
https://doi.org/10.31449/inf.v47i6.3712 Informatica 47 (2023) 145–158 145

The Effect of Topic Modelling on Prediction of Criticality Levels of

Software Vulnerabilities

Prarna Mehta1, Shubhangi Aggarwal2, Abhishek Tandon1*

E-mail: pmmphilscholar@gmail.com, shubhagg1206@gmail.com, atandon@or.du.ac.in
1Deparment of Operational Research, University of Delhi, Delhi, India.
2Bhagwan Parshuram Institute of Technology, Delhi.

*Corresponding author

Keywords: software vulnerabilities, topic modelling, machine learning, supervised learning, CVSS, text mining

Received: August 30, 2021

In this day and age, software is an indispensable part of our per diem endeavours, thereby keeping a

check on exploitable vulnerabilities has become a vital function of a software firm. The motivation of

this paper is to have better understanding of vulnerabilities, creating a tool for the industry practitioners

to identify a critical vulnerability that could be detrimental for the firm’s assets. In this article, 1999

vulnerabilities related to Google Chrome was analysed to understand the behaviour of vulnerabilities.

The identification of trends and patterns using topic modelling technique led to extraction of topics. The

extricated topics were then implemented in 10 classifiers to foresee the criticality of the vulnerability.

The resulting performances were also assessed with the classifiers without implementing topic modelling

techniques. A 10-fold validation was conducted on the suggested prediction model.

Povzetek: Metoda za ugotavljanje občutljivosti programske opreme je narejena s pomočjo tem.

1 Introduction

Enslavement towards software has been ferociously

intensifying by leaps and bounds in the present era,

consequently, a call for unswerving software system has

become the need of the hour. The snowballing

complexities in order to meet the demands of user and to

survive in the industry, often escalates the vulnerabilities

in the software. Any software employed in a

project/application is subjected to some inadvertent

shortcomings, in other words vulnerabilities that might

turn out to be a liability. Such exposure encourages an/a

attacker/hacker to disturb the software project/application,

hampering the security of the system. A secure system is,

thus a highly demanded pursuit for a developer as well as

a consumer guaranteeing a smooth working even under

any outbreak. Nevertheless, in order to avoid any attack,

these vulnerabilities have to be deeply analysed by a

software development team in order to fortify a system.

Vulnerabilities in a software project/application liberates

an attacker to squander vital data as well as interfere with

the security. Countless episodes of losses due to

vulnerability attack has been reported causing not only

monetary loss but as well as eminence of a company. For

instance, due to virus, namely, Code Red Worm, a loss of

$2.6 billion was incurred as reported in the study by

(Telang & Wattal, 2007). The National Vulnerability

1 Source:

https://nvd.nist.gov/vuln/search/results?form_type=Basic

&results_type=overview&search_type=all

Database (NVD) aims at amassing statistics on software

vulnerabilities and has a record of 152780 vulnerabilities

till date1. The incidents due to vulnerabilities have been

reported to Computer Emergency Response Team

(CERT) and around 53117 security incidents were

handled by Indian CERT team in the year 2017,

nonetheless, the number hiked to 208456 in 2018 whereas

it was 394499 in 20192. Looking at the alarming rate of

proliferating records on vulnerabilities, it draws attention

of researchers to examine the scenario for the betterment

of the industry.

The risk attached to these software vulnerabilities, given

the fact that gigantic amount of classified data is getting

accrued on the daily basis, if corrective measures not taken

can lead to serious collisions whereas, on the other hand,

mammoth-volume, textual data on vulnerability

accumulating each year needs to be tamed for better

analysis and research in the field of software

vulnerabilities (Malhotra, 2021). Moreover, this gives a

direction to a software maintenance team concentrate on

highly vulnerable part in the software project/application

curtailing false positive as well (Stuckman et al., 2016).

This brings the focus to develop an efficient algorithm that

condenses the corpus as well as converges the limited

resources towards a highly vulnerable part. In this paper,

topic modelling, state of the art technique is deployed to

reduce the textual descriptions into meaningful clusters

2 https://www.cert-in.org.in

https://doi.org/10.31449/inf.v47i6.3712
mailto:pmmphilscholar@gmail.com
mailto:shubhagg1206@gmail.com
mailto:atandon@or.du.ac.in

146 Informatica 47 (2023) 145–158 P. Mehta et al.

called topics. Three different Topic modelling algorithms

were considered for this study, namely Latent Semantic

Indexing (LSI), Latent Dirichlet Allocation (LDiA) and

lastly, Non-Negative Matrix Factorization (NMF), to

asses each of their performance when combined with the

prediction model.

The colossal quantity of vulnerability data can be

reduced by labelling them as critical and non-critical. The

prediction of the criticality of vulnerabilities aids software

maintenance team to drive the limited resources towards

the critical vulnerabilities. However, the vulnerability

prediction model as two aspects to it explicitly, the

features of the vulnerability data and the classifier. For this

study, Logistic Regression (LR), Linear Discriminant

Analysis (LDA), K-Nearest Neighbours (KNN), Decision

Tree (DT), Artificial Neural Network (ANN), Naïve

Bayes’ (NB), Linear Support Vector Machine (LSVM),

Support Vector Machine (SVM), Random Forest (RF),

and lastly, Gaussian Naïve Bayes’ (GNB).

This study is noteworthy for the fact that it helps in

mathematically modelling vulnerability text data, thereby

furnishing with meaningful results obtained empirically.

The core objective of this study is to build a highly

accurate vulnerability prediction model to categorize

vulnerability data into meaningful topics that trains state-

of-the art classifiers to renders enriched prediction model.

