
Informatica 35 (2011) 445–452 445

“Must-Work": A Scalable Model for Parallel Recursive Problems on P2P
Networks

Mourad Amad, Djamil Aïssani
Laboratory LAMOS, University of Bejaia, Algeria
E-mail: amad.mourad@gmail.com, lamos_bejaia@hotmail.com

Toufik Bellal and Hameza Amrioui University of Bretagne Occidentale (Brest), France
E-mail: toufik.Bellal@univ-brest.fr, hameza.amrioui@univ-brest.fr

Keywords: P2P, on demand dynamic hierarchical master worker, recursive problems, parallel computing

Received: July 9, 2010

Most of real world problems are cpu-time intensive; their solutions take too much time to compute using
a single machine. The grid and cloud computing offer a potential solution to this problem. However,
such solutions are in general expensive. An alternative solution uses P2P networks, a set of machines in
the Internet which collaborate to perform the same task. Branch-and-Bound is a model of such solution,
but most of parallel applications developed on P2P networks are based on the Master Worker paradigm,
particularly for divide and conquer problems (D&C), where the Master divides the tasks and sends them
to Workers, while the Workers execute received tasks as in the client server model. This solution suffers
from the scalability problem, and, as a consequence, hierarchical Master Worker model was introduced.
Scalability is improved, but it still remains a critical issue. In this paper, we propose a new generic and
scalable model for parallelizing the resolution of the recursive problem (a type of divide and conquer
problems) on an existing P2P architecture. As opposed to the existing hierarchical Master-Worker models,
in our solution, each network node is both a Master and Worker called "Must-Work". The proposed solution
uses a dynamic tree for tasks distribution; it is constructed according to a node requestor. We have evaluated
our solution using The Quicksort method under the MPI platform. The results are globally satisfactory in
term of time execution compared to the sequential solution.

Povzetek: Članek opisuje način reševanja rekurzivnih problemov v omrežjih vsak-z-vsakim.

1 Introduction

At the present time, the mathematical resolution of the ma-
jor optimization problems (eg. vehicle routing problem,
travelling salesman, minimum spanning tree, eight queens
puzzle, Knapsack, Cutting stock, ...) remains extremely
complex and/or expensive in terms of machine time. It is
however possible in the majority of the cases (some prob-
lems are excluded, eg. TSP) to distribute calculation on sev-
eral machines, each one treating one part of the problem,
under the aegis of a main authority. The multiprocessor
machines or the material parallelization of machines single
processors constitutes the first application of this concept.
This involves nevertheless a high cost of sharing the num-
ber of processors to be acquired. An alternative solution is
to distribute calculation on a network, but the put question
is how to distribute this calculation with efficiency, opti-
mization and fault tolerance?

Divide and conquer (D&C) is an important design
paradigm based on multi-branched recursion. It works by
recursively breaking down a problem into two or more
sub-problems of the same type, until they become simple
enough to be solved directly. The solutions to the sub-

problems are then combined to give a solution to the orig-
inal problem [8]. In fact, recursive problems (our case
study) can be resolved by D&C type algorithms.

The recursivity is a very interesting field of data process-
ing; it makes it possible to solve certain problems in a very
fast way and very simple. The recursive problems require
many means and resources, because enormous data must be
stored in the stack of machine, which causes an overflow of
this stack in case of one processor. Whereas, on a network
(eg. P2P), this problem is not posed. As examples of the
famous recursive problems, we can quote: the problem of
the eight reins, Hanoi turn (see figure 2) and the Quicksort
sorting (our case study).

Recursive problem belongs to the divide on conquer
problem type, where Master-Worker models have been
proposed for their solutions. In the conventional Master-
Worker paradigm, a single supervisor process manages and
controls a sets of processes. Distribution of tasks is per-
formed in two phases: 1) the distribution from supervi-
sor to Master process, 2) and that from Master process to
Worker processes. The computed results are performed
on the reverse way. The main problem of this solution
is the central supervisor, and the overload of the Master.



