
Informatica 35 (2011) 435–444 435

Learning Predictive Qualitative Models with Padé

Jure Žabkar, Martin Možina, Ivan Bratko and Janez Demšar
University of Ljubljana, Faculty of Computer and Information Science, Tržaška 25, Ljubljana
E-mail: jure.zabkar|martin.mozina|ivan.bratko|janez.demsar}@fri.uni-lj.si

Keywords: qualitative modelling, machine learning

Received: April 18, 2010

Qualitative models are similar to regression models, except that instead of numerical predictions they
provide insight into how a change of a certain input variable affects the output within a context of other
inputs. Although people usually reason qualitatively, machine learning has mostly ignored this type of
model. We present a new approach to learning qualitative models from numerical data. We describe Padé,
a suite of methods for estimating partial derivatives of unknown sampled target functions. We show how to
build qualitative models using standard machine learning algorithms by replacing the output variable with
signs of computed derivatives. Experiments show that the developed methods are quite accurate, scalable
to high number of dimensions and robust with regard to noise.

Povzetek: Predstavljena je nova metoda za učenje iz kvalitativnih podatkov, imenovana Padé. Temelji na
ocenjevanju parcialnih odvodov neznane vzorčene ciljne funkcije.

1 Introduction
Qualitative models describe quantitative relations in quali-
tative terms, for instance, the more it rains and the longer I
stay in the rain, the wetter I will get (unless I have an um-
brella). Although seemingly inferior to the more accurate
numerical models, there are many reasons why qualitative
models are interesting for artificial intelligence.

One of the goals of artificial intelligence, according to
one of its founding fathers Alan Turing, is to mimic the
natural, human intelligence. In everyday life we intuitively
use qualitative models, not numerical equations. For in-
stance, the complete, realistic equation for behaviour of
a child swing would be extremely complicated, yet a five
year child knows how to “operate” the swing, and can de-
scribe her actions qualitatively, e.g. when to lean forward
and backward to regulate the amplitude.

Induced qualitative models can offer more insight into
the domain than numerical ones. The standard approach to
regression modelling is fitting the data to a polynomial or
another chosen function template. Although such models
are sometimes considered symbolic, they do not offer any
useful insight. For instance, the true and insightful numer-
ical symbolic model for swinging of a simple pendulum
would be a sine function like the one we get by solving the
corresponding differential equations. Such solutions are
difficult to induce from data using the current regression
modelling tools. In contrast, qualitative model can provide
a simple, but correct conceptual description: the pendulum
swings back and forth. Given enough data, we can discover
that the amplitude of the pendulum eventually decreases
until the pendulum stops. Given data on multiple pendu-
lums, we find out that longer strings yield longer periods,
and that changing the weight has no effect. While these de-

scriptions are insufficient for computing any actual periods,
they often provide all the insight we need. For instance, a
practical task may be to make the period of a pendulum
match that of another one. The guidance provided by the
qualitative model – increase the length if the period is too
long and vice versa – would suffice to accomplish the task.
Even when the final goal is to have a quantitative model,
the qualitative one can be helpful in its construction [12].

Finally, such models can also be more applicable than
numerical ones. For a simple example from economics,
consider the law of demand: “the higher the price, the
shorter the queue (other things left unchanged, less peo-
ple are willing to buy things for a higher price).” Any nu-
merical description of this relation would fail to give exact
predictions since it would include variables which are not
measurable with sufficient precision. Qualitative models,
on the other hand, deliver what they promise, that is, cor-
rect qualitative predictions. The above simple qualitative
rule is routinely, although not necessarily consciously, used
to control the market prices.

The field of machine learning, which developed many
methods for induction of (numerical) regression models,
showed surprisingly little interest in learning of qualitative
models from data. We will describe a suite of new ma-
chine learning algorithms with a common name Padé (an
acronym for “partial derivative”, and the name of a famous
French mathematician). Padé first computes partial deriva-
tives with respect to all independent attributes for all exam-
ples appearing in the data. Then it discards the quantitative
information, the magnitude, which is difficult to estimate
precisely, and only keeps the signs of derivatives, which
represent qualitative relations between the independent and
dependent attributes. Afterwards, we can use standard ma-

436 Informatica 35 (2011) 435–444 J. Žabkar et al.

chine learning algorithms to induce predictive qualitative
models, or venture into exploratory analysis and visualisa-
tion techniques.

