
 Informatica 29 (2005) 241–247 241

An FPGA-Based Parallel Distributed Arithmetic Implementation
of the 1-D Discrete Wavelet Transform
Ali M. Al-Haj
Department of Computer Engineering,
Princess Sumaya University for Technology,
Al-Jubeiha P.O.Box 1438, Amman 11941, Jordan

Keywords: discrete wavelet transform, parallel distributed arithmetic, parallel implementation, Virtex FPGAs.

Received: February 7, 2004

The fine grained parallelism inherent in Field Programmable Gate Arrays (FPGAs) may be well
exploited to implement the computation-intensive discrete wavelet transform, which is increasingly
employed in multimedia consumer electronics. In this paper, we describe a parallel implementation of
the discrete wavelet transform and its inverse using Virtex FPGAs. We make maximal utilization of the
look-up table architecture of the Virtex FPGAs by reformulating the wavelet computation in
accordance with the parallel distributed arithmetic algorithm. The reported single chip implementation
may be used effectively in the construction of low-power, wavelet-based MPEG-4 and JPEG2000
decoders.
Povzetek: Opisana je implementacija FPGA algoritma za uporabo v uporabniški elektroniki.

1 Introduction
Digital signal processing algorithms are increasingly
employed in modern wireless communications and
multimedia consumer electronics, such as cellular
telephones and digital cameras. Traditionally, such
algorithms are implemented using programmable DSP
chips for low-rate applications [1], or VLSI application
specific integrated circuits (ASICs) for higher rates [2].
However, advancements in Filed Programmable Gate
Arrays (FPGAs) provide a new vital option for the
efficient implementation of DSP algorithms [3]. FPGAs
are bit-programmable computing devices which offer
ample quantities of logic and register resources that can
easily be adapted to support the fine-grained parallelism
of many pipelined digital signal processing algorithms
[4] - [6].

At the heart of most digital signal processing
algorithms is a multiply-and-accumulate function that
can be implemented more efficiently with distributed
arithmetic architectures [7]. These architectures make
extensive use of look-up tables, which make them ideal
for implementing digital signal processing functions on
Xilinx FPGAs, whose architectures are based on look-up
tables. Moreover, distributed architectures are suitable
for low power portable applications, because they
replace the costly multipliers with shifts and look-up
tables [8].

An emerging arithmetic-intensive digital signal
processing algorithm is the discrete wavelet transform [9]
. The perfect reconstruction and lack of blocking
artifacts properties of this transform have proven to be
extremely useful for image and video coding applications
[10]. Furthermore, the basis functions of the discrete

wavelet transform match the human visual profiles, and
hence provide subjectivity pleasing images at high
compression rates. By virtue of such attractive features of
the wavelet transform, it has been adopted by the recent
multimedia compression standards MPEG-4 [11] and
JPEG2000 [12].

 In this paper, we describe a parallel and high speed,
single-chip implementation of the discrete wavelet
transform and its inverse using Virtex FPGAs [13]. We
make maximal utilization of the look-up table
architecture of Virtex FPGAs by reformulating the
wavelet transform computation in accordance with the
parallel distributed arithmetic algorithm. Unlike most
papers in literature which report on single-chip VLSI
architectures of the forward discrete wavelet transform
only [14] - [17], this paper describes an actual
implementation of both the forward and inverse
transforms. Therefore, the implementation may be used
in the construction of effective MPEG-4 and
JPEG2000 decoders.

Finally, the paper is organized as follows. Section
two gives preliminaries of the implementation which
includes an overview of the discrete wavelet transform
and Xilinx Virtex FPGAs. Section three describes
principles of parallel distributed arithmetic, and section
four describes our parallel implementation which is
based on parallel distributed arithmetic. Performance
results are presented in section five, and discussed in
section six. Finally, some concluding remarks are
presented in section seven.

2 Preliminaries
In this section we give a brief description of the Mallat
algorithm which is an efficient algorithm used to

242 Informatica 29 (2005) 241–247 A.M. Al-Haj

compute the coefficients of the discrete wavelet
transform. We also give an overview of Xilinx Virtex
FPGAs which are used as our single-chip implementation
platform.

