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The fine grained parallelism inherent in Field Programmable Gate Arrays (FPGAs) may be well 
exploited to implement the computation-intensive discrete wavelet transform, which is increasingly 
employed  in multimedia consumer electronics. In this paper, we describe a parallel implementation of 
the discrete wavelet transform and its inverse  using Virtex FPGAs. We make maximal utilization of the  
look-up table architecture of  the Virtex  FPGAs  by reformulating the wavelet computation in 
accordance with the  parallel distributed arithmetic algorithm. The reported single chip implementation  
may be used effectively in the construction of  low-power, wavelet-based   MPEG-4 and  JPEG2000 
decoders. 
Povzetek: Opisana je implementacija FPGA algoritma za uporabo v uporabniški elektroniki. 

 

1 Introduction 
Digital signal processing algorithms are increasingly  
employed in modern wireless communications and 
multimedia  consumer electronics, such as cellular 
telephones and digital cameras. Traditionally, such 
algorithms are  implemented using  programmable DSP 
chips for low-rate applications [1], or VLSI application 
specific integrated circuits (ASICs) for higher rates [2]. 
However, advancements in Filed Programmable Gate 
Arrays (FPGAs) provide a new vital option for  the 
efficient  implementation of DSP algorithms [3].  FPGAs 
are  bit-programmable computing devices which offer 
ample quantities of logic and register resources that can 
easily be adapted to support the fine-grained parallelism 
of many pipelined digital signal processing algorithms 
[4] - [6]. 

At the heart of most digital signal processing 
algorithms is a multiply-and-accumulate  function that 
can be implemented more efficiently with distributed 
arithmetic architectures [7]. These architectures make 
extensive use of look-up tables, which make them ideal 
for implementing digital signal processing  functions on 
Xilinx FPGAs, whose architectures are based on look-up 
tables. Moreover, distributed architectures are suitable  
for low power portable applications, because they  
replace the costly multipliers  with shifts and look-up 
tables [8]. 

An emerging arithmetic-intensive digital signal 
processing algorithm is the discrete wavelet transform [9] 
. The perfect reconstruction  and lack of blocking 
artifacts properties of  this transform have proven to be 
extremely useful for image and video coding applications 
[10].  Furthermore, the basis functions of the discrete 

wavelet transform match the human visual profiles, and 
hence  provide subjectivity pleasing images at high 
compression rates. By virtue of such attractive features of 
the wavelet transform, it has  been adopted by  the recent 
multimedia compression standards MPEG-4 [11] and 
JPEG2000 [12]. 

 In this paper, we describe a parallel and high speed,  
single-chip implementation of the discrete wavelet 
transform and its inverse  using Virtex FPGAs [13]. We 
make maximal utilization of the  look-up table 
architecture of  Virtex  FPGAs  by reformulating the 
wavelet transform computation in accordance with the  
parallel distributed arithmetic algorithm. Unlike most  
papers in literature which  report on single-chip VLSI  
architectures of the forward discrete wavelet transform 
only [14] - [17], this paper describes an actual  
implementation of  both the forward and inverse 
transforms. Therefore, the implementation  may be used 
in the construction of  effective  MPEG-4 and  
JPEG2000 decoders. 

Finally, the  paper  is organized as follows. Section  
two gives preliminaries  of the implementation which 
includes an overview of  the discrete wavelet transform  
and Xilinx Virtex FPGAs. Section  three describes 
principles of parallel distributed arithmetic, and section 
four describes our parallel implementation which is 
based on parallel distributed arithmetic. Performance 
results  are presented in section five, and discussed in 
section six. Finally, some concluding remarks are 
presented in section seven. 

2 Preliminaries 
In this section we give a brief description of  the Mallat 
algorithm which is an efficient algorithm used to 
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compute the coefficients of the discrete wavelet 
transform. We also  give an overview of  Xilinx Virtex 
FPGAs which are used as our single-chip implementation 
platform. 