446 Informatica 35 (2011) 445–452 M. Amad et al.

The hierarchical Master Worker type solutions are then in-
troduced to ameliorate the former one. In the hierarchi-
cal Master-Worker models, Masters are required to parti-
tion the problem-space (preparing work for the Workers),
schedule work, balance the load of the Workers to maintain
efficiency [11], and correlating their output into a global
result. Workers simply perform given operations. This
paradigm sustained good performance [3]. However, scal-
ability is always an open issue [12].

In this paper, we consider the parallel resolution of the
recursive problems (divide and conquer type). We propose
a scalable and generic hierarchical Master Worker model
based on a distributed tree diffusion which is constructed
on demand by any Master node in any P2P network. It is
characterized by high dynamicity (node can join and leave
the network at any time), scalability (hight number of node
is supported) and genericity (for any type of P2P network
and any recursive problem).

The remainder of this paper is organized as follows: In
the second section, we present a background and related
works on parallel computing techniques, especially for di-
vide and conquer problem type, with more importance to
the hierarchical Master Worker models. In the third sec-
tion, we give our contribution for parallelizing the recur-
sive problem solutions on any existing P2P architecture.
We give a performance evaluation of the proposed model
for Quicksort method in section 4. Finally, we conclude
and give some perspectives.

2 Background and Related Works

The resolution of the numerical problems which are expen-
sive in terms of computing is a challenge. To solve a given
problem more quickly, a natural idea consists of making si-
multaneously several agents cooperating for its resolution,
which will thus work in parallel. Parallel calculation is a
technique in which several actions are carried out simulta-
neously, so that the time of resolution is reduced. In addi-
tion to the material components intended for parallel calcu-
lation, a support by software components is also necessary,
in order to coordinate the simultaneous execution of several
lines of computer program code. Such dependence is nec-
essary, because of the existing interdependencies between
the various program codes [2].

Grid computing has become an alternative to traditional
supercomputing environments for developing parallel ap-
plications in recent years [9]. Master-Worker paradigm is
a common model to evaluate a pool of tasks, it is used
by many scientific and engineering applications like tree
search algorithms, genetic algorithms, training of neural
networks, stochastic optimization, parameter analysis for
engineering design, Monte Carlo simulation [10].

Master Worker paradigm is an adequate solution for di-
vide and conquer problem such as our case study (recursive
problems). It consists of two entities: a Master and multiple
Workers. The Master decomposes the problem into small

tasks and distributes these tasks among a farm of Worker
processes, as well as for gathering the partial results in or-
der to produce the final result of the computation. Worker
processes execute in a very simple cycle: receive a message
from the Master with the next task, process the task, and
send back the result to the Master. This paradigm is well
adapted to the first generation of P2P networks (eg. Nap-
ster1), because Napster is composed of one server which
store a resource’s index (Master). All other peers (Work-
ers) are connected to the server in order to publish/search
a resource (execute tasks). However, the most proposed
Master-Worker solutions suffer from the scalability prob-
lem (in terms of Master bottleneck but also security: the
master is busy all time) [11], more generally they are spe-
cific for only some problems and using also specific under-
lying architectures.

Given this, hierarchical Master-Worker model has been
proposed; it uses submasters to decrease the workload of
the Master, but a problem still exists: if the number of
Workers or submasters grows, the submasters also will be
bottleneck because many communications appear between
Workers and their submasters. Hierarchical Master Worker
using a shared memory space for work managing at the
submasters was introduced by GhasemiGol et all (Linda
model) [11]. In this model, Workers execute a task and
put the results in a shared memory space on the submaster.
Effectively, the solution reduces communication cost, but
accessing shared memory is complicated and it is not prac-
tical in large scale network. Some Workers do not work
voluntary, such as free rider on file sharing P2P applica-
tions which is opposed to our contribution, where nodes
are called Must-Work.