2.1 Discrete Wavelet Transform
Coefficients

Wavelets are special functions which, in a form
analogous to sines and cosines in Fourier analysis, are
used as basal functions for representing signals. The
coefficients of the discrete wavelet transform can be
calculated recursively and in a straight forward manner
using the well-known Mallat’s pyramid algorithm [18].
Based on Mallat’s algorithm, the discrete wavelet
coefficients of any stage can be computed from the
coefficients of the previous stage using the following
iterative equations:

)1().........2()1,(),(0 nmhjmWjnW
m

LL −−= ∑

)2)........(2()1,(),(1 nmhjmWjnW
m

LH −−= ∑

Where WL(n,j) is the nth scaling coefficient at the jth
stage, WH(n,j) is the nth wavelet coefficient at the jth
stage, and h0(n) and h1(n) are the dilation coefficients
corresponding to the scaling and wavelet functions,
respectively. In order to reconstruct the original data, the
DWT coefficients are upsampled and passed through
another set of low pass and high pass filters, which is
expressed as

)3(....................).........2()1,(

)2()1,(),(

1

0

lngjlW

kngjkWjnW

l
H

k
LL

−+

+−+=

∑

∑

where g0(n) and g1(n) are respectively the low-
pass and high-pass synthesis filters corresponding to the
mother wavelet. It is observed from Equation (3) that the
jth level coefficients can be obtained from the (j+1)th
level coefficients.

Daubechies 8-tap wavelet has been chosen for this
implementation. This wavelet type is known for its
excellent special and spectral localities which are useful
properties in image compression [19]. The filters
coefficients corresponding to this wavelet type are
shown in Table 1. H0 and H1 are the input
decomposition filters and G0 and G1 are the output
reconstruction filters.

Table 1. Daubechies 8-tap wavelet filter coefficients.

H0 H1 G0 G1

-0.0106 0.2304 -0.2304 -0.0106
 -0.0329 0.7148 0.7148 0.0329
 0.0308 0.6309 -0.6309 0.0308

 0.1870 -0.0280 -0.0280 -0.187
-0.0280 -0.1870 0.1870 -0.0280
-0.6309 0.0308 0.0329 0.6309
 0.7148 0.0329 -0.0329 0.7148
-0.2304 -0.0106 -0.0106 0.2304

2.2 Virtex FPGAs: Architecture and
Programming

One of most advanced FPGA families in industry is the
FPGA series produced by Xilinx [20]. The Virtex user-
programmable gate array comprises two major
configurable elements: configurable logic blocks (CLBs)
and input/output blocks (IOBs). Each CLB is composed
of two slices as shown in Figure 1. A slice contains 4-
input, 1-output LUTs and two registers. Interconnections
between these elements are configured by multiplexers
controlled by SRAM cells programmed by a user’s
bitstream. The LUTs allow any function of five inputs,
and two functions of four inputs, or some functions of up
to nine inputs to be created within a CLB slice. This
structure allows a very powerful method of implementing
arbitrary, complex digital logic.

Fig. 1. Simplified Architecture of Virtex configurable
logic block.

Virtex FPGAs are programmed using Verilog HDL; a
popular hardware description language [21]. The
language has capabilities to describe the behavioral
nature of a design, the data flow of a design, a design’s
structural composition, delays and a waveform
generation mechanism. Models written in this language
can be verified using a Verilog simulator. As a
programming and development environment, Xilinx ISE
Foundation Series tools have been used to produce a
physical implementation for the Viretx FPGA.

3 Distributed Arithmetic
Distributed arithmetic (DA) is an efficient method for
computing the inner product operation which constitutes
the core of the discrete wavelet transform. Mathematical
derivation of distributed arithmetic is extremely simple;
a mix of Boolean and ordinary algebra [22]. Let the
variable Y hold the result of an inner product operation
between a data vector x and a coefficient vector a. The
distributed arithmetic representation the inner product
operation is given as follows:

AN FPGA-BASED PARALLEL... Informatica 29 (2005) 241–247 243

)4.........(..............................2

)(2

1

1

1
0

1

1 1

FF

xaaxY

j
B

j
j

N

i
ii

j
B

j

N

i
iij

−=

−+⎥
⎦

⎤
⎢
⎣

⎡
=

−
−

=

=

−
−

= =

∑

∑∑ ∑

Where the input data words xi have been represented by
the 2’s complement number presentation in order to
bound number growth under multiplication. The variable
xij is the jth bit of the xi word which is Boolean, B is the
number of bits of each input data word and x0i is the sign
bit. Distributed arithmetic is based on the observation
that the function Fj can only take 2N different values that
can be pre-computed offline and stored in a look-up
table. Bit j of each data xij is then used to address this
look-up table. Equation (4) clearly shows that the only
three different operations required for calculating the
inner product. First, a look-up to obtain the value of Fj,
then addition or subtraction, and finally a division by two
that can be realized by a shift.