We will continue the introduction with a formal defini-
tion of the problem and an overview of the related work.
The following section describes the algorithms for compu-
tation of partial derivatives from the data. In the section
on experiments we test the algorithms on artificial data sets
specifically constructed to explore particular properties of
the algorithms. We conclude with discussion of the experi-
mental results and some remarks.

1.1 Problem definition
We define qualitative partial derivative of function
f(x1, . . . , xn) with respect to attribute xi as the sign of
partial derivative,

∂Qf

∂Qxi
= sgn

∂f

∂xi
(1)

The qualitative derivative can be increasing (+), decreasing
(−) or steady (◦). We will write the fact that a function is
increasing, decreasing or steady with respect to xi as f =
Q(+xi), f = Q(−xi) and f = Q(◦xi), respectively.

Qualitative models are models which describe how the
qualitative behaviour of the function with respect to one
attribute depends upon values of other attributes. For in-
stance, function f(x1, x2) = x1x2 increases with x1 if x2
is positive, and decreases with x1 if x2 is negative. If x2
is zero, x1 has no effect on the value of the function. This
model can be written down in form of the following three
rules:

if x2 > 0 then f = Q(+x1)

if x2 < 0 then f = Q(−x1)
if x2 = 0 then f = Q(◦x1).

Function arguments can also be discrete, as in the following
qualitative relations between the price of a product and its
type and size:

if ProductType = car
then Price = Q(+ProductSize)

if ProductType = computer
then Price = Q(−ProductSize)

The task of qualitative modelling is to construct such mod-
els. In our case, we will induce them from data given as a
set of learning examples. Each example is described by val-
ues of discrete or continuous attributes and with a contin-
uous outcome. The outcome represents the value of some
unknown function. The task is to describe the qualitative
behaviour with respect to one or more attributes, condi-
tioned by values of these or other attributes.

The method proposed in this paper solves the problem in
two steps. First, we compute qualitative partial derivatives

T = Q(+l)

(a) Relation between the period and the length
of the rope.

T = Q(◦m)

(b) Relation between the period and the mass
of the bob.

(c) Relation between the period and the initial
amplitude.

Figure 1: Qualitative models describing the relations be-
tween the period T and the experimentally controlled vari-
ables.

for each example. This translates modelling the function’s
behaviour into the training of classifiers which predict the
qualitative derivative in different parts of attribute space.
For instance, the above rules can be acquired by running
the CN2 rule learning algorithm on examples labelled by
qualitative partial derivatives.

Separate models can be built for each attribute with re-
spect to which we observe the function’s behaviour. Alter-
natively, one can also build a classifier which predicts all
qualitative derivatives at once.

1.2 Introductory example

Consider a set of experiments with a simple pendulum. The
task is to learn qualitative relations between the period of
the pendulum’s first swing (T), the length of the rope, l, the
mass of the bob, m, and the initial angle of displacement,
φ. A sample of data collected in such an experiment is
shown in Table 1 (first four columns).1

We can then use Padé to compute the qualitative relations
for each measurement: ∂QT/∂Qm, ∂QT/∂Ql, ∂QT/∂Qφ,
and append them to the original data (Table 1, last three
columns). Finally, an algorithm for induction of classifica-
tion trees is used to construct a qualitative tree for each
qualitative relation, where examples are represented by
original attributes and the partial derivative (e.g. one of
the last three columns from Table 1) plays the role of the
class. The resulting trees are shown in Fig. 1. Two of them
have only a single leaf: the period always increases with
the length of the rope (T = Q(+l)) and does not depend
on the mass of the bob (T = Q(◦m)). The tree describing
the relation between T and φ says that for negative angles,
T decreases with increasing angle while for positive an-

1A part of this experiment was actually performed using a Nao robot.

LEARNING PREDICTIVE QUALITATIVE MODELS. . . Informatica 35 (2011) 435–444 437

m l φ T ∂QT/∂Qm ∂QT/∂Ql ∂QT/∂Qφ
3.61 0.69 37.23 1.70 ◦ + +
5.49 0.71 46.52 1.74 ◦ + +
9.19 0.84 -48.91 1.91 ◦ + −
7.17 0.33 33.89 1.17 ◦ + +
6.81 0.50 65.93 1.51 ◦ + +
4.64 0.69 -78.89 1.7 ◦ + −

Table 1: A sample of data collected by experimenting with a simple pendulum.

gles, T increases when φ increases. We can reinterpret this
as T = Q(+|φ|).