In order to achieve this goal, vulnerability data of Google

Chrome, mined from the National Vulnerability Database

(NVD), was pre-processed to configure topics using three

Topic modelling techniques. The deduced topics

contributed as training set for the learning algorithms to

envisage the criticality of the vulnerability identified in

Google Chrome. The models are validated using k-fold

validation technique and compared with prediction model

without considering procuring topics as a feature

reduction scheme. The objectives of the research study is

fulfilled by resolving the following research questions

(RQ) that were investigated in this study,

RQ1. What is the performance of topic modelling when

combined with classifiers?

RQ2. What is the performance of the classifier without

incorporating any of the topic modelling technique?

RQ3. Which of the Machine Learning (ML) classifiers

shows improvement in the performance?

In our knowledge, there has not been any work based on

integration and comparative study of topic modelling

techniques and machine learning classifiers. The dataset

used to perform this study has also not been implemented

in any previous literature. The key contribution

manifested in this research article are, (1) to develop

vulnerability prediction model using different topic

modelling techniques and Machine learning classifiers, (2)

to examine the performance of the developed models (3)

to reconnoitre the effect of not incorporating topic

modelling (4) adding new aspects to the literature for the

experts to benefit from.

The paper is spread over five sections: Past

literature articles are discussed elaborately in section 2, in

order to overcome the research gap, a methodology is

propositioned in section 3, the proposed model is

illustrated and validated in section 4, Threats to internal as

well as external Validity is examined in section 5 and to

sum up the study section 5 concludes the study.

2 Related work

There are plenty of literature on vulnerability prediction in

software project/application using machine learning

techniques as well as feature reduction tools, establishing

suitable results. (Walden et al., 2014) compared the effect

of software metrics with that of bag of words on the

vulnerability prediction model. A lot of work has been

done in other areas of vulnerability like developing

conventional models, optimisation model, release plans,

cost models. (Kansal et al., 2016) developed a

mathematical model for vulnerability detection and a cost

model for patching after the detection. (Zerkane, 2018)

examined the effect of vulnerabilities in software defined

networking using CVSS score. (Kansal et al., 2018) made

an effort of optimising the cost of after release

maintenance issue by combining vulnerability fixing and

fault fixing into single patch.

Many mathematical optimization techniques

have been used to optimally prioritise vulnerabilities.

(Sharma et al., 2019) uses MCDM techniques, namely

VIKOR and TOPSIS to prioritise vulnerabilities. A novel

optimization tool, VULCAN was developed by (Farris et

al., 2018) to manage vulnerabilities with respect to

exposure and remediation. A comparative study between

best worst method and AHP was studied by (Anjum,

Agarwal, et al., 2020), following which, (Anjum, Kapur,

et al., 2020) integrated MCDM and ML technique to

develop bi-objection optimization problem prioritising the

most critical vulnerability. (Narang et al., 2018)

incorporated the effect of software vulnerabilities inter

dependency attribute in prioritising them in accordance to

their critical levels with the help of DEMATEL.

Some Researchers are examining different

feature reduction schemes to enhance the performances of

the vulnerability prediction model. (Stuckman et al., 2016)

examined the influence of dimension reduction techniques

like PCA, Feature Synthesis, and their respective variant,

on foreseeing vulnerabilities located in open source

applications in PHP. (Ji et al., 2018) describes briefly

different technologies implemented along with discussing

pioneer work in the areas of automatic vulnerability

detection, exploitation and patching. (Theisen &

Williams, 2020) have used different software metrics

along with features obtained through text mining and

analysed the performance of Random Forest, Decision

Trees, Logistic Regression and Naive Bayes.

(Kalouptsoglou et al., 2020) develops model using deep

learning and software metrics with promising results

taking into consideration multiple projects for generalised

results. A vulnerability prediction model was developed

by (Filus et al., 2020) using RNN and CNN. An inter-

The Effect of Topic Modelling on Prediction of Criticality… Informatica 47 (2023) 145–158 147

comparative study was performed by (Wu et al., 2017) to

asses deep learning techniques like LSTM, CNN as well

as reviewing the conventional machine learning

techniques. (Shahriar & Haddad, 2016) implemented LSI

to obtain smaller source code causing object injection

vulnerability in a system. (Kudjo et al., 2020) framed a

model using bellwether analysis to select subset for

vulnerability prediction. (Rehurek & Sojka, 2010)

discusses the importance of applying topic modelling

techniques. A framework called SySeVR was developed

by (Li et al., 2021) using deep learning techniques to

identify semantics and syntax characteristics to spot the

vulnerabilities in C/C++ source codes. A correlation was

established between software metrics and the prevailing

vulnerabilities by (Alves et al., 2016) determining answers

to multiple research questions. A complete structure was

suggested by (Kumar & Sharma, 2017) to manage

vulnerabilities in an optimal manner.

3 Proposed methodology

In this section, the framework of the study is explained

step by step as depicted by figure 1. In figure 1, orange

depicts phase 1 that is extraction of vulnerability datasets,

green represents phase 2 that is the extracted dataset is pre-

processed and prepared for further analysis, blue

represents phase 3 that is feature mining and training of

classifiers using tokenised data as well as the generated

topics as features and lastly black represents phase 4

where, the performance of the prediction model is

evaluated.

Exploring huge text data manually is taxing and arduous

job which have greater chances to be erroneous and have

discrepancies whereas shrinking data into relevant topics

with the help of topic modelling can be considered as

solution. Topic modelling is considered to be the most

efficient unsupervised data-mining algorithm,

discovering relationships between text data (Vanamala et

al., 2020). This condenses the dimension of data by

amputating superfluous features that do not weigh in

further analysis. For our analysis, we have considered

three topic modelling algorithms, LSI, LDiA and NMF.