In [14], the authors propose GVGE, a shared and interac-
tive virtual collaborative geographic environment for solv-
ing geographic problems. It is composed of three layers:
resource layer, service layer and application layer. GVGE
is a platform that can manage grid applications. In [13], the
authors propose a java environment for developing parallel
programs limited to small clusters. In [15], ParCop is pro-
posed using Master Worker model where each node man-
ages two types of links: permanent and temporary path-
ways. The former makes connections with its neighbours,
and the later makes connections between the Master and
Worker during computational. Pathways can be more than
one hop and then message transmissions consume more
CPU. In [16], the authors propose how to build new types
of groups called “similarity groups" into the JNGI project
[17], in order to increase the relevance of task dispatch-
ing and therefore to increase the performance of JNGI.
In [19], desktop grids inspired from biological systems, a
large computational tasks are broken down into sufficiently
small subtasks. Each subtask is encapsulated into a mobile
agent. The management of the mobile agents is not shown
in the paper. A similar work has been proposed in [20]. In
their paper, the authors propose a middleware for parallel-
based computations across a P2P network. It is different

1http://www.napster.com



“MUST-WORK": A SCALABLE MODEL FOR. . . Informatica 35 (2011) 445–452 447

from our work on the tree diffusion construction process,
but also the fault tolerance consideration. In [22], the au-
thors propose a nice construction recursive model that can
complete our work by integrating it on each node.

The second generation of P2P network (eg. Gnutella)
and the third generation (eg. Chord) can be a good candi-
dates for hierarchical Master-Worker models; we just need
to construct a tree with efficiency and optimization.

In this paper, we propose a generic and scalable model
for parallel computing which can be implemented on any
existing underlying P2P architectures (structured and un-
structured), because it is based on the construction of a tree
in a connex graph (by exchange messages between neigh-
boring nodes) from any node without need of global knowl-
edge of the underlying P2P architecture. In graph theory
[23], the construction of a tree from source node to a set of
receivers is already feasible if the graph is connected. The
overlay P2P network is a connected graph.

P2P systems know an explosive growth in the few last
years [1]; they progressively replace the Client/Server ar-
chitecture. P2P systems are a good solutions for problems
which need higher scalability, they resist to denial of ser-
vice attacks, and held the top of the paving stone on In-
ternet (application layer). Unlike the centralized systems
such as Client/Server, in P2P systems, it is the hosts who
provide the resources which will be available on the net-
work [21]. These resources are those of the computers, the
users and the connection they have. Parallel computing is
an interesting example of P2P applications; it is also one
of the most important solutions for the optimization prob-
lems. Many P2P architectures have been proposed for file
sharing applications (eg. Chord [6], CAN [5] and Tapestry
[7]). Figure 1 is an example of P2P architecture, we use it
in performance evaluation section.

N0

N1

N2

N3
N4

N5

N6

N7

N6 + 1 = N7
N6 + 2 = N0
N6 + 4 = N2

N1 +1 = N2
N1 +2 = N3
N1 +4 = N5

Finger table

Finger table

Figure 1: Example of P2P network (Chord architecture)

Our contribution aims to improve the scalability and con-
tributes significantly to the genericity of the hierarchical
Master Worker models by its important characteristics, it
can be easily implemented on any existing P2P architec-
ture, and then benefits from their advantages (scalability,
self organization, fault tolerance, ...). The standard oper-
ational interpretation of a recursive program forms a tree
of recursive calls spreading out from the node of the ini-
tial invocation [21]. Our solution is fundamentally based
on dynamic task distribution tree constructed on demand
under an existing P2P overlay network. The next section
describes and analyzes the proposed solution.

3 Proposed Solution: “Must-Work"
In this paper, we propose a scalable and hierarchical Mas-
ter Worker model based on a dynamic on demand tree con-
struction, where each node is sometimes Master for a given
tree, sometimes Worker for another tree, it is called Must-
Work. When a node receives calculus request (task), it
can’t refuses it. If the task is complex, it plays the role of
Master (divides and conquers). Otherwise, it is Worker (ex-
ecutes task). In some specific situations, a given node can
be simultaneously Master for some Workers and Worker
for some Masters. As illustrated on figure 2, the node N3 is
a Master in Hanoi(3,A,B,C) problem resolution when
N0 is a source, and it is a Worker in Hanoi(3,A,B,C)
problem resolution when N2 is a source.