3.1 Parallel Realization
In its most obvious and direct form, distributed
arithmetic computations are bit-serial in nature, i.e., each
bit of the input samples must be indexed in turn before a
new output sample becomes available. When the input
samples are represented with B bits of precision, B clock
cycles are required to complete an inner-product
calculation. A parallel realization of distributed
arithmetic corresponds to allowing multiple bits to be
processed in one clock cycle by duplicating the LUT and
adder tree. In a 2-bit at a time parallel implementation,
the odd bits are fed to one LUT and adder tree, while the
even bits are simultaneously fed to an identical tree. The
bits partials are left shifted to properly weight the result
and added to the even partials before accumulating the
aggregate. In the extreme case, all input bits can be
computed in parallel and then combined in a shifting
adder tree.

3.2 Virtex Implementation
The Xilinx Virtex slices have the ability to implement
distributed memory instead of logic. Each 4-input LUT
in a slice may be used to implement a 16x1 ROM or
RAM, or the two LUTs may be combined together to
create a 32x1 ROM or RAM or a 16x1 dual-port RAM.
This allows each slice to trade logic resources for
memory in order to maximize the resources available for
a particular application. Distributed Arithmetic for inner
product generation can be easily implemented in the
LUT-based Xilinx Virtex FPGAs. The inner product
production basically consists of table-lookup operations
and additions. Thus RAM or ROM can be employed
holding table values, and table lookup operations can be
performed, and then a parallel adder usually follows to
sum up LUT values provided by ROM or RAMs.

4 Parallel DA Implementation
The discrete wavelet transform equations can be
efficiently computed using the pyramid filter bank tree
shown in Figure 2. In this section we describe a parallel
distributed arithmetic implementation of the filter banks
shown. We start by deriving a parallel distributed
arithmetic structure of a single FIR filter. We then
describe the implementation of the decimator and
interpolator; the basic building blocks of the forward
and discrete wavelet transforms, respectively.

X[n]
1H (z)

2H (z)0

2

H (z)1

H (z)0 2

2

H (z)1

H (z)0 2

2

H [n]1

2 G (z)

2 G (z)0

1

Y[n]

0G (z)2

G (z)2 1

2

2

G (z)0

G (z)1

H [n]2

H [n]3

L [n]3

L [n]3

H [n]

H [n]3

2

H [n]1

(a)

(b)

Fig. 2. Mallat's quadratic mirror filter tree used to compute the
coefficients of the (a). forward and (b). inverse wavelet
transforms.

4.1 Parallel DA FIR Filter Structure
All filters in the pyramid tree structure shown in Figure 2
are constructed using FIR filters because of their
inherent stability. Most discrete wavelet transform
implementations reported in literature employ the direct
FIR structure, in which each filter tap consists of a delay
element, an adder, and a multiplier [23] . However, a
major drawback of this implementation is that filter
throughput is inversely proportional to the number of
filter taps. That is, as filter length is increased, the filter
throughput is proportionately decreased. In contrast,
throughput of an FIR filter constructed using distributed
arithmetic is maintained regardless of the length of the
filter. This feature is particularly attractive for flexible
implementations of different wavelet types since each
type has a different set of filer coefficients.

Distributed arithmetic implementation of the
Daubechies 8-tap wavelet FIR filter consists of an
LUT, a cascade of shift registers and a scaling
accumulator, as shown in Figure 3. The LUT stores all
possible sums of the Daubechies 8-tap wavelet
coefficients given in Table 1. As the input sample is
serialized, the bit-wide output is presented to the bit-
serial shift register cascade,1-bit at a time. The cascade
stores the input sample history in a bit-serial format and
is used in forming the required inner-product
computation. The bit outputs of the shift register cascade
are used as address inputs to the LUT. Partial results
from the LUT are summed by the scaling accumulator to
form a final result at the filter output port.