2.1 Discrete Wavelet Transform 
Coefficients   

Wavelets are special functions which, in a form 
analogous to sines and cosines in Fourier analysis, are 
used as basal functions for representing signals. The 
coefficients of the discrete wavelet transform can be 
calculated recursively and in a straight forward manner 
using the well-known Mallat’s pyramid  algorithm [18]. 
Based on Mallat’s algorithm, the discrete wavelet 
coefficients of any stage can be computed from the  
coefficients of  the previous stage using the following 
iterative equations:    
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Where WL(n,j) is the nth scaling coefficient at the jth 
stage,  WH(n,j) is the nth wavelet coefficient at the jth 
stage, and h0(n)  and  h1(n) are the dilation coefficients 
corresponding to the scaling and wavelet functions, 
respectively.  In order to reconstruct the original data, the 
DWT coefficients are upsampled and passed through 
another set of low pass and high pass filters, which is 
expressed as 
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where  g0(n)  and  g1(n) are respectively the low-
pass and high-pass synthesis filters corresponding to the 
mother wavelet. It is observed from  Equation (3) that the 
jth level coefficients can be obtained from the (j+1)th 
level coefficients.  

Daubechies 8-tap  wavelet   has been chosen for this 
implementation. This wavelet type is known for its  
excellent special and spectral localities which are useful  
properties  in image compression [19]. The filters 
coefficients  corresponding to this wavelet type  are 
shown  in Table 1. H0 and H1 are the input 
decomposition  filters and  G0 and G1   are the output 
reconstruction filters.   

 
Table 1. Daubechies 8-tap  wavelet   filter coefficients.  

 
H0 H1 G0 G1 

-0.0106 0.2304 -0.2304 -0.0106 
 -0.0329 0.7148 0.7148 0.0329 
 0.0308 0.6309 -0.6309 0.0308 

 0.1870 -0.0280 -0.0280 -0.187 
-0.0280 -0.1870 0.1870 -0.0280 
-0.6309 0.0308 0.0329 0.6309 
 0.7148 0.0329 -0.0329 0.7148 
-0.2304 -0.0106 -0.0106 0.2304 

2.2 Virtex  FPGAs: Architecture and 
Programming 

One of  most advanced FPGA families in industry is the 
FPGA series  produced by Xilinx [20].  The Virtex user-
programmable gate array comprises two major 
configurable elements: configurable logic blocks (CLBs) 
and input/output blocks (IOBs). Each CLB is composed 
of two slices as shown in Figure 1.  A slice contains 4-
input, 1-output LUTs and two registers. Interconnections 
between these elements are configured by multiplexers 
controlled by SRAM cells programmed by a user’s 
bitstream. The LUTs allow any function of five inputs, 
and two functions of four inputs, or some functions of up 
to nine inputs to be created within a CLB slice. This 
structure allows a very powerful method of implementing 
arbitrary, complex digital logic. 

Fig. 1. Simplified Architecture of  Virtex  configurable 
logic block.  
 
Virtex FPGAs are  programmed using Verilog HDL; a 
popular hardware description language [21]. The 
language  has capabilities to describe the behavioral 
nature of a design, the data flow of a design, a design’s 
structural composition, delays and a waveform 
generation mechanism. Models written in this language 
can be verified using a Verilog simulator. As a 
programming and development environment,  Xilinx ISE  
Foundation Series tools have been used to produce a 
physical implementation for the Viretx FPGA. 

3 Distributed Arithmetic 
Distributed arithmetic  ( DA) is an efficient method for 
computing the inner product operation  which constitutes 
the core of  the discrete wavelet transform. Mathematical 
derivation  of distributed arithmetic is extremely simple; 
a mix of Boolean and ordinary algebra [22]. Let the 
variable Y hold the result of an inner product operation 
between a data vector x and a coefficient vector a. The 
distributed arithmetic  representation the inner product 
operation is given as follows: 
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Where  the  input data words xi have been represented by 
the 2’s complement number presentation in order to 
bound number growth under multiplication. The variable   
xij  is the jth bit of the xi word which is Boolean, B is the 
number of bits of each input data word and x0i  is the sign 
bit.  Distributed arithmetic is based on the observation 
that the function Fj can only take 2N different values that 
can be pre-computed offline and stored in a look-up 
table. Bit  j of each data xij  is then used to address this 
look-up table. Equation (4) clearly shows that the only 
three different operations required for calculating the 
inner product. First, a look-up to obtain the value of Fj, 
then addition or subtraction, and finally a division by two 
that can be realized by a shift. 