The rudimentary concept behind topic modelling is to

convert large corpus into vectors with the help of term

frequency or inverse term frequency thereby, dividing and

optimized by a probability model or matrix factorization

into topics which is an array of words or tokens.

LSI is a robust topic mining technique, having a knack for

noise resistance and transforming large dimensional

vector spaces to smaller dimensional vector spaces with

the help of singular value decomposition. (Papadimitriou

et al., 2000) endeavours to study the mathematics behind

the LSI performance and its’s ability to divulge in

statistical properties of corpus. LSI and LDiA both have

probabilistic approach where as NMF is a matrix

factorization paradigm that decomposes high dimensional

array to a non-negative and low dimensional one. Non-

Negative being the only criteria, NMF uses term

frequency-inverse document frequency (TF-IDF) whereas

LDiA and LSI uses frequency of bag of words or term

frequency (TF) for feature extraction since the paradigm

reads only positive integer frequencies and not a real

number.

The topics hence generated directs toward

ameliorated results when read as an input by machine

learning classifiers. For the experiment we have selected

10 classifiers that are most commonly used to assess any

suggested model, namely Logistic Regression (LR),

Linear Discriminant Analysis (LDA), K-Nearest

Neighbours (KNN), Decision Tree (DT), Artificial Neural

Network (ANN), Naïve Bayes’ (NB), Linear Support

Extraction of Google
Chrome's Vulnerabilty
data from NVD for all

versions

Preprocessing that
includes removal of
sttopwords, special

characters,
lowercasing,
tokenization.

All tokens act as
feature

Training classifiers
using all features as

input
LR, LDA, KNN, DT,
ANN, NB, LSVM,

SVM, RF, GNB

Assesment of output
using all featuress

Creation of 10 using 3
Topic modelling

techniques,
LDiA, LSI, NMF

Training classifers
using topics as input
LR, LDA, KNN, DT,
ANN, NB, LSVM,

SVM, RF, GNB

Assesment of output
using reduced topics

Did topics yield
improved accuracy of
the prediction model?

Yes, use topics to
predict the criticality
of Google Chrome's

vulnerabilities

No, use all tokens as
features to predict the

criticality of Google
Chrome's

vulnerabilities

Phase 1 Phase 2 Phase 3 Phase 4

Figure 1: A general framework of the proposed study.

150 Informatica 47 (2023) 145–158 P. Mehta et al.

Vector Machine (LSVM), Support Vector Machine

(SVM), Random Forest (RF), and lastly, Gaussian Naïve

Bayes’ (GNB).

By far, there are many evaluation markers to assess

machine learning tools and traditionally ones are True

Positives, True Negatives, False Negatives and False

Positives that form the confusion matrix. In this study, the

performance of the 10 classifiers were assessed with the

help of Accuracy, F-measure, Recall and Precision. These

measure were well explained by (Bulut et al., 2019) in

their corresponding study and mostly used in past

literature (Dam et al., 2016; Theisen & Williams, 2020).

4 Numerical analysis

4.1 Data collection

For the numerical, a dataset of 1999 vulnerabilities

captured in Google’s product “chrome” was collected

manually from National Vulnerability Database (NVD).

Google Chrome web application was chosen because its

abundantly utilized web browser in the market

(http://www.netmarketshare.com) for e-banking, social

media, information sharing, consequently making it

highly exploitable application to access sensitive data of a

user. Additionally, many researchers have used google

chrome to conduct their respective experiment, for

instance, (Kudjo et al., 2020; Nguyen et al., 2016;

Roumani et al., 2015).

The data consists of Vulnerabilities Ids, Summary of the

vulnerabilities and CVSS Severity for all the versions

(more than 20 available). The CVSS is computed in two

ways, CVSS 3.0 and CVSS 2.0. For our analysis, the latter

score has been considered, since the score value and the

severity level were available for all listed vulnerabilities.

The CVSS score quantities the criticality of a vulnerability

numerically between 1 to 10. The criticality level of the

stated vulnerabilities was tagged into three categories,

namely, High, Medium and Low. For easy computation

and binary classification, the medium severity level was

united with Low severity level as non-critical

vulnerabilities, whereas High severity level was termed as

critical vulnerability. Table 1 describes the dataset.

Table 1: Description of vulnerability dataset.

Project Google Chrome

No. of Vulnerabilities 1999

Range of years 2021-2011

Versions <20

No. of critical Vulnerabilities 510

No. of Non-critical

Vulnerabilities

1489

4.2 Data pre-processing

Subsequently, the vulnerability description is mined to

extract useful information with the help of pre-processing

methods, thereby optimising the results. Special

characters, punctuation, blank spaces occupy memory

spaces as well as hamper the result of the experiment,

hence removing such irrelevant information acts as a

corrective measure (Vijayarani et al., 2015). Next, with the

help of Python packages, Natural Language Toolkit

(NLTK) and pandas, the words more than 3 letter in the

vulnerability description column were retrieved in

lowercase, replacing other special characters by a blank

space, the stop words were eliminated and each document

was tokenized into list of words for further experiment.

The other packages put to use were ‘numpy’ and

‘matplotlib’ for data management and visualization

whereas ‘sklearn’ library abetted in importing TFIDF and

Count vectorizer for feature extraction, LDiA, LSI and

NMF for topic modelling and lastly, machine learning

classifiers to determine the criticality of the

vulnerabilities.

4.3 Topic modelling

The list of words or token obtained after pre-processing

vulnerability data is considered as features of the

respective study. The description of each vulnerability is

converted to their respective feature vector that stores

frequency of each token in a particular vulnerability

document. Following which, Count Vectorizer and TF-

IDF screens these features further by assigning a weight

of importance. This not only resolves the tedious job to

handle large corpus but also cuts down the expense

involved and the computation time.