244 Informatica 29 (2005) 241–247 A.M. Al-Haj

Fig. 3. A DA implementation of the Daubechies FIR filter.

Since the LUT size in a distributed arithmetic
implementation increases exponentially with the number
of coefficients, the LUT access time can be a bottleneck
for the speed of the whole system when the LUT size
becomes large. Hence we decomposed the 8-bit LUT
shown in Figure 3 into two 4-bit LUTs, and added their
outputs using a two-input accumulator. The 4-bit LUT
partitioning is optimum in terms of logic resources
utilization, since this matches naturally the Virtex slice
architecture, shown in Figure 1, which uses 4-input
LUTs. The modified partitioned-LUT architecture is
shown in Figure 4. The total size of storage is now
reduced since the accumulator occupies less logic
resources than the larger 8-bit LUT. Furthermore,
partitioning the larger LUT into two smaller LUTs
accessed in parallel reduces access time.

Fig. 4. A partitioned-LUT DA implementation of the Daubechies
FIR filter.

A parallel implementation of the inherently serial
distributed arithmetic (SDA) FIR filter, shown in Figure
4, corresponds to partitioning the input sample into M
sub-samples and processing these sub-samples in
parallel. Such a parallel implementation requires M-
times as many memory look-up tables and so comes at a
cost of increased logic requirements. We describe below
the implementation of our PDA FIR filter at two
different degrees of parallelism; a 2-bit PDA FIR filter
and a fully parallel 8-bit PDA FIR filter.

A 2-bit parallel distributed arithmetic (PDA) FIR
filter implementation is shown in Figure 5. It corresponds

to feeding the odd bits of the input sample to an SDA
LUT adder tree, while feeding the even bits,
simultaneously, to an identical tree. Compared to the
serial DA filter, shown is Figure 4, the shift registers are
each replaced with two similar shift registers at half the
bit size. The odd bit partials are left shifted to properly
weight the result and added to the even partials before
accumulating the aggregate by a 1-bit scaling adder.
Finally, since two bits are taken at a time, the scaling
accumulator is changed from 1-to-2-bit shift (1/4) for
scaling.

 Fig. 5. A 2-bit PDA Daubechies FIR filter.

As for the fully parallel 8-bit PDA FIR filter
implementation, the 8-bit input sample is partitioned into
eight 1-bit sub-samples so as to achieve maximum
speed. Figure 6 shows the ultimate fully parallel PDA
FIR filter, where all 8 input bits are computed in parallel
and then summed by a binary-tree like adder network.
The lower input to each adder is scaled down by a factor
of 2. No scaling accumulator is needed in this case, since
the output from the adder tree is the entire sum of
products.

Fig. 6. (a). A single-bit and (b). an 8 -bit PDA Daubechies FIR
filter.

4.2 Decimator Implementation
Wavelets are The basic building block of the parallel
DA forward discrete wavelet transform filter bank is the
decimator, which consists of a parallel DA, anti-aliasing
FIR filter, followed by a down-sampling operator [24].

AN FPGA-BASED PARALLEL... Informatica 29 (2005) 241–247 245

Down sampling an input sequence x[n] by 2 generates
an output sequence y[n] according to the relation y[n] =
x[2n]. All input samples with indices equal to an integer
multiple of 2 are retained at the output, and all other
samples are discarded. Therefore, the sequence y[n] has
a sampling rate equal to half of the sampling rate of
x[n].

We implemented the decimator as shown in Figure
7a. The input data port of the PDA FIR filter is
connected to the external input samples source, and its
clock input is tied with the clock input of a 1-bit
counter. Furthermore, the output data port of the PDA
FIR filter is connected to the input port of a parallel-load
register. The register receives or blocks data appearing
on its input port depending on the status of the 1-bit
counter. Assuming an unsigned 8-bit input sample is
used, the decimator operates in such a way that when
the counter is in the 1 state, the PDA FIR data is stored
in the parallel load register, and when the counter turns to
the 0 state, the PDA FIR data is discarded.