3.1 Parallel Realization 
In its most obvious and direct form, distributed 
arithmetic computations are bit-serial in nature, i.e.,  each 
bit of the input samples must be indexed in turn before a 
new output sample becomes available. When the input 
samples are represented with B bits of precision, B clock 
cycles are required to complete an inner-product 
calculation. A parallel realization of  distributed 
arithmetic corresponds to allowing multiple bits to be 
processed in one clock cycle by duplicating the LUT and 
adder tree. In a 2-bit at a time parallel implementation, 
the odd bits are fed to one LUT and adder tree, while the 
even bits are simultaneously fed to an identical tree. The 
bits partials are left shifted to properly weight the result 
and added to the even partials before accumulating the 
aggregate. In the extreme case, all input bits can be 
computed in parallel and then combined in  a shifting 
adder tree. 

3.2  Virtex  Implementation 
The Xilinx Virtex slices  have the ability to implement 
distributed memory instead of logic. Each 4-input LUT 
in a slice may be used to implement a 16x1 ROM or 
RAM, or the two LUTs may be combined together to 
create a 32x1 ROM or RAM or a 16x1 dual-port RAM. 
This allows each slice to trade logic resources for 
memory in order to maximize the resources available for 
a particular application. Distributed Arithmetic for inner 
product generation can be easily implemented in the 
LUT-based Xilinx Virtex FPGAs. The inner product 
production basically consists of table-lookup operations 
and additions. Thus RAM or ROM can be employed 
holding table values, and table lookup operations can be 
performed, and then a parallel adder usually follows to 
sum up LUT values provided by ROM or RAMs. 

4 Parallel DA  Implementation 
The discrete wavelet transform equations can be  
efficiently  computed using the  pyramid filter bank tree 
shown  in Figure 2. In this section we describe a parallel 
distributed arithmetic implementation of the filter banks 
shown.  We start by deriving  a parallel distributed 
arithmetic  structure of  a single  FIR filter. We  then 
describe the implementation of  the decimator and 
interpolator;  the basic building blocks of  the forward 
and discrete wavelet transforms, respectively. 
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Fig. 2. Mallat's quadratic mirror filter tree used to compute the 
coefficients of the (a). forward  and (b). inverse  wavelet 
transforms.  

4.1 Parallel DA  FIR Filter Structure 
All filters in the pyramid tree structure shown in Figure 2  
are  constructed using  FIR filters because of their 
inherent stability. Most discrete wavelet transform  
implementations reported in  literature employ  the direct 
FIR structure, in which each filter tap consists of a delay 
element, an adder, and a multiplier [23] . However, a 
major drawback of this  implementation is that filter 
throughput is inversely proportional to the number of 
filter taps. That is, as  filter length is increased, the filter 
throughput  is proportionately decreased. In contrast, 
throughput of an FIR filter constructed using distributed 
arithmetic  is maintained regardless of the length of the 
filter. This feature is particularly attractive for flexible 
implementations of different wavelet types since each 
type has a different set of filer coefficients. 

Distributed arithmetic  implementation of  the  
Daubechies 8-tap  wavelet FIR  filter consists of  an 
LUT, a cascade of shift registers and a scaling 
accumulator, as shown in Figure 3.  The LUT stores all 
possible sums of the Daubechies 8-tap  wavelet 
coefficients  given in Table 1. As the input sample is 
serialized, the bit-wide output is presented to the bit-
serial shift register cascade,1-bit at a time. The cascade 
stores the input sample history in a bit-serial format and 
is used in forming the required inner-product 
computation. The bit outputs of the shift register cascade  
are used as address inputs to the LUT. Partial results 
from  the LUT are summed by the scaling accumulator to 
form a final result at the filter output port. 
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Fig. 3. A DA  implementation of the Daubechies FIR filter. 
 
