details For the INRIA Person
dataset [2], the setup of the feature extraction proposed
in [13] is used, as described as follows. The co-occurrence
features use block sizes of 16 × 16 and 32 × 32 with
strides of 8 and 16 pixels respectively. The color space
is converted to HSV and for each color band, 12 features
are extracted from co-occurrence matrices created for each
one of the four directions. The displacement considered is
1 pixel and each color band is quantized into 16 bins. The
described setup results in 63, 648 features.

For HOG feature extraction blocks with sizes ranging
from 12×12 to 64×128 are considered, resulting on 2, 748
blocks. For each block, 36 features are extracted, resulting
in a total of 98, 928 features. In addition, the same set of
blocks is employed to extract features using the color fre-
quency method. This results in three features per block,
and the total number of resulting features is 8, 244. Con-
sidering the aggregation of the three feature channels, the
resulting feature vector extracted from one detection win-
dow contains 170, 820 elements.

Performance of the Serial Approach Initially, we de-
scribe results achieved by the serial detection method in or-
der to show that efforts to obtain a fast implementation are
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Figure 4: Comparison of the serial approach used in the optimization with other methods in multiple human detection
datasets.

worthwhile. We compared its performance to other meth-
ods in the literature using two standard human detection
datasets: the INRIA Person dataset [2] and the Daimler-
Chrysler Pedestrian Classification Benchmark dataset [10].
For the DaimlerChrysler dataset, the number of elements
in the feature vector is reduced due to he smaller size of the
samples.

Figure 4(a) compares results obtained by the serial ap-
proach used in the GPU optimization with works pub-
lished previously. Figure 4(b) compares results obtained
by the serial approach with results reported in [7, 10].
Curves in Figure 4(a) are presented using detection error
tradeoff curves on log-log scales. The x-axis corresponds
to false positives per window (FPPW), defined by False-
Pos/(TrueNeg + FalsePos) and y-axis shows the miss rate,
defined by FalseNeg/(FalseNeg + TruePos). While, curves
in Figure 4(b) show detection rate instead of miss rate on
the y-axis and both axes are shown in linear scales.

For both datasets, the results obtained with the described
feature combination method outperform the other methods
in regions of low false alarm rates, which are considered
important regions for the human detection problem.

In addition, Figure 5 shows results obtained in full im-
ages obtained from the Google images and from the testing
set of the INRIA Person dataset. To be able to detect peo-
ple with different sizes, 11 different scales were considered
for each image. The high number of detection windows
resulting from the multiple-scale detection in each image
also justifies the idea of considering a GPU-based imple-
mentation to speed-up the detection process.

Speed-up To test the performance of the parallel imple-
mentation we conducted experiments using sets of GPU
devices NVIDIA GeForce 9800 GX2 and NVIDIA Tesla
C870. Four GPU devices model GeForce 9800 GX2 were
available in a Intel Core 2 Quad Q9450 2.66GHz with 4GB
of RAM memory and two GPU devices model Tesla C870
were available in an AMD Opteron Dual 2218 2.6GHz with
2Gb of RAM memory. In the experiments we performed

human detection in 100 images with 320×240 pixels using
shift of 4 pixels between consecutive detection windows.

Table 1 shows the computational time obtained by the se-
rial and parallel approaches using GeForce 9800 GX2 GPU
devices. Similarly, Table 2 shows the results obtained using
Tesla C870 GPU devices. Transfer time refers to the time
spent copying data from the CPU to GPU, and vice-versa.
Overhead is the computational time required to cache the
features to be used for different detection windows in the
serial approach. On the serial implementation, the cache is
implemented so that features computed for an image block
are stored to be used subsequently by different detection
windows sharing that block.

According to Tables 1 and 2 we see that the parallelism
between CPU and GPU is being exploited since the data
structure creation time does not contribute significantly to
the total computational cost. In addition, the multiproces-
sors in the GPU allow time reduction during feature extrac-
tion and dimensionality reduction.

The last two rows of tables 1 and 2 show the number of
detection windows processed per second and the speed-up
obtained when compared to the serial approach. Although
the gain in speed is not linearly proportional to the number
of GPUs, due to increasing time to data structure creation
and data transfer, we see significant speed-up when more
GPU devices are added into the system.

6 Conclusions

In this work we described a parallel design exploiting
multi-core CPUs and multiple GPU devices for the human
detection problem. The results have shown that the compu-
tational power of both CPU and GPUs can be exploited to
obtain a faster implementation.

Even though the optimization framework described in
this paper is focused on human detection, it is general
enough to be easily applied to other object detection tasks
relying on sliding detection windows.
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CPU 1 GPU 2 GPUs 3 GPUs 4 GPUs
Data structure creation - 39.86s 41.82s 43.97s 47.42s
Transfer time - 21.27s 23.96s 26.44s 34.83s
Overhead 243.76s - - - -
Feature extraction + dim. reduction 785.58s 394.06s 207.97s 137.56s 112.31s
Total time 1029.34s 418.14s 217.15s 149.19s 128.95s
detections/second 183.44 451.57 869.55 1265.65 1464.41
speed-up 1× 2.4× 4.7× 6.8× 7.9×

Table 1: Computational time and speed-up for serial and parallel approaches using NVIDIA GeForce 9800 GX2.

CPU 1 GPU 2 GPUs
Data structure creation - 66.06s 93.52s
Transfer time - 8.20s 26.87s
Overhead 904.02s - -
Feature extraction + dim. reduction 1897.48s 228.68s 133.29s
Total time 2801.50s 238.02s 164.05s
detections/second 67.40 793.30 1151.01
speed-up 1× 11.7× 17.1×

Table 2: Computational time and speed-up for serial and parallel approaches using NVIDIA Tesla C870.

(a) (b)

(c) (d)

Figure 5: Results obtained in full images containing people of multiple sizes.
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