The decimator operation was modeled and verified
using Verilog’s functional simulator. The corresponding
simulation waveform is displayed in Figure 7b. As
shown, a random input sample X enters the decimator at
a rate of 1sample/1 clocks , and an output filtered
sample Y leaves the decimator at a rate of 1sample/
2clocks. The input frequency is clearly halved by the
decimator. We maintained sufficient precision of the
decimator output sample as indicated by number of bits
in the parenthesis. Allocating sufficient bits to the
intermediate and output coefficients has been a necessary
step to keep the perfect reconstruction capabilities of the
discrete wavelet transform.

FIR

DATA
IN

CLK

DATA
OUT

CLK
Counter

1-bit

OUT

m-bit
Register

QD

CLK

CLOCK

X
n m m

Y

 (a)

 (b)

Fig. 7. (a). Implementation and (b). functional simulation of the
decimator.

4.3 Interpolator implementation
Wavelets are The basic building block of the inverse
discrete wavelet transform filter bank is the interpolator
which consists of a parallel DA, anti-imaging FIR filter,
proceeded by an up-sampling operator [24]. In up-
sampling by a factor of 2, an equidistant zero-valued
sample is inserted between every two consecutive
samples on the input sequence x[n] to develop an output
sequence y[n], such that y[n] = x[n/2] for even indices
of n, and 0 otherwise. The sampling rate of the output
sequence y[n] is twice as large as the sampling rate of
the original sequence x[n].

We implemented the interpolator as shown in Figure
8a. The input data port of the PDA FIR filter is
connected to the output port of a parallel-load register.
Furthermore, the input port of the register is connected
to the external input sample source, and its CLK input is
tied with the CLK input of a 1-bit counter. The operation
of the register depends on the signal received on its
active-high CLR (clear) input from the 1-bit counter.
Assuming the input signal source sends out successive
samples separated by 2 clock periods, the interpolating
filter operates in such a way that when the counter is in
the 0 state, the register passes the input sample X to the
PDA FIR filter, and when the counter turns to the 1 state,
the register is cleared, thus transferring a zero to the PDA
FIR filter. That is, a zero is inserted between every tow
successive input samples.

The interpolator operation was modeled and
verified using Verilog’s functional simulator. The
simulation waveform is displayed in Figures 8b. The
filter receives an input sample X at the rate of 1
sample/2 clocks , and sends out its filtered sample Y at
the rate of 1 sample/1 clock. The input frequency is
clearly doubled by the interpolator. Also, similar to the
decimator, we maintained sufficient precision of the
interpolator output as indicated by number of bits in the
parenthesi

1-bit
Counter

CLOCK

X
m

CLK

m

OUT

D

CLR

CLK

Q
n

Y
DATA

IN

CLK

FIR

DATA
OUT

Register
m-bit

(a)

(b)

Fig. 8. (a). Implementation and (b). unctional simulation of the
interpolator.

246 Informatica 29 (2005) 241–247 A.M. Al-Haj

5 Implementation Results
We have implemented the PDA filter bank architectures
described in the previous section using one of the largest
available Xilinx Virtex FPGA devices, XCV300. This
device contains 322,970 gates (3072slices) and can
operate at a maximum clock speed of 200 MHz.
Therefore, performance is usually measured with respect
to two evaluation metrics; the throughput (sample rate)
and is given in terms of the clock speed, and device
utilization, and is given in terms number of Virtex logic
slices used by the implementation.

In the 2-bit PDA FIR implementation, the forward
discrete wavelet transform operated at a throughput of
48.1 MHz, and required 645 Virtex slices which
represents around 21 % of the total 3072 slices.
Throughout of the inverse discrete wavelet transform
was 46.5 MHz, and the hardware requirement was 707
slices which represent around 23 % of the total Virtex
slices. On the other hand, the fully 8-bit PDA
implementation, and as expected, performed much better.
The forward discrete wavelet transform operated at a
throughput of 154.6 MHz, and required 1167 Virtex
slices which represents around 38 % of the total 3072
slices. Throughout of the inverse discrete wavelet
transform was 151 MHz, and the hardware requirement
was 1352 slices which represent around 44 % of the total
Virtex slices.