Since the LUT size in a distributed arithmetic 
implementation increases exponentially with the number 
of coefficients, the LUT access time can be a bottleneck 
for the speed of the whole system when the LUT size 
becomes large.  Hence we decomposed the 8-bit LUT 
shown in Figure 3  into two 4-bit LUTs, and added their 
outputs using a two-input accumulator. The 4-bit LUT 
partitioning is optimum in terms of logic resources 
utilization, since this matches naturally the Virtex slice 
architecture, shown in Figure 1,  which uses 4-input 
LUTs. The modified partitioned-LUT architecture is 
shown in Figure 4.  The total size of storage is now 
reduced since the accumulator occupies less logic 
resources than  the larger 8-bit LUT. Furthermore, 
partitioning the larger LUT into two smaller  LUTs 
accessed in parallel reduces access time.  

 
Fig. 4. A partitioned-LUT DA implementation of the Daubechies 
FIR  filter. 
 
A parallel implementation of the inherently serial 
distributed arithmetic (SDA) FIR filter, shown in Figure 
4,   corresponds to partitioning the input sample into M 
sub-samples and processing these sub-samples in 
parallel. Such a  parallel implementation requires M-
times as many memory look-up tables and so comes at a 
cost of increased logic requirements. We describe below 
the implementation of  our PDA FIR  filter at  two 
different degrees of parallelism; a 2-bit PDA FIR filter 
and a fully parallel 8-bit PDA FIR filter. 

A 2-bit parallel distributed arithmetic (PDA) FIR 
filter implementation is shown in Figure 5. It corresponds 

to feeding the odd bits of the input sample to an SDA  
LUT  adder tree, while feeding the even bits, 
simultaneously,  to an identical tree. Compared to the 
serial DA filter, shown is Figure 4, the shift registers  are 
each replaced with two similar shift registers at half the 
bit size. The odd bit partials are left shifted to properly 
weight the result and added to the even partials before 
accumulating the aggregate by a 1-bit scaling adder. 
Finally, since two bits are taken at a time, the scaling 
accumulator is changed from 1-to-2-bit shift (1/4) for 
scaling.  

 
      Fig. 5. A 2-bit  PDA Daubechies FIR filter. 

 
As for the fully parallel 8-bit  PDA  FIR filter 
implementation, the 8-bit input sample  is partitioned into 
eight  1-bit  sub-samples so as to achieve maximum 
speed. Figure 6 shows the  ultimate fully parallel PDA 
FIR filter, where all 8 input bits are computed in parallel 
and then summed by a binary-tree like adder network. 
The  lower input to each adder is scaled down by a factor 
of 2. No scaling accumulator is needed in this case, since 
the output from the adder tree is the entire sum of 
products.  

Fig. 6. (a). A single-bit and  (b).  an 8 -bit  PDA  Daubechies FIR 
filter. 

4.2 Decimator Implementation 
Wavelets are The  basic building block of the parallel 
DA forward discrete wavelet transform filter bank is the  
decimator, which consists of a parallel DA, anti-aliasing 
FIR filter, followed  by a down-sampling operator [24]. 
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Down sampling an input sequence x[n]  by 2 generates 
an output sequence y[n] according to the relation  y[n] = 
x[2n].  All input samples with indices equal to an integer 
multiple of 2 are retained at the output, and all other 
samples are discarded.  Therefore, the sequence  y[n] has 
a  sampling rate equal to half  of the sampling rate  of 
x[n]. 

We implemented the decimator as shown in Figure 
7a.  The input data  port of the PDA FIR filter is 
connected to the external input samples source, and its 
clock input is tied with  the clock input of  a 1-bit 
counter. Furthermore, the output data port of the PDA 
FIR filter is connected to the input port of a  parallel-load 
register. The register receives or blocks data appearing 
on its input port depending on the status of  the 1-bit 
counter. Assuming an unsigned 8-bit input sample is 
used,  the decimator  operates in such a way that when 
the counter is in the 1 state, the  PDA FIR data is stored 
in the parallel load register, and when the counter turns to 
the  0 state, the PDA FIR data is discarded.  