To improve the performance of the prediction models, all

the vulnerability documents are iterated to capitulate

unique tokens as dictionary or bag-of-words. The subset

of 100 words was considered as input for LDiA, LSI and

NMF topic models along with number of topics as 10. The

number of words and topics was chosen as it is observed

to work well in the past literature (Dam et al., 2016;

Mounika et al., 2019; Vanamala et al., 2020). Each topic

created using topic modelling

techniques is a linear combination of unique words and

their respective weightage. For example, Topic

0 obtained from LSI topic modelling technique is

represented as:

[('remote' * 0.4358473796441817) + ('crafted' *

0.3319362678157508) + ('attacker' * 0.3159864058882791) +

('allowed' * 0.31502006087883194) + ('prior' *

0.31419760562296395) + ('html' * 0.26029878325415207) +

('page' * 0.25179755400065057) + ('potentially' *

0.14941933391958886) + ('attackers' * 0.14537824144767378)

+ ('allows' * 0.12949807741439195)]

https://netmarketshare.com/?options=%7B%22filter%22%3A%7B%22%24and%22%3A%5B%7B%22deviceType%22%3A%7B%22%24in%22%3A%5B%22Desktop%2Flaptop%22%5D%7D%7D%5D%7D%2C%22dateLabel%22%3A%22Trend%22%2C%22attributes%22%3A%22share%22%2C%22group%22%3A%22browser%22%2C%22sort%22%3A%7B%22share%22%3A-1%7D%2C%22id%22%3A%22browsersDesktop%22%2C%22dateInterval%22%3A%22Monthly%22%2C%22dateStart%22%3A%222019-11%22%2C%22dateEnd%22%3A%222020-10%22%2C%22segments%22%3A%22-1000%22%7D

The Effect of Topic Modelling on Prediction of Criticality… Informatica 47 (2023) 145–158 151

From the above equation, it can be noted that the tokens:

“remote, crafted, attacker, allowed, prior, html, page,

potentially, attackers, allows” conjointly form Topic 0

as conferred by LSI topic modelling result. The numerical

part attached to each token in Topic 0 signifies the

weightage of the word in the respective topic. The topics

created by LSI, LDiA and NMF and each token’s relative

importance in their respective topics is depicted in figure

2, 3 and 4.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

0 0.1 0.2 0.3 0.4 0.5

remote

crafted

attacker

allowed

prior

html

page

potentially

attackers

allows

Topic 1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

attackers

cause

denial

service

allows

unspecified

possibly

impact

vectors

remote

Topic 2

0 0.05 0.1 0.15 0.2 0.25 0.3

policy

insufficient

bypass

enforcement

origin

data

domain

allows

extension

remote

Topic 3

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

allows

remote

used

function

blink

attackers

properly

core

heap

bypass

Topic 4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

bounds

windows

perform

linux

memory

read

android

domain

file

pdfium

Topic 5

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

extension

policy

heap

user

file

insufficient

convinced

enforcement

malicious

install

Topic 6

0 0.1 0.2 0.3 0.4 0.5 0.6

free

vulnerability

domain

related

perform

omnibox

allows

spoofing

extension

handling

Topic 7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

process

memory

bounds

information

potentially

renderer

obtain

sensitive

free

sandbox

Topic 8

152 Informatica 47 (2023) 145–158 P. Mehta et al.

(i)

(j)

 Fig 2: Relative importance of tokens in respective topics when LSI was performed.

(a)

(b)

(c)

(d)

(e)

(f)

0 0.1 0.2 0.3 0.4 0.5 0.6

windows

linux

android

free

blink

vulnerability

bypass

html

policy

impact

Topic 9

0 0.1 0.2 0.3 0.4

vectors

properly

remote

allows

unspecified

bypass

attackers

related

corruption

arbitrary

Topic 10

0 50 100 150 200 250

attacker

remote

crafted

prior

allowed

html

page

incorrect

omnibox

spoof

Topic 1

0 5 10 15 20 25 30 35

audio

race

condition

local

files

crash

html

prior

attacker

allowed

Topic 2

0 20 40 60 80 100 120 140

file

pdfium

video

image

files

read

crafted

write

remote

related

Topic 3

0 50 100 150 200 250

bounds

remote

crafted

allowed

attacker

prior

perform

memory

read

html

Topic 4

0 200 400 600 800 1000 1200

attackers

allows

remote

cause

service

denial

unspecified

possibly

vectors

impact

Topic 5

0 50 100 150 200 250 300 350

corruption

heap

potentially

allowed

attacker

prior

crafted

remote

exploit

html

Topic 6

The Effect of Topic Modelling on Prediction of Criticality… Informatica 47 (2023) 145–158 153

(g)

(h)

(i)

(j)

 Fig 3: Relative importance of tokens in respective topics when LDA was performed.