The bit stream corresponding to the 8-bit PDA
implementation was downloaded to a prototyping board
called the XSV-300 FPGA Board, developed by XESS
Inc [25]. The board is based on a single Xilinx XCV300
FPGA. It can accept video with up to 9-bits of resolution
and output video images through a 110 MHz, 24-bit
RAMDAC. Two independent banks of 512K x 16 SRAM
are provided for local buffering of signals and data.

6 Discussion
In this section we compare the results presented above
with the results of a serial distributed arithmetic
implementation. We also compare the results of the
FPGA implementations with the results of an
implementation on a Texas Instruments digital signal
processor. Comparison results are illustrated in Figures 9
and 10, and analyzed in the following paragraphs.

We implemented the discrete wavelet transform tree
using the SDA FIR shown in Figure 4. The forward
discrete wavelet transform implementation operated at a
throughput of 26 MHz, and required 369 Virtex slices
which represents around 12 % of the total 3072 slices.
Throughout of the inverse discrete wavelet transform
implementation was 23.7 MHz, and the hardware
requirement was 461 slices which represent around 15 %
of the total Virtex slices. It is noted from these results
that there is a 6-fold performance increase for a 3-fold
increase in slice count between the serial distributed
arithmetic implementation and the fully parallel
distributed arithmetic implementation. The results clearly
demonstrate the speed/cost scalability of the distributed
arithmetic algorithm, and suggest that in between the

SDA and fully PDA there exist opportunities to increase
performance by a factor of two or more, with
corresponding increase in logic requirements.

0
20
40
60
80

100
120
140
160

Th
ro

ug
hp

ut
 (M

H
z)

SDA 2-Bit PDA 8-Bit PDA

Implementation

Forward DWT Inverse DWT

(a)

0
200
400
600
800

1000
1200
1400

U
til

iz
at

io
n

(S
lic

e)

SDA 2-Bit PDA 8-Bit PDA

Implementation

Forward DWT Inverse DWT

(b)

Fig. 9. Performance comparison (a). Throughput and (b).
Utilization.

The wavelet transform was also implemented on the
TMS320C6711; a Texas Instrument digital signal
processor with an a complex architecture suitable for
image processing applications [26]. The TMS320C6711
is a highly integrated single chip processor and can
operate at 150 MHz (6.7 ns clock cycle) with a peak
performance of 900 MFLOPS. The processor was
programmed such that the main portion of the wavelet
transform was written in C, and certain sections in
assembly. Also, parallel instructions were used whenever
possible to exploit the abundant parallelism inherent in
the wavelet transform. Sample execution times obtained
for both the forward and inverse discrete wavelet
transforms were 0.153 µs (6.53 MHz) and 0.276 µs (3.62
MHz), respectively.

It is noted from the results obtained above, and
illustrated in Figure 10, that all distributed arithmetic
FPGA implementations perform much better than the
TMS20C6711 implementation. The superior
performance of the FPGA-based implementations is
attributed to the highly parallel, pipelined and distributed
architecture of Xilinx Virtex FPGA. Moreover, it should
be noted that the Virtex FPGAs offer more than high
speed for many embedded applications. They offer
compact implementation, low cost and low power
consumption; things which can’t be offered by any
software implementation.

AN FPGA-BASED PARALLEL... Informatica 29 (2005) 241–247 247

0
20
40
60
80

100
120
140
160

Th
ro

ug
pu

t (
M

H
z)

TMS320C6711 SDA 2-Bit PDA 8-Bit PDA
Implementation

Forward DWT Inverse DWT

 Fig. 10. Throughput performance comparison.

Finally, After completing this FPGA implementation of
the discrete wavelet transform and its inverse, we are
now working on integrating a whole wavelet-based
image compression system on a single, dynamic,
runtime reconfigurable FPGA. A typical image
compression system consists of an encoder and a
decoder. At the encoder side, an image is first
transformed to the frequency domain using the forward
discrete wavelet transform. The non-negligible wavelet
coefficients are then quantized, and finally encoded
using an appropriate entropy encoder. The decoder side
reverses the whole encoding procedure described above.
Transforming the 2-D image data can be done simply by
inserting a matrix transpose module between two 1-D
discrete wavelet transform modules such as those
described in this paper.