The decimator operation was  modeled   and verified 
using Verilog’s functional simulator. The corresponding  
simulation waveform  is  displayed in Figure 7b. As 
shown,  a random input sample  X enters the decimator at 
a rate of 1sample/1 clocks , and an  output filtered 
sample Y  leaves the decimator at a rate of 1sample/ 
2clocks. The input frequency is clearly halved by the 
decimator. We  maintained sufficient  precision of the 
decimator output  sample as indicated  by  number of bits 
in the parenthesis. Allocating sufficient bits to the 
intermediate and output coefficients has been a necessary 
step to keep the perfect reconstruction capabilities of the 
discrete wavelet transform. 
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Fig. 7. (a). Implementation and (b). functional  simulation of the 
decimator. 
 

4.3 Interpolator implementation 
Wavelets are The  basic building block of the inverse 
discrete wavelet transform filter bank is the  interpolator  
which consists of a parallel DA, anti-imaging FIR filter, 
proceeded  by an up-sampling operator [24]. In up-
sampling by a factor of  2,  an equidistant zero-valued 
sample is inserted between every two consecutive 
samples on the input sequence x[n] to develop an output 
sequence y[n], such that  y[n] =   x[n/2]  for even indices 
of n, and 0  otherwise. The sampling rate of  the output 
sequence  y[n]   is twice as large as  the sampling rate of 
the original sequence   x[n].  

We implemented the interpolator as shown in Figure 
8a.  The  input data  port of the PDA FIR filter is  
connected to the output port of  a parallel-load register. 
Furthermore, the input port of the register is connected  
to the external  input sample source, and its CLK input is 
tied with the CLK input of a 1-bit counter. The operation 
of  the register depends on the signal received on its 
active-high CLR (clear) input  from the 1-bit counter. 
Assuming the input signal source sends out successive  
samples separated by 2 clock periods, the interpolating 
filter operates in such a way that when the counter is in 
the 0 state, the register passes the input sample  X  to the 
PDA FIR filter, and when the counter turns to the 1 state, 
the register is cleared, thus transferring a zero to the PDA 
FIR filter. That is, a zero is inserted between every tow 
successive input samples.  

The interpolator operation was  modeled  and  
verified using Verilog’s functional simulator. The 
simulation waveform  is displayed in Figures 8b. The 
filter receives an input sample  X at the rate of 1 
sample/2 clocks ,  and  sends out its filtered sample Y  at 
the rate of  1 sample/1 clock. The input frequency is 
clearly doubled by the interpolator.  Also, similar to the 
decimator, we  maintained sufficient  precision of the 
interpolator output as indicated  by  number of  bits in the 
parenthesi 
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Fig. 8. (a). Implementation and (b). unctional  simulation of the 
interpolator. 
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5 Implementation Results 
We have implemented the PDA filter bank architectures 
described in the previous section using one of the largest  
available Xilinx Virtex FPGA devices, XCV300. This 
device contains  322,970 gates ( 3072slices) and can 
operate at a maximum clock speed of 200 MHz. 
Therefore, performance is  usually measured with respect 
to two evaluation metrics; the throughput (sample rate)  
and is given in terms of  the clock speed, and device 
utilization, and is given in terms number of  Virtex logic  
slices used by the implementation.  

In the 2-bit PDA FIR implementation, the  forward 
discrete wavelet transform operated at a throughput of  
48.1 MHz, and required  645 Virtex slices which 
represents  around 21 % of the total 3072 slices. 
Throughout of the inverse discrete wavelet transform  
was 46.5 MHz, and the hardware requirement was 707 
slices which represent around 23 % of the total Virtex  
slices. On the other hand, the fully 8-bit PDA 
implementation, and as expected, performed much better. 
The  forward discrete wavelet transform operated at a 
throughput of  154.6 MHz, and required  1167 Virtex 
slices which represents  around 38 % of the total 3072 
slices. Throughout of the inverse discrete wavelet 
transform  was 151 MHz, and the hardware requirement 
was 1352 slices which represent around 44 % of the total 
Virtex  slices. 