1.3 Related work
Mathematical foundations of qualitative reasoning were es-
tablished by the work of Kalagnanam and Simon [6, 7, 5],
but building on the much older work of Samuelson [9] in
economics, as well as the work on qualitative stability in
ecology [4, 8].

Many algorithms have, in one way or another, tackled the
problem of qualitative model induction from observation
data. Algorithms QUIN and epQUIN [11, 10, 2] learn qual-
itative trees similar to those in Figure 1, except for a some-
what different definition of the relation in the leaf. Qual-
itative relations in QUIN are not based on partial deriva-
tives, as in Padé, but on qualitative constraints. A constraint
z =M+−(x, y) would state that for every pair of examples
in which x increases and y decreases (or stays the same),
the function value z increases. This also implies that the
function value depends on no other attributes than x and y.
QUIN constructs such trees by computing the qualitative
change vectors between all pairs of examples in the data
and then recursively splitting the space into regions which
share common qualitative properties, such as the one given
above. Although Padé combined with a tree learning algo-
rithm can produce a similar tree as QUIN, the two methods
are fundamentally different. Besides Padé being merely a
preprocessor which can be used with any other machine
learning algorithm or visualization technique, the crucial
difference is that Padé considers individual examples while
QUIN operates on pairs. As one of the consequences, Padé
can compute qualitative (or numerical) derivatives for a
particular point in the attribute space, while QUIN observes
properties of regions of space.

Gerçeker and Say [3] fit polynomials to numerical data
and use them to induce qualitative models. LYQUID is
designed for modelling dynamic systems, where the data
consists of traces sampled in time. We believe that this
system could be adapted to also work in static systems.

Padé differs from past methods in being, to our knowl-
edge, the only algorithm for computing (partial) derivatives
on point cloud data. An important difference between these
algorithms and Padé is also that Padé is essentially a pre-
processor while other algorithms induce a model. Padé
merely augments the learning examples with additional la-

bels, which can later be used by appropriate algorithms
for induction of classification or regression models, or for
visualization. This results in a number of Padé’s advan-
tages. For instance, to our knowledge, most other algo-
rithms for learning qualitative models only handle numeri-
cal attributes, except for QDE learners which already take
qualitative behaviours as input. One variant of Padé can use
discrete attributes while computing the derivative, while
with others we can use them later, when machine learning
algorithms are applied to Padé’s output.

The major contribution of this work, besides the idea of
transforming the problem of qualitative modelling to stan-
dard induction of classifiers, are methods for computing
partial derivatives of an unknown sampled function. In
this respect it is related to numerical analysis for estima-
tion of partial derivatives. Numerical analysis methods for
computing partial derivatives are only useful for a function
which is known in the sense that we can compute its value
at any values of arguments which the algorithm requires.
These methods are not appropriate for learning from data,
where the function is sampled only in a limited number of
points.

2 Algorithms
Let f be a continuous function of n arguments, y =
f(x1, x2, . . . , xn) . The function is sampled in N points;
the point’s coordinates together with a function value rep-
resent a learning example. In machine learning termi-
nology, each example is described by a list of attributes,
(a1, a2, . . . an) and the outcome f(a1, a2, . . . , an). The
basic task of Padé is to compute a partial derivative at each
point (learning example) P in direction xi.

Fig. 2a shows an example of such data for a function
f(x, y) = x2 − y2. Each point represents a learning ex-
ample, and the numbers beside the examples give the func-
tion values. We will compute the derivative w.r.t. x1 at
P = (5, 5) marked by a hollow symbol. Other points used
in computation will be marked as A, B, C and so on. We
will treat these points as elements of affine space, and use
tA = A − P , tB = B − P ,. . . to denote the vectors from
P to the corresponding points. We will also extend the def-
inition of f to these vectors, i.e f(tA) = f(A − P) :=
f(A) − f(P) and so forth. These linear transformations
simplify the computation by setting up a coordinate system

438 Informatica 35 (2011) 435–444 J. Žabkar et al.

(a) Sampled function x2 − y2. (b) First triangle.

(c) Star regression. (d) Tube regression.

Figure 2: An artificial, sampled function (a) and an illustration of Padé’s methods (b-d).

in which the point P lies in the centre, tP = 0 and the
corresponding function value f(tP) equals 0.