(a)

(b)

(c)

(d)

0 20 40 60 80 100 120 140 160

overflow

buffer

integer

heap

based

products

used

function

issue

data

Topic 7

0 50 100 150 200 250

remote

crafted

policy

html

attacker

allowed

prior

page

bypass

insufficient

Topic 8

0 20 40 60 80 100 120 140

extension

user

extensions

allowed

prior

convinced

crafted

attacker

malicious

install

Topic 9

0 50 100 150 200 250 300

windows

linux

android

attack

inject

arbitrary

blink

uxss

incorrectly

pages

Topic 10

0 0.5 1 1.5 2 2.5

heap

exploit

corruption

potentially

page

html

attacker

allowed

prior

crafted

Topic 1

0 0.5 1 1.5 2

vulnerability

unspecified

possibly

impact

service

denial

cause

allows

vectors

free

Topic 2

0 0.5 1 1.5 2

policy

insufficient

bypass

enforcement

origin

html

page

allowed

attacker

prior

Topic 3

0 0.5 1 1.5 2 2.5 3

bounds

read

memory

perform

access

write

skia

properly

service

denial

Topic 4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

multiple

allow

vulnerabilities

unknown

impact

unspecified

possibly

vectors

service

denial

Topic 5

0 0.5 1 1.5 2

omnibox

domain

spoof

incorrect

contents

spoofing

prior

attacker

allowed

crafted

Topic 6

154 Informatica 47 (2023) 145–158 P. Mehta et al.

(e) (f)

(g)

(h)

(i)

(j)

 Figure 4: Relative importance of tokens in respective topics when NMF was performed.

From fig 2 (a)-(j), the tokens: “remote, attackers, policy,

allows, bounds, extension, free, process, windows,

vendors” in the respective topics have the highest

weightage ranging between 0.285 and 0.526 when LSI

was performed. The most influencing tokens in respective

topics as depicted in fig 3(a)-(j) obtained from LDA were

“attacker, audio, file, bounds, attackers, corruption,

overflow, remote, extension, windows”. Lastly, from

NMF analysis, tokens “heap, vulnerability, policy,

bounds, multiple, omnibox, process, windows,

extension, used” weighed the most in their corresponding

topic clusters.

4.4 Evaluations

RQ1. What is the performance of topic modelling when

combined with classifiers?

The results of topics extracted and used as input for the 10

classifiers is given by table 2. From the table, it can be

observed that when LR, KNN, DT, ANN, NB, RF and

GNB combined with LSI gives an accuracy level of

0.8175, 0.82, 0.8025, 0.8175, 0.7975, 0.8175 and 0.7975

respectively. NMF combined with LDA, LSVM and SVM

gives an accuracy level of 0.8275, 0.82, and 0.785. Lastly,

it can be observed that LDiA has the poorest performance

when combined the 10 classifiers with the accuracy level

ranging between 0.7175 and 0.7525. A pictorial

representation of accuracy levels of all classifiers with

respect to topic modelling technique is given by figure 5.

From figure 6 and table 2, F1- measure can be analysed

for different classifiers subject to a given topic modelling

technique. Classifiers with LDiA has overall same level of

F1-measure except for the classifier KNN that shows

highest level of F1-measure at 0.7269. On the other hand,

LSI’s performance with the classifiers has an average F1-

measure around 0.8 with highest at 0.8206 for ANN

classifier and lowest for SVM at 0.7415. Last of all, NMF

with the classifiers depicts a mixed performance of F1-

measure ranging between the lowermost at 0.6462 for NB

and reaching the peak at 0.8225 for LDA.

Lastly, the tabular results of performance measures, Recall

and Precision are given by table 2 and line diagram given

by figure 7 and figure 8. Classifier GNB with topic

modelling technique, NMF results in lowest recall value

at 0.6925 whereas lowermost recall value for classifier

SVM with LSI was 0.7225, and lastly for classifier DT

with LDiA, it was 0.7175. However, NB with the topic

modelling technique NMF has the lowest Precision value

at 0.5662, classifier DT with topic modelling technique

LSI has the lowest precision value at 0.8005, but multiple

classifiers had poor Precision value with LDiA at 0.5663.

A low recall and high precision value imply how

accurately the model is returning positive predicted value.

For all the low recall values recorded, it was observed that

they had more or less high precision values implying that

the suggested model labels a critical vulnerability

correctly, however the number of false negatives is high

due to high precision which indicates that the model is

sometimes missing out critical vulnerabilities. In general,

one cannot help put notice, the opposite behaviour of F1-

measure and precision, whereas accuracy is in parallel

with recall implying the goodness fit of the proposed

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

process

sandbox

renderer

compromised

escape

potentially

perform

page

html

allowed

Topic 7

0 0.5 1 1.5 2 2.5 3

windows

linux

android

arbitrary

file

attacker

allowed

prior

incorrectly

pdfium

Topic 8

0 0.5 1 1.5 2 2.5

extension

user

convinced

install

malicious

extensions

enforcement

insufficient

devtools

prior

Topic 9

0 0.5 1 1.5 2 2.5

used

function

blink

allows

core

attackers

properly

cause

remote

denial

Topic 10

The Effect of Topic Modelling on Prediction of Criticality… Informatica 47 (2023) 145–158 155

model. But from the results it was also noted that many

classifiers had a high recall and high precision values

signifying the fact that the model was accurately labelling

a critical vulnerability.

 Table 2: Output of classifiers’ performance measures.

NMF LSI LDiA

Classifiers

' Name Precision Recall F1-Score Acc. Precision Recall F1-Score Acc. Precision Recall
F1-

Score
Acc.