3.1 Functional principal
The parallelization of the recursive problems consists to
break up the problem into independent calculation portions
(tasks), and to diffuse each one on a dynamic on demand
constructed tree branch from P2P underlying architecture,
as long as the portion problem is decomposable. Let us ar-
rive at an evident problem (where its resolution is easy and
does not need complex treatment or dividing). The consid-
ered node makes calculation and returns result to the im-
mediate requestor, and so on, until the machine initiator
of calculation receives all the required calculation portions.
With other words, the resolution of a recursive problem on
existing P2P architecture can be transformed to a dynamic
on demand diffusion tree construction, then to diffuse cal-
culation and recovering it thereafter. The depth of the con-
structed diffusion tree depends on the recursive problems
to solve. Figure 2 shows an example of the calculus dis-
tribution (diffusion) tree for the Hanoi tours problem. The
network is composed of 19 nodes, the degree of the Hanoi
problem is 3. Each Master divides the calculus on three
parts, and sends them to their successors in the constructed
tree, and so on.

Figure 2 illustrates an example for resolving simulta-
neously two Hanoi problems. The node N0 calculates
Hanoi (3,A,B,C) and the node N2 calculates also
Hanoi(3,A,B,C), each one constructs it own tree on
the same network. Node N3 participates on both resulting
trees, it is a Master on the first tree (figure 2.b) and Worker
on the second tree (figure 2.c).

For illustration purpose, let consider the following nota-
tions:

3.2 On demand diffusion tasks tree
construction

At the time of launching calculation decision, the initia-
tor node Ni puts its state to initiator, and plays the role
of Master, it builds a set of receiving children (immediate
successors at one hop in the dynamic on demand construct-
ing tree) by executing the function Child(i). Before



448 Informatica 35 (2011) 445–452 M. Amad et al.

N0

N1

N2

N3
N4

N5

N6

N7

N8

N15

N16
N12

N11

N13

N14

N10
N18

N17

(a): P2P network

N9 Ni

Nj

Node participating on tree (c)

Node participating on tree (b)

Nm Node participating on both 

Nk Node without tasks

trees (b) and (c)

H(3, A, B, C)

H(2, A, C, B) H(2, C, B, A)

H(1, A, B, C) H(1, A, C, B) H(1, B, C, A) H(1, C, A, B) H(1, C, B, A)

H(1, A, B, C)

H(1, A, B, C)

N0

N1 N2 N3

N4 N5 N6N7 N8 N9

(b): Resulting tree of Hanoi tours solution initiating by node N0

H(3, A, B, C)

H(2, A, C, B) H(2, C, B, A)

H(1, A, B, C) H(1, A, C, B) H(1, B, C, A) H(1, C, A, B) H(1, C, B, A)

H(1, A, B, C)

H(1, A, B, C)

(c): Resulting tree of Hanoi tours solution initiating by node N2

N2

N0 N9 N16

N17 N3 N6 N11 N15N1

Figure 2: Diffusion tree construction for Hanoi tours problem

Notation Designation
Ni Node identifier.

Child(j) Function which returns child order j of the current node (jth successor)
Nb_nd Number of nodes in the network.
Nb_fi Number of children of node Ni

Ei Set of children of node Ni (set of successors).
Nb_aqi Number of acquirements for node Ni (number of recipients which have

received the request from node Ni).
D Number of portions (degree) of the recursive problem to parallelized

(Parameter of the problem to be resolved).
state State of node Ni (free, occupied, initiator) initialized at free.

Parent(i) Predecessor of node Ni.

Table 1: Conventional notations

sending a task to any node, it divides calculation into sev-
eral portions (tasks) according to the degree of the prob-
lem (eg. The Hanoi turn problem shown on figure 2 is
with degree 3). The requested node sends the message:
’are you free?’ to each neighbouring. If it receives a
number (NPR) of positive responses higher than the num-

ber of tasks (D) to distribute, it diffuses them towards its
children (successors) according to algorithm 1 (the sender
node should save the set of its neighboring nodes to which
it has send a task). Otherwise, it sends the first tasks to free
nodes and the remainder tasks to occupied nodes if they
exist, or diffuse a second work for the same children.