Formally, the partial derivative with respect to xi at point
P is defined as

∂f

∂xi
(P) = lim

h→0

f(P + hxi)− f(P)

h
, (2)

where xi is the i-th base vector.
This definition cannot be used directly on data since it

involves infinitesimally small h and, furthermore, since we
cannot compute the function value at arbitrary points. Ac-
cording to Taylor’s theorem, the function can be treated as
approximately linear in small neighbourhoods of P ,

f(x1, . . . xn) = b0 +
n∑

i=1

bixi + ϵ, (3)

where ϵ represents the remainder in Taylor expansion (the
function’s non-linearity within the neighbourhood) and
also any noise in the data.

The derivative with respect to xi equals bi in (3). The
task is then to define a suitable neighbourhood and esti-
mate the coefficient bi accordingly. We will present three
different ways for solving this problem. The first method
determines the linear function f by simple linear interpo-
lation over the simplex while the other two methods use
linear regression.

2.1 First Triangle method
First triangle method models the function’s behaviour
by dividing the attribute space into simplices (our two-
dimensional illustrations show them as triangles) by using
the standard Delaunay triangulation [1] as shown in Fig. 2b.
Let us assume that there is no noise in the data and that
the sample is sufficiently dense so the function is approxi-
mately linear within each triangle.

Since the number of unknown coefficients bi in (3)
equals the number of vertices of the simplex, the coeffi-
cients can be found analytically by setting ϵ = 0. Perform-
ing the calculation in vector space instead of in the affine
space of points also eliminates the free term b0 and point
P .

Let t1,. . . ,tn be the vectors from P to the vertices of the
simplex which lies in direction xi. We look for b1,. . . ,bn
which satisfy

[b1 . . . bn][t1 . . . tn] = [f(t1) . . . f(tn)] (4)

(note that ti are n-dimensional vectors) and thus

[b1 . . . bn] = [f(t1) . . . f(tn)][t1 . . . tn]
−1 (5)

For our two-dimensional example (Fig. 2b), we interpo-
late over the triangle PAB and compute the coefficients
as

[b1, b2] = [f(tA), f(tB)][tA, tB]
−1,

which equals

[b1, b2] = [f(A)− f(P), f(B)− f(P)][A−P,B−P]−1.

LEARNING PREDICTIVE QUALITATIVE MODELS. . . Informatica 35 (2011) 435–444 439

2.2 Star Regression
Star Regression is based on similar assumptions as the First
triangle method, but improves its noise resistance by as-
suming the function’s linearity across the entire star (the
set of simplices surrounding a point) around the point P
instead of just across a single simplex.

We can no longer use interpolation as in the First trian-
gle, as it would result in a system with more equations than
unknowns and would usually have no solution. We there-
fore allow non-zero error terms ϵ and translate the problem
into computation of univariate linear regression over the
vertices in the star.

If t1,. . . ,tn are the vectors from P to the vertices of the
star, we compute bi, which equals the derivative, as

bi =

∑
j tjif(tj)∑

j t
2
ji

, (6)

where tji represents the i-th component of the vector cor-
responding to the j-th point in the star, tj.

In our illustration (Fig. 2c), we compute the univariate
linear regression over examples A, B, C, D, E and F, and
use the first coefficient as derivative.

2.3 Tube Regression
Tube Regression adds even more noise resilience. Instead
of triangulating, it considers a certain number of examples
in a (hyper)tube passing through point P in direction paral-
lel to the axis of differentiation (Fig. 2d; the tube is repre-
sented by the shaded area). We now assume that the func-
tion is approximately linear within short parts of the tube
and again estimate the derivative from the corresponding
coefficient computed by the univariate regression, this time
over the examples in the tube.

Since the tube can also contain examples that lie quite far
away from P , we weight the examples by their distances
from P along the tube (that is, ignoring all dimensions but
xi). The weight of the j-th example in the tube equals

wj = e−t2ji/σ
2

, (7)

where tji is the i-th component of vector tj (that is, the dis-
tance between P and the j-th example in direction parallel
to the axis of differentiation, xi). Parameter σ is chosen
so that the farthest example in the tube has a user-set neg-
ligible weight. As a rule of thumb, we use tubes with 30
examples, with the farthest (e.g. the right-most point in the
tube in Fig. 2d) having a weight of w30 = 0.001.

We then use the standard weighted univariate linear re-
gression to compute the coefficient of the linear term bi,

bi =

∑
j wjtjif(tj)∑

j wjt2ji
. (8)

The Tube regression is computed from a larger set of ex-
amples, so we can use the t-test to estimate the significance
of the derivative. Significance together with the sign of bi

can be used to define qualitative derivatives in the following
way: if the significance is above the user-specified thresh-
old (e.g. p ≤ 0.7), the qualitative derivative equals the sign
of bi; if significance is below the threshold we define the
qualitative derivative to be steady, disregarding the sign of
bi.