 0.7451 0.77 0.7419 0.772 0.8194 0.817 0.8184 0.8175 0.5663 0.752 0.646 0.7525 LR

 0.8204 0.82 0.8225 0.827 0.8173 0.812 0.8146 0.8125 0.5663 0.752 0.646 0.7525 LDA

 0.7982 0.79 0.7978 0.797 0.8213 0.82 0.8206 0.82 0.7193 0.745 0.726 0.745 KNN

 0.7729 0.78 0.7759 0.78 0.8005 0.802 0.8015 0.8025 0.6593 0.717 0.674 0.7175 DT

 0.8005 0.80 0.8015 0.802 0.8251 0.817 0.8206 0.8175 0.5663 0.752 0.646 0.7525 ANN

 0.5662 0.75 0.6462 0.752 0.8257 0.797 0.8061 0.7975 0.5663 0.752 0.646 0.7525 NB

 0.8128 0.82 0.8152 0.82 0.8194 0.817 0.8184 0.8175 0.5663 0.752 0.646 0.7525 LSVM

 0.7636 0.78 0.7535
0.785

0.8326 0.722 0.7415 0.7225 0.5663 0.752 0.646 0.7525 SVM

 0.7584 0.78 0.7380 0.78 0.8125 0.817 0.8145 0.8175 0.5663 0.752 0.646 0.7525 RF

 0.8271 0.692 0.7133 0.69 0.8257 0.797 0.8061 0.7975 0.6682 0.747 0.660 0.7475 GNB

RQ2. What is the performance of the classifier without

incorporating any of the topic modelling technique?

The line graph illustrated by figure 5, 6, 7, 8 represents the

accuracy, F1-measure, Recall and Precision levels for

classifier when using topic modelling techniques and

without topic. Modelling techniques. Even though

accuracy level is oscillating between 0.71 and 0.89

whereas F-measure fluctuating between 0.7203 and

0.8904, it can be observed that the classifiers mostly show

high precision and high recall values except for the

classifier LDA. A high recall indicates that the model is

predicting a vulnerability as non-critical but a critical

vulnerability is not labelled as non-critical. However, high

precision value with high recall is considered as perfect

combination since the model results in high number of true

positives implying that the critical vulnerabilities are

predicted correctly.

Figure 5: Comparative study of TP vs without TP using

accuracy.

Figure 6: Comparative study of TP vs without TP using

F1 score.

Figure 7: Comparative study of TP vs without TP using

recall.

Figure 8: Comparative study of TP vs without TP using

precision.

0.67

0.72

0.77

0.82

0.87

0.92

LR LDA KNN DT ANN NB LSVM SVM RF GNB

LDiA LSI NMF Without TP

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

LR LDA KNN DT ANN NB LSVM SVM RF GNB

LDiA LSI NMF Without TP

0.67

0.72

0.77

0.82

0.87

0.92

LR LDA KNN DT ANN NB LSVM SVM RF GNB

LDiA LSI NMF Without TP

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

LR LDA KNN DT ANN NB LSVM SVM RF GNB

LDiA LSI NMF Without TP

156 Informatica 47 (2023) 145–158 P. Mehta et al.

RQ3. Which of the Machine Learning (ML) classifiers

shows improvement in the performance?

Looking at the figures 5,6,7,8 and table 2, the Machine

learning classifier GNB performs the best when combined

with topic modelling technique LSI and machine learning

classifier LDA performs best

when combined with topic modelling technique NMF.

While other classifiers for the given dataset show no sign

of improvement when the features are reduced and

combined into topics. The reason behind no improvement

is simply due to over estimation while using topic

modelling techniques.

4.6 Model validation

In order to study the impact of features extracted

mechanically by topic modelling techniques on 10

classifiers while developing vulnerability prediction

model, a 10 cross-fold validation experiment was

conducted. The vulnerability dataset was divided into 10

folds: 9 parts as training set while 1 part to test the model.

Hence for each unique topic modelling technique and each

classifier, 10 different performances results were

obtained. Figure 9, 10, 11 depicts the averaged-out

performance measure for each classifier under three

different topic modelling technique. Accuracy was used as

performance measure for this validation experiment.

Figure 9: 10-fold validation for LSI model.

Figure 10: 10-fold validation for NMF model.

Figure 11: 10-fold validation for LDiA model.

From figure 9, it can be noted that vulnerability prediction

model using LSI and ANN outperforms with accuracy

being 0.8555 whereas LSI fused with classifier NB

performs the least with accuracy level at 0.7429, while

other classifiers with LSI performed between the range.

Analysing figure 10, one cannot help but notice the poor

performance of the classifier, GNB with accuracy at

0.7898, on the other hand LDA has the highest accuracy

at 0.8499. Lastly, from figure 11, the accuracy level

ranging between 0.7098 (GNB) and 0.7456 (KNN) for

LDiA is observed. The classifiers, namely ANN, NB,

LSVM, SVM and RF have almost same accuracy level as

0.7429. Overall, after 10-fold validation, LSI is most

impactful feature reduction tool when conjointly

performed with the machine learning tool, ANN.

5 Threats to validity

A Pragmatic study can be intimidated by number of

limitations internally as well as externally, making it

important to be worth of discussion. While a threat to

internal validity describes the elements that might have an

impact on the study’s output on the other hand a threat to

external validity aims at the generalizing the output. In this

study, the vulnerability description was mined to extract

features and CVSS score to determine the criticality of the

respective vulnerability for the prediction model however,

other factors like CVSS metrics, were not taken into

considerations, which might have an impact on the

performance of the prediction model. Another threat to

internal validity of the study is the vulnerability records

was not documented during the period of this study. A

statistical test was not conducted to verify the statistical

significance of the results which gives a direction for

future work.

Subsequently, the threats to external validity in this study

was the dataset was limited to one project which cannot

infer generalized results for other datasets, adding

biasness to the output. The reason behind this is that a

vulnerability of high criticality level is not inevitably of

same criticality in a different project dataset. In this study

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

LR LDA KNN DT ANN NB LSVM SVM RF GNB

0.725

0.745

0.765

0.785

0.805

0.825

0.845

0.865

0.885

0.905

LR LDA KNN DT ANN NB LSVM SVM RF GNB

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

LR LDA KNN DT ANN NB LSVM SVM RF GNB

The Effect of Topic Modelling on Prediction of Criticality… Informatica 47 (2023) 145–158 157

we have worked on a web application’s vulnerability

dataset, but the results may differ for other applications in

written in different languages or Android application. The

performance measures to assess the learning algorithms

for the prediction model were Accuracy, F-measure, recall

and precision, nonetheless there other measures as well for

instance, Area under Receiver operating characteristics

curve, Welch t-test, cliff’s delta effect size etc. For the

empirical results, 10 machine learning algorithms were

deployed, but there are many more algorithms to be

validated for universal result.