As illustrated on algorithm 2, at the reception of a calcu-
lation portion from node Nj , node Ni puts its state to oc-
cupied, it tests if the portion of the received calculus (task)
is not decomposable, so yes (node is a Worker): it makes
the last calculation, and returns back the result to its parent
(transmitting of calculation result using function parent(j)),
then it changes its state to free. Otherwise (node is a Mas-
ter), it breaks up this portion into a set of sub portions (eg.
k sub portions) and diffuses them towards the set of its chil-
dren (k successors) as illustrated on algorithm 1.

When a node Ni receives a calculus result from
one child, it decreases the number of the acquirements
(Nb_aqi–), and when it receives all the sent calculus por-



“MUST-WORK": A SCALABLE MODEL FOR. . . Informatica 35 (2011) 445–452 449

Algorithm 1 : Starting the calculus by the initiator Ni

(root)
1: Begin
2: Ei = ;
3: statei = initiator;
4: Nb_fi = card({neighboring nodes}) ;
5: Ei← {neighboring nodes};
6:If (Nb_fi ≥ D) Then
7: For m:=1 To D Do
8: k← identifier of the neighboring node (Ei)

with higher capability;
9: Send the kth calculus portion to child (k);
10: Ei←Ei - child (k);
11: End
12:Else
13: For k:=1 To Nb_fi Do
14: Send the Kth calculus portion to child (k);
15: End
16: For k:=Nb_fi +1 To D Do
17: Random (Np);// here, we can choose the

better nodes in terms of calculus capabilities;
18: Send the Kth calculus portion to child (Np);
19: End
20: Nb_aqi= D;
21: End
22: statei = free;
23: End.

tion results (Nb_aqi=0), it makes its calculation, and re-
turns the final result if it is the initiator. Otherwise, it sends
the result to the requestor node (parent(i)), and so on. This
process is illustrated on algorithm 3.

3.3 Some considerations on the solution
In this section, we give some detail illustrations on the scal-
ability, fault tolerance, load balancing of our proposed so-
lution.

– Scalability: The nodes in the network are sometimes
Masters, sometimes Workers; they have the same re-
sponsibility (function). They divide the calculus and
distribute it to their successors (neighboring nodes
with one hop), which forms progressively and dynam-
ically a calculus diffusion tree, where only the leaf
nodes (Workers) in the tree which does operational
calculus. The inner nodes divide and conquer tasks
(Masters). In fact, the solution does not suffer from
the scalability problem, but it depends on the scalabil-
ity of the underlying P2P overlay network on which
is implemented (It is more scalable on Chord archi-
tecture than on Gnutella, because Chord is more scal-
able than Gnutella). On the other hand, the proposed
solution is generic relatively to both underlying archi-
tecture and recursive problem to be solved.

– Fault tolerance: When a Master node distributes the
calculus portion to its children (successors), it acti-
vates a predefined time-out (T), it waits until time out

Algorithm 2 :At the reception of a calculus portion by node
Ni from node Nj

1: Begin
2: Nb_aqi = 0;
3: Ei = ∅;
4: statei = occupied;
5: perei = j;
6: If (the calculus portion is not decomposable) Then
7: Do the calculus and return the result to perei (re-
questor);
8: statei = free;
9: Else
10: Execute Algorithm 1;
11: End
12: End.

Algorithm 3 : At the reception of each portion calculus
result

1: Begin
2: Nb_aqi–;
3: If (Nb_aqi=0) Then
4: Do its calculus portion;
5: If (statei= initiator) Then
6: Return the final result
7: Else
8: Send the result to its parent (parent(i));
9: End
10: statei= free;
11: Else
12: Wait the other results;
13: End
14: End.

expiration, if it doesn’t receives all calculus portion re-
sults, then it sends request to children (Workers) which
have not returned results yet, asking them to give re-
sults. If they respond to the request and they does not
finished their tasks, the requestor node increments the
time-out (T). Otherwise (the direct successor who has
not given response is failed), the requestor node re-
distributes their calculus portions (supposed failed) to
other successors, and so on. The calculus is still con-
tinuous even with node failures.