2.4 Time complexity
Let N be the number of examples and n the number at-
tributes (function arguments, dimensions).

First triangle and Star regression methods are based on
Delaunay triangulation. The time complexity of its compu-
tation is difficult to assess without making any strong as-
sumptions about the data. The state of the art qhull library
needs, roughly, O(2nN logN) to compute the triangula-
tion (a detailed analysis can be found in [1]).

For each data point, the First triangle algorithm needs to
find the triangle lying in the desired direction, which re-
quires computing the determinant of a n-dimensional ma-
trix for every triangle in the star. The time complexity is
O(Nn3t), where t is the maximal number of triangles in
any star. The value of t is again difficult to estimate, but
it usually rises exponentially with the number of dimen-
sions, which makes the time complexity O(Nn32n). The
total time complexity, including the triangulation, is thus
O(N2n(logN + n3))

Star regression computes univariate regression at every
data point and has a time complexity of O(Ns), where s
is the number of points in the star. As s generally rises ex-
ponentially with the number of dimensions, the theoretical
time complexity of this part of Star regression is O(N2n).
The total complexity is dominated by that of triangulation
and thus equals O(2nN logN).

Tube regression finds the nearest neighbours of each of
N examples, which takes O(nN2), followed by linear re-
gression over the k examples in the tube. The total time
complexity is O(nN2 + k) ≈ O(nN2).

Since these theoretical time complexities do not offer
much insight into the algorithms’ actual running times,
we conducted a set of experiments with different num-
ber of examples and attributes. The goal function was
random since it does not affect the time complexity. All
experiments were run on a 2 GHz laptop with 2 GB of
RAM. Results (Table 2) indicate that the time complex-
ity of triangulation-based methods is indeed exponential in
number of attributes and log linear in number of examples,
while the Tube regression is linear in number of attributes
and quadratic in number of examples. The exponential time
complexity prevents the use of triangulation-based methods
with more than four attributes.

3 Experiments
We evaluated Padé on a set of artificial data sets to observe
the correctness of derivatives, its scalability with respect to
the number of attributes, and its treatment of noise and of

440 Informatica 35 (2011) 435–444 J. Žabkar et al.

1000 2000 5000 10000
FT SR TR FT SR TR FT SR TR FT SR TR

2 3 1 10 5 1 41 14 6 259 42 29 1159
4 242 5 22 449 19 86 1082 114 532 2280 473 2444
6 33049 1387 32 – 3908 134 – – 857 – – 3924
8 – – 45 – – 176 – – 1163 – – 5143
10 – – 60 – – 232 – – 1627 – – 6694

Table 2: Running times (in seconds) of First triangle (FT), Star regression (SR) and Tube regression (TR) methods for
calculation of derivatives w.r.t. each attribute on data sets with 1000, 2000, 5000 and 10000 examples and 2, 4, 6, 8, 10
attributes. Symbol – denotes that the program ran out of memory.

discrete attributes. The accuracy is measured by comparing
the predicted qualitative behaviour with the analytically de-
rived true relation.

3.1 Accuracy

We observed the accuracy of Padé on a few mathematical
functions. We estimated partial derivatives using Padé and
compared them with the analytically obtained correct an-
swers, except for the functions in Fig. 3d and Fig. 3e for
which we computed numerical approximations of partial
derivatives by Mathematica [14]. Note that this procedure
does not require cross-validation or a similar form of data
sampling since the known ground truth (the correct deriva-
tives) is not used in the induction process.

Functions f(x, y) = x2 − y2 and f(x, y) = xy, with x
and y sampled from [−10, 10] were used as simple exam-
ples of functions which are continuous and differentiable
in the whole interval. The heavily oscillating f(x, y) =
sinx sin y, with x and y from [−7, 7] represents a func-
tion whose qualitative behaviour changes frequently, so the
partial derivatives are more difficult to compute and model.
Functions Im(arcsin(x+ iy)4) and Im(arctanh(x+ iy)3)
in [−2, 2]×[−2, 2] are two examples of discontinuous func-
tions. All functions are visualized in Fig. 3.