6 Conclusion

This study focuses on the impact of topic modelling

techniques on the performances of the classifiers labelling

vulnerabilities as critical or non-critical. The topic

extracted from the vulnerability description condenses the

textual data, thereby captures the significance portion and

eradicating the irrelevant text. In order to perform the

analysis, we have extracted a vulnerability dataset for the

most used web application, Google Chrome. The topics

were generated with the help of three topic modelling

techniques namely, LSI, NMF, LDiA. These spawned

topics were used as input in 10 most commonly used

classifiers. The results of the suggested methodology were

compared with that of the classifiers without integrating

topic modelling inputs.

All in all, one can conclude from the performed

experiment that most of the classifiers perform best when

not combined with topic modelling techniques except for

GNB and LDA. Classifier GNB with LSI has an accuracy

of 0.7975 whereas when LDA performs with NMF has an

accuracy of 0.8275. However, individually considering

the classifiers performance with topic modelling

technique one can state that the performances are at par

excellence.

Future work can be directed toward three courses. Firstly,

the proposed methodology can be validated on software

application database such as PHP application, web

applications, mobile applications and applications from

various fields like finance, education, banking, energy

utility etc. The second direction is incorporating

techniques to balance the datasets. An imbalanced dataset

does not result in high accuracy and performance of the

prediction model. Hence incorporating sampling

techniques can enhance the results. The third approach is

that for this study, the vulnerability description is used to

extract features, but there are multiple factors that improve

and deliver a generalised result.

References

[1] Alves, H., Fonseca, B., & Antunes, N. (2016). Software

metrics and security vulnerabilities: dataset and

exploratory study. 2016 12th European Dependable

Computing Conference (EDCC),

[2] Anjum, M., Agarwal, V., Kapur, P., & Khatri, S. K.

(2020). Two-phase methodology for prioritization and

utility assessment of software vulnerabilities.

International Journal of System Assurance

Engineering and Management, 11(2), 289-300.

[3] Anjum, M., Kapur, P., Agarwal, V., & Khatri, S. K.

(2020). Evaluation and Selection of Software

Vulnerabilities. International Journal of Reliability,

Quality and Safety Engineering, 27(05), 2040014.

[4] Bulut, F. G., Altunel, H., & Tosun, A. (2019).

Predicting software vulnerabilities using topic

modeling with issues. 2019 4th International

Conference on Computer Science and Engineering

(UBMK),

[5] Dam, H. K., Tran, T., & Pham, T. (2016). A deep

language model for software code. in workshop on

Naturalness of Software (NL+SE), co- located with the

24th ACM SIGSOFT International Symposium on the

Foundations of Software Engineering (FSE),

[6] Farris, K. A., Shah, A., Cybenko, G., Ganesan, R., &

Jajodia, S. (2018). Vulcon: A system for vulnerability

prioritization, mitigation, and management. ACM

Transactions on Privacy and Security (TOPS), 21(4),

1-28.

[7] Filus, K., Siavvas, M., Domańska, J., & Gelenbe, E.

(2020). The random neural network as a bonding

model for software vulnerability prediction.

Symposium on Modelling, Analysis, and Simulation

of Computer and Telecommunication Systems,

[8] Ji, T., Wu, Y., Wang, C., Zhang, X., & Wang, Z.

(2018). The coming era of alphahacking?: A survey of

automatic software vulnerability detection,

exploitation and patching techniques. 2018 IEEE third

international conference on data science in cyberspace

(DSC),

[9] Kalouptsoglou, I., Siavvas, M., Tsoukalas, D., &

Kehagias, D. (2020). Cross-project vulnerability

prediction based on software metrics and deep

learning. International Conference on Computational

Science and Its Applications,

[10] Kansal, Y., Kapur, P., & Kumar, D. (2016). Assessing

optimal patch release time for vulnerable software

systems. 2016 International Conference on Innovation

and Challenges in Cyber Security (ICICCS-INBUSH),

[11] Kansal, Y., Kumar, U., Kumar, D., & Kapur, P. K.

(2018). Fixing of Faults and Vulnerabilities via Single

Patch. In Quality, IT and Business Operations (pp.

175-190). Springer.

[12] Kudjo, P. K., Chen, J., Mensah, S., Amankwah, R., &

Kudjo, C. (2020). The effect of Bellwether analysis on

software vulnerability severity prediction models.

Software Quality Journal, 1-34.

[13] Thanh Tung Khuat, My Hanh Le (2016). Optimizing

Parameters of Software Effort Estimation Models using

Directed Artificial Bee Colony Algorithm. Informatica 40

(2016) 427–436

[14] Kumar, M., & Sharma, A. (2017). An integrated

framework for software vulnerability detection, analysis

and mitigation: an autonomic system. Sādhanā, 42(9),

1481-1493.

[15] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., & Chen, Z. (2021).

SySeVR: A framework for using deep learning to detect

software vulnerabilities. IEEE Transactions on

Dependable and Secure Computing.

158 Informatica 47 (2023) 145–158 P. Mehta et al.

[16] Malhotra, R. (2021). Severity Prediction of Software

Vulnerabilities Using Textual Data. Proceedings of

International Conference on Recent Trends in Machine

Learning, IoT, Smart Cities and Applications.