At each node, we associate a queue for storing the
requested calculus (tasks) which have not served yet
with FIFO service politic. Perhaps, the failure of the
first Master (root) blocks the system, and the results
can not be recuperated. However, in practical applica-
tions, root Master is managed by the users of applica-
tion themselves, and then we assume that is a reliable
node.

– Load balancing: In the proposed hierarchical
Master-Worker solution; each node is a Master for
some Workers, and a Worker for some Masters (“Must
Work"). No node is more important than other nodes.
The Master divides the complex calculus (we assume
here that each node is enough intelligent to do this



450 Informatica 35 (2011) 445–452 M. Amad et al.

treatment for any recursive problem), and then dif-
fuses the calculus portions (tasks) to its children (suc-
cessors at one hop). When it receives the result por-
tions, it makes its treatment, and then sends the result
to the requestor. When a node receives a calculation
request which is not decomposable, it executes it lo-
cally, and returns the result to the requestor. In the
case where all the children of a given Master are on
state occupied, and this last has not achieved the distri-
bution of all the calculus portions, it can send them to
those with high capabilities using a scheduling strat-
egy such as in [4].

4 Performance Evaluation
In order to evaluate the proposed solution, we tested it for
sorting a vector with different sizes and using the Quicksort
method. We use the MPI platform (Message Passing Inter-
face)2 under linux, which is a library of C/Fortran functions
based on the message communications (the most important
are: MPI_send and MPI_recv). Simulations are down on
machine carried out in a personal computer with the follow-
ing characteristics: 2.16 GHz and 1GB of RAM. A specific
tool was developed for simulation purposes.

Figures 3 and 4 represent respectively the sorting exe-
cution times of two vectors with dimensions 15 and 500
by the Quicksort method, using both parallel program and
sequential one implemented on Chord architecture.

Figure 3: Sorting a vector of 15 elements using Quicksort
method

For the vector of size 15 (Figure 3), the execution time
for the sorting using the sequential solution is 0.000015s,
and that using the parallel solution is 0.000458s. Sequential
solution is better than parallel one. This is du to the high
cost of message communication time comparatively to the
execution time.

For a vector with 500 elements (Figure 4), the execution
time for the sequential solution is 0.00326s. Whereas, the

2http://www.mcs.anl.gov/research/projects/mpi/

Figure 4: Sorting a vector of 500 elements using the Quick-
sort method

execution time for the parallel solution is 0.00292s. The
results show that the proposed parallel computing is very
interesting for the large scale problems, where communi-
cation time is negligible in front of calculation time. Table
2 gives a first idea of the average acceleration rate.

– Sequential solution Parallel solution
15 elements 0.000015s 0.000458s
500 elements 0.00326s 0.00292s

Rate 0.46 15.68

Table 2: Average acceleration rate

Figure 5 represents two curves of the execution time ac-
cording to the vector dimension to be sorted using the two
programs (sequential and parallel). It is seen clearly that
for the vectors with small size, the execution time of the se-
quential program is better than that of the parallel program,
because the inter nodes communication time (exchanged
messages) is significantly important relatively to calculus
time. Starting from a dimension of 500 (500 values), we
note a significant difference in favour of the parallel pro-
gram as illustrated on table 2.

Figure 5: Execution time as function of the vector size

Figure 6 shows the execution time percent for both se-



“MUST-WORK": A SCALABLE MODEL FOR. . . Informatica 35 (2011) 445–452 451

quential program and parallel program from total execution
time as function of the sorted vector size. We can clearly
observe that for complex problem; the execution time for
parallel solution is very improved compared to that of the
sequential one. This improves the scalability of the pro-
posed solution. From figure 6, we can see also that when
the vector size reaches 500, the parallel solution becomes
more interesting.

Figure 6: Percent of sequential and parallel execution times
for sorting vector with the Quick sort method

Figure 7 shows the number of the generated messages
du to the tree construction process (for considering the free
neighbouring nodes with higher capabilities) as function of
the degree of the Hanoi problem. When the degree of the
Hanoi problem increase, the generated messages increase
also. The most important number of messages is due to the
diffusion tree construction process. When the diffusion tree
is constructed, the number of overhead messages becomes
stable.