7 Conclusions
In this paper we described an effective parallel single-
chip implementation of the discrete wavelet transform
and its inverse using Virtex FPGAs. The effectiveness of
the implementation is attributed to the exploitation of
the natural match which exits between the parallel
distributed arithmetic technique, and the LUT-based
architecture of the Virtex FPGAs. In conclusion, the
implementation can be adopted in the construction of
high speed MPEG-4 and JPEG2000 multimedia
compression decoders.

8 References
[1] Texas Corporation, www.ti.com
[2] M. Smith, Application-specific integrated circuits.

USA: Addison Wesley Longman, 1997.
[3] R. Seals and G. Whapshott, Programmable Logic:

PLDs and FPGAs. UK: Macmillan, 1997.
[4] P. Kollig, B. Al-Hashimi and K. Abbot, “ FPGA

implementation of high performance FIR filters,” In
Proc. International Symposium on Circuits and
Systems, 1997.

[5] M. Shand, “ Flexible image acquisition using
reconfigurable hardware,” In Proc. of the IEEE
Workshop on Filed Programmable Custom
Computing Machines, Napa, Ca, Apr. 1995.

[6] J. Villasenor, B. Schoner, and C. Jones, “Video
communication using rapidly reconfigurable
hardware,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 5, no. 12, pp.
565-567, Dec. 1995.

[7] L. Mintzer, “The role of distributed arithmetic in
FPGAs,” Xilinx Corporation.

[8] K. Parhi, VLSI digital signal processing systems.
US: John Wiley & Sons, 1999

[9] G. Strang and T. Nguyen, Wavelets and filter
banks. MA: Wellesley-Cambridge Press, 1996.

[10] M. Antonini, M. Barlaud, P. Mathieu, and I.
Daubechies, “Image coding using wavelet
transform,” IEEE Trans. Image Processing, vol. 1,
no.2, pp. 205-220, April 1992.

[11] T. Ebrahimi and F. Pereira, The MPEG-4 Book.
Prentice Hall, July 2002

[12] D. Taubman and M. Marcellin. JPEG2000: Image
compression fundamentals, standards, and practice.
Kluwer Academic Publishers, November, 2001,

[13] Xilinx Corporation. “Xilinx breaks one million-gate
barrier with delivery of new Virtex series,” October
1998

[14] G. Knowles, “VLSI architecture for the discrete
wavelet transform,” Electron Letters, vol. 26, no.
15, pp. 1184-1185, July 1990.

[15] A. Grzeszczak, M. Kandal, S. Panchanathan, and
T. Yeap, “ VLSI implementation of discrete
wavelet transform,” IEEE Trans. VLSI Systems, vol.
4, no. 4, pp. 421-433, Dec. 1996

[16] K. Parhi and T. Nishitani, VLSI architectures for
discrete wavelet transforms, IEEE Trans. VLSI
Systems, pp. 191-202, June 1993.

[17] C.Chakabarti, M. Vishwanath, and R. Owens,
"Architectures for wavelet transforms: a survey,"
Journal of VLSI Signal Processing, vol. 14, no. 2,
pp.171-192, Nov. 1996.

[18] S. Mallat, “ A theory for multresolution signal
decomposition: The wavelet representation, IEEE
Trans. Pattern Anal. And Machine Intell., vol. 11,
no. 7, pp. 674-693, July 1989.

[19] I. Daubechies, “Orthonomal bases of compactly
supported wavelets,” Comm. Pure Appl. Math, vol.
41, pp. 906-966, 1988.

[20] Xilinx Corporation. Virtex Data Sheet, 2000.
[21] S. Palnitkar, Verilog HDL, SunSoft Press, 1996.
[22] S. White, “Applications of distributed arithmetic to

digital signal processing: a tutorial”, In IEEE ASSP
Magazine, pp. 4-19, July 1989.

[23] A. Oppenheim and R. Schafer, Discrete signal
processing. New Jersy: Prentice Hall, 1999.

[24] P. Vaidyanathan, Multirate systems and filter
banks. New Jersey: Prentice Hall, 1993.

[25] Xess Corporation. www.xess.com.
[26] Texas Instruments Corporation. TMS320C6711

data sheet, 2000.

248 Informatica 29 (2005) 241–247 A.M. Al-Haj