[17] Mounika, V., Yuan, X., & Bandaru, K. (2019). Analyzing

CVE Database Using Unsupervised Topic Modelling.

2019 International Conference on Computational Science

and Computational Intelligence (CSCI),

[18] Narang, S., Kapur, P., Damodaran, D., & Majumdar, R.

(2018). Prioritizing types of vulnerability on the basis of

their severity in multi-version software systems using

DEMATEL technique. 2018 7th International

Conference on Reliability, Infocom Technologies and

Optimization (Trends and Future Directions) (ICRITO),

[19] Nguyen, V. H., Dashevskyi, S., & Massacci, F. (2016).

An automatic method for assessing the versions affected

by a vulnerability. Empirical Software Engineering,

21(6), 2268-2297.

[20] Hrvoje Karna, Sven Gotovac and Linda Vicković (2020).

Data Mining Approach to Effort Modeling on Agile

Software Projects. Informatica 44 (2020) 231–239

[21] Papadimitriou, C. H., Raghavan, P., Tamaki, H., &

Vempala, S. (2000). Latent semantic indexing: A

probabilistic analysis. Journal of Computer and System

Sciences, 61(2), 217-235.

[22] Abhishek Tandon, Neha & Anu G. Aggarwal (2020).

Testing coverage-based reliability modelling for multi-

release open-source software incorporating fault

reduction factor. Cycle Reliab Saf Eng 9, 425–435

(2020). https://doi.org/10.1007/s41872-020-00148-7

[23] Rehurek, R., & Sojka, P. (2010). Software framework for

topic modelling with large corpora. In Proceedings of the

LREC 2010 workshop on new challenges for NLP

frameworks,

[24] Roumani, Y., Nwankpa, J. K., & Roumani, Y. F. (2015).

Time series modeling of vulnerabilities. Computers &

Security, 51, 32-40.

[25] Ouanes Aissaoui, Abdelkrim Amirat and Fadila Atil.

(2014). A Model-Based Framework for Building Self-

Adaptive Distributed Software. Informatica 38 (2014)

289–306.

[26] PK Kapur, Anu G Aggarwal, Abhishek Tandon (2012).

A unified approach for developing two-dimensional

software reliability model. International Journal of

Operational Research Vol. 13, No. 3, pp- 318-337.

[27] Sharma, R., Sibal, R., & Sabharwal, S. (2019). Software

vulnerability prioritization: A comparative study using

TOPSIS and VIKOR techniques. In System performance

and management analytics (pp. 405-418). Springer.

[28] Stuckman, J., Walden, J., & Scandariato, R. (2016). The

effect of dimensionality reduction on software

vulnerability prediction models. . IEEE Transactions on

Reliability, 66(1), 17-37.

[29] Telang, R., & Wattal, S. (2007). An empirical analysis of

the impact of software vulnerability announcements on

firm stock price. IEEE Transactions on Software

engineering, 33(8), 544-557.

[30] Abhishek Tandon, Anu G Aggarwal, Nidhi Nijhawan

(2016). An NHPP SRGM with change point and multiple

releases. International Journal of Information Systems in

the Service Sector (IJISSS), Vol 8 (4), pp: 56-68.

[31] Theisen, C., & Williams, L. (2020). Better together:

Comparing vulnerability prediction models. Information

and Software Technology, 119, 106204.

[32] Vanamala, M., Yuan, X., & Roy, K. (2020). Topic

Modeling and Classification Of Common Vulnerabilities

And Exposures Database. 2020 International Conference

on Artificial Intelligence, Big Data, Computing and Data

Communication Systems (icABCD),

[33] Vijayarani, S., Ilamathi, M. J., & Nithya, M. (2015).

Preprocessing techniques for text mining-an overview.

International Journal of Computer Science &

Communication Networks, 5(1), 7-16.

[34] PK Kapur, RB Garg, Udayan Chanda, Abhishek Tandon

(2010). Development of software reliability growth model

incorporating enhancement of features and related release

policy. International Journal of Systems Assurance

Engineering and Management. Vol (1), pp-52-58.

[35] Walden, J., Stuckman, J., & Scandariato, R. (2014).

Predicting vulnerable components: Software metrics vs

text mining. 2014 IEEE 25th international symposium on

software reliability engineering,

[36] Wu, F., Wang, J., Liu, J., & Wang, W. (2017).

Vulnerability detection with deep learning. 2017 3rd IEEE

International Conference on Computer and

Communications (ICCC),

[37] Zerkane, S. (2018). Security Analysis and Access Control

Enforcement through Software Defined Networks Brest].

[38] Roman Yu. Tsarev, Alexey S. Chernigovskiy, Elena N.

Shtarik and Andrey V. Shtarik (2017). Modular Integrated

Probabilistic Model of Software Reliability Estimation.

Informatica 40 (2016) 125–132.

[39] Kapur, P., Tandon, A., & Kaur, G. (2010). Multi up-

gradation software reliability model. Paper presented at the

2010 2nd International Conference on Reliability, Safety

and Hazard-Risk-Based Technologies and Physics-of-

Failure Methods (ICRESH).

[40] A.G. Aggarwal, N. Gandhi, V. Verma, A. Tandon

[41] Multi-release software reliability growth assessment: an

approach incorporating fault reduction factor and

imperfect debugging Int. J. Math. Oper. Res., 15 (4)

(2019), pp. 446-463.

[42] A. Tandon, A.G. Aggarwal. Testing coverage-based

reliability modelling for multi-release open-source

software incorporating fault reduction factor

Life Cycle Reliability and Safety Engineering, 9 (4)

(2020), pp. 425-435

https://doi.org/10.1007/s41872-020-00148-7