0 20 40 60 80 100
0

50

100

150

200

250

300

350

Degree of the Hanoi problem

N
um

be
r 

of
 g

en
er

at
ed

 m
es

sa
ge

s

Number of messages

Figure 7: Number of generated messages as function of the
degree of the Hanoi problem

5 Conclusions and Future Works
Master-Worker is a high-level programming framework
that has been proposed to simplify the development of large

scale parallel applications for computational grids. Many
recent works are based on this concept. The hierarchical
Master Worker paradigm is a very interesting approach to
solve Divide and Conquer problem type , where the re-
cursive problems are a good representative examples. The
most difficult tasks are the fault tolerance, load balancing
and scalability of the model.

In this paper, we have proposed a scalable hierarchical
Master Worker model based on a dynamic on demand con-
struction tree for tasks distribution. The solution is doubly
generic; it can be used for any given parallel solutions of
a recursive problem, but also it uses any existing P2P net-
work as underlying architecture because P2P networks are
a connected graphs. Each node in our model is both Master
and Worker called “Must-Work".

By analyzing the various algorithms of the solution
through validation examples, we can draw the following
characteristics: the proposed solution minimizes the exe-
cution time in the case of great calculations, because paral-
lelism allows the simultaneous execution of several tasks.
It cures to the problems due to the recursivity, like the over-
flow of the stack as well as the capacity overshooting. It
minimizes also the communication cost; each parent node
assigns the calculation tasks directly to its children in its
finger table (using only one hop). If a machine finishes its
calculation, it will be released to carry out another calcu-
lation. In our model, the tasks are often affected to nodes
with high capabilities.

The proposed solution guarantees the load balancing of
the machines (nodes) in their affecting the tasks, since they
are released according to the need of calculation. It thus
minimizes the number of machines which participate at the
same time on the resolution of the given recursive problem,
because a child (successor) can be present in several finger
tables, then since it will be released, it can be contacted by
another parent (predecessor) for another task.

In terms of future works, first, we envision to test the
proposed solution on a real specialized P2P platform, such
as: Proactive3 , XtremWeb4 or JXTA5. Secondly, as op-
posed to Must-Work type node, we consider another node
type which can refuses task execution, because it is belong-
ing to an open P2P network (contains free rider nodes), we
call it CAN-Work.

Acknowledgement
The authors would like to thank Mr A. Bendjoudi from
CERIST and Miss W. Azzeghagh from University of Be-
jaia for their comments.

References
[1] C. Shirky, What is p2p..and what isn’t, O’ Reilly Net-

work, 2001.
3http://proactive.inria.fr/
4http://www.xtremweb.net/
5https://jxta.dev.java.net/



452 Informatica 35 (2011) 445–452 M. Amad et al.

[2] M. J. Flynn, Some computer organizations and their
effectiveness, IEEE Trans. Computers, 21(9):948-
960, 1972.

[3] K. Aida, W. Natsume and Y. F. Kata, Dis-
tributed Computing with Hierarchical Master-worker
Paradigm for Parallel Branch and Bound Algorithm,
In Proceedings of the 3st International Symposium on
Cluster Computing and the Grid (CCGRID), Tokyo,
Japan, 2003.

[4] J.-P. Goux, S. Kulkarni, J. Linderoth and M. Yo-
der, “Master-Worker": An enabling framework
for master-worker applications on the computa-
tional grid, Cluster Computing, Vol. 4, pp. 63-70,
www.cs.wisc.edu/condor/doc/camera.doc, 2001.

[5] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S.
Shenker, A scalable content addressable network, in
ACM SIGCOMM, New York, 2001.

[6] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M.
F. Kaashoek, F. Dabek and H. Balakrishnan, Chord:
A scalable peer-to-peer lookup service for internet
application, IEEE/ACM Transactions on networking,
Vol 11, No. 1, January 2003.