We computed the derivatives and trained the classifiers
on ten random samples of 1000 points. Average pro-
portions of correctly calculated qualitative derivatives are
shown in Table 3. First triangle and Tube regression per-
form equally well, except for the Tube regression’s failure
on f(x, y) = sinx sin y. A visual exploration of predicted
derivatives using a scatter plot clearly shows that this is
due to the tube being too long and thus covering multiple
periods of the function. Star regression’s performance lags
behind those of the other two algorithms.

To estimate the dependence of classification accuracy on
data set size we conducted these same experiments on sam-
ples of 100 to 2000 data points. We found out that learning
curves tend to flatten out at around 500 examples (Fig. 4).
The general order of methods w.r.t their accuracy remains
the same for all sample sizes, except for the last two func-
tions, which are discontinuous and where the First Triangle
method seems to suffer the least at very small samples.

3.2 Scalability to high number of
dimensions

We checked the scalability of Padé to high dimensional
spaces with an experiment with function x2 − y2, in which
we added 98 attributes with random values from [−10, 10]
to the data. We use the Tube regression to calculate the
derivatives since First triangle and Star regression cannot
handle such high dimensional data due to their use of trian-
gulation. We analysed the results by inducing classification
trees with the computed qualitative derivatives as classes.
Trees for derivatives by x and y agree well with the correct
results (Fig. 5).

3.3 Robustness to noise

We sampled the function f(x, y) = x2 − y2 in 1000 points
with x and y from [−10, 10], and introduced uniform ran-
dom noise of up to ±20 to the function value. Since the
First triangle and Star regression methods suppose no or
little noise, we again tested only the Tube regression.

Induced models (Fig. 6) are correct and the split thresh-
olds are surprisingly accurate given the huge relative
amount of noise at around x = 0 and y = 0.

3.4 Handling of discrete attributes

We explored Padé’s handling of discrete attributes on a
function defined as

f(x, s) =

{
x/10 ; s = 1
10x ; s = 0

Besides the continuous attribute x and boolean attribute s,
the data set also included an attribute r with random values
and no influence on f . Variables x and r were from the
same definition range, [−10, 10]. The function was sam-
pled in 400 points.

Tube Regression, whose results we used to construct a
classification tree, found the correct solution (Fig. 7). Other
methods failed to recognize the role of s, which they were
given as a continuous attribute. Using dummy variables,
like in statistical regression methods, does not work for
triangulation-based Padé’s methods.

LEARNING PREDICTIVE QUALITATIVE MODELS. . . Informatica 35 (2011) 435–444 441

(a) x2 − y2 (b) xy (c) sinx sin y

(d) Im(arcsin(x+ iy)4) (e) Im(arctanh(x+ iy)3)

Figure 3: Functions used in experiments.

f(x, y) First Triangle Star Regression Tube Regression
∂Qf/∂Qx ∂Qf/∂Qy ∂Qf/∂Qx ∂Qf/∂Qy ∂Qf/∂Qx ∂Qf/∂Qy

x2 − y2 98% 98% 98% 97% 95% 95%
xy 99% 99% 92% 92% 99% 99%

sinx sin y 89% 89% 73% 72% 53% 53%
Im(arcsin(x+ iy)4) 93% 93% 87% 86% 93% 93%
Im(arctanh(x+ iy)3) 91% 93% 76% 79% 86% 90%

Table 3: The comparison of accuracies of Padé’s methods on artificial datasets.

4 Conclusion

We described a new approach to induction of qualitative
models whose advantage over (rare) existing similar algo-
rithms is that it translates the problem into a standard su-
pervised learning problem, which is one of the most re-
searched fields in machine learning. The proposed transla-
tion requires computation of qualitative partial derivatives,
which we defined simply as signs of ordinary partial deriva-
tives. The biggest problem – and with that the core of this
paper – is computation of partial derivatives of the function
which is being modelled. Standard methods from numer-
ical analysis cannot be applied here since they require a
known function whereas in our case the function value is
known only in a finite number of sampled examples.

We proposed three methods for this task. Two are based

on triangulation and suppose either no noise or a small
amount of noise. Besides this, the two methods are not
likely to be useful in real-world scenarios which often con-
tain more attributes than triangulation can handle. Exper-
iments with the time complexity of the methods clearly
show that the triangulation-based methods are unable to
handle more than 6 attributes. Nevertheless, in absence of
noise these two methods provide very good accuracy for
functions with complex qualitative behaviour and low num-
ber of arguments, such as f(x, y) = sinx sin y. Tube re-
gression on the other hand offers robustness to noise, scales