The bit stream corresponding to the 8-bit PDA 
implementation was downloaded to a prototyping board 
called the XSV-300  FPGA Board, developed by  XESS 
Inc [25]. The board is based on a single Xilinx  XCV300 
FPGA. It can accept video with up to 9-bits of resolution 
and output video images through a 110 MHz, 24-bit 
RAMDAC. Two independent banks of 512K x 16 SRAM 
are provided for local buffering of signals and data. 

6  Discussion 
In this section we compare the results presented  above 
with the results of  a serial distributed arithmetic 
implementation. We also  compare the results of the 
FPGA implementations with the results of  an  
implementation on a Texas Instruments digital signal 
processor. Comparison results  are illustrated in Figures 9 
and 10, and analyzed in the following paragraphs.  

We implemented the discrete wavelet transform  tree 
using the SDA FIR shown in Figure 4. The  forward 
discrete wavelet transform implementation operated at a 
throughput of  26 MHz, and required  369 Virtex slices 
which represents  around 12 % of the total 3072 slices. 
Throughout of the inverse discrete wavelet transform  
implementation was 23.7 MHz, and the hardware 
requirement was 461 slices which represent around 15 % 
of the total Virtex  slices. It is noted from these results 
that there is a 6-fold performance increase for a 3-fold 
increase in slice count between the serial distributed 
arithmetic  implementation and the fully parallel 
distributed arithmetic implementation. The results clearly 
demonstrate the speed/cost scalability of  the distributed 
arithmetic algorithm, and suggest that  in between the 

SDA and fully PDA there exist opportunities  to increase 
performance by a factor of two or more, with 
corresponding increase in logic requirements.  
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Fig. 9. Performance comparison (a). Throughput and (b). 
Utilization. 

 
The wavelet transform was also implemented on the 
TMS320C6711; a Texas Instrument  digital signal 
processor with an a complex architecture suitable for  
image processing  applications [26]. The TMS320C6711 
is a highly integrated single chip processor and can 
operate at 150 MHz (6.7 ns clock cycle) with  a peak 
performance of 900 MFLOPS.  The  processor  was 
programmed such that the main portion of the wavelet 
transform was written in C, and certain sections in 
assembly. Also, parallel instructions were used whenever 
possible to exploit the abundant parallelism inherent in 
the wavelet transform. Sample execution times obtained 
for both the forward and inverse discrete wavelet 
transforms were 0.153 µs (6.53 MHz) and 0.276 µs (3.62 
MHz),  respectively.  

It is noted from the results obtained  above, and 
illustrated  in Figure 10, that all distributed arithmetic 
FPGA implementations  perform much better than the 
TMS20C6711 implementation.  The superior 
performance of the FPGA-based  implementations is 
attributed to the highly parallel, pipelined  and distributed 
architecture of Xilinx Virtex FPGA. Moreover, it should 
be noted that the Virtex FPGAs offer more than high 
speed for many embedded applications. They offer 
compact implementation, low cost and low power 
consumption; things which can’t be offered by any 
software implementation. 
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 Fig. 10. Throughput  performance comparison. 

 
Finally, After completing this  FPGA implementation of 
the discrete wavelet transform and its inverse, we are 
now working on integrating a whole wavelet-based 
image  compression system on a single, dynamic, 
runtime reconfigurable FPGA.  A typical  image 
compression system consists of an encoder and a 
decoder. At the  encoder side, an image is first 
transformed to the frequency domain using the forward 
discrete wavelet transform. The non-negligible wavelet 
coefficients  are then  quantized, and finally encoded 
using  an  appropriate entropy encoder.  The decoder side 
reverses the whole encoding procedure described above. 
Transforming the 2-D image data  can be done simply by 
inserting a matrix transpose module between two 1-D 
discrete wavelet transform modules such as those 
described in this paper. 

7 Conclusions 
In this paper we described an effective parallel single-
chip implementation of the discrete wavelet transform 
and its inverse  using Virtex FPGAs. The effectiveness of 
the  implementation  is attributed to the exploitation of 
the natural match which exits between the parallel 
distributed arithmetic technique, and the LUT-based 
architecture of the Virtex FPGAs.  In conclusion, the 
implementation can be adopted  in the construction of  
high speed  MPEG-4 and  JPEG2000 multimedia 
compression decoders. 
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