[7] B. Y. Zhao, J. Kubiatowich and A. D. Joseph,
Tapestry: an infrastructure for fault-tolerant wide-
area location and routing, Technical report, No.
UCB/CDS-01-1141, Computer Science Division,
University of California, Berkeley, April 2001.

[8] Z. Dai, F. Viale, X. Chi, D. Caromel and Z. Lu,
Task-Based Fault-Tolerance Mechanism to Hierarchi-
cal Master/Worker with Divisible Tasks, in Proceed-
ings of the 11th IEEE International Conference on
High Performance Computing and Communications,
Seoul, Korea, 2009.

[9] I. Foster and C. Kesselman, The Grid: Blueprint for
a New Computing Infrastructure, Morgan-Kaufmann,
1999.

[10] J. Pierre, G. J. Linderoth and M. Yoder, Metacom-
puting and the Master-Worker Paradigm, ANL/MCS-
P792-0200, Mathematics and Computer Science Di-
vision, Argonne National Labroratory, 2000.

[11] M. GhasemiGol, M. Sabzekar, H. Deldari and A. H.
Bahmani, A Linda-based Hierarchical Master-Worker
Model, International Journal of Computer Theory
and Engineering, Vol. 1, No. 5, pp. 1793-8201, De-
cember, 2009.

[12] C. Banino, Scalability Limitations of the Master-
Worker Paradigm for Grid Computing, in proceedings
of workshop on state-of-the-art in scientific comput-
ing (para’04), Denmark, 2004.

[13] E. S. Manolakos and D. G. Galatopoulos JavaPorts:
An Environment to facilitate parallel computing on
a heterogenous cluster of workstations, Informatica,
Vol. 23, pp. 97-105, 1999.

[14] J. Zhu, J. Gong, W. Liu, T. Song and J. Zhang, A col-
laborative virtual geographic environment based on
P2P and Grids technologies , Journal of Information
Sciences, Elsevier, Vol. 177, pp. 4621-4633, 2007.

[15] N. A. Al-Dmour and W. J. Teahan, ParCop: A De-
centralized Peer-to-Peer Computing System, In Pro-
ceedings of the ISPDC/HeteroPar’04, Cork, Ireland ,
2004.

[16] J. B. Ernst-Desmulier, J. Bourgeois, F. Spies and J.
Verbeke, Adding New Features In A Peer-to-Peer
Distributed Computing Framework, in Proceedings
of the 13th Euromicro Conference on Parallel, Dis-
tributed and Network-Based Processing (Euromicro-
PDP’05), Lugano, Switzerland , 2005.

[17] J. Verbeke, N. Nadgir, G. Ruetsch and I. Sharapov,
Framework for peer-to-peer distributed computing in
a heterogeneous, decentralized environment, In Pro-
ceedings of GRID 2002, Baltimore, Sun Microsys-
tems, Inc., Palo Alto, CA 94303, USA, January 2002.

[18] I. Podnar, M. Rajman, T. Luu, F. Klemm and K.
Aberer, Beyond Term Indexing: A P2P Framework
forWeb Information Retrieval, Informatica, Vol. 30,
pp. 153-161, 2006.

[19] A. J. Chakravarti, G. Baumgartner and M. Lauria,
The Organic Grid: Self-Organizing Computation on a
Peer-to-Peer Network, IEEE Transactions on systems,
man, and cybernetics, Vol. 35, No. 3, may 2005.

[20] W. Wadge, Distributed Application Reliability on
Unstable, Dynamic, P2P-based platforms, CSAW,
Kalkara, Malta, 2004.

[21] M. Gupta, S. Mukhopadhyay and N. Sinha, Auto-
matic Parallelization of Recursive Procedures, Int.
Journal of Par. Prog., Vol. 28(6):537-562, 2000.

[22] M. Haveraaen, Efficient parallelisation of recur-
sive problems using constructive recursion, Euro-Par
2000 - Parallel Processing, volume 1900, Lecture
Notes in Computer Science, Springer Verlag, 2000,
pp. 758-761.

[23] Gasper Fijavz, ColoringWeighted Series-Parallel
Graphs, Informatica Vol. 30, pp. 321-324, 2006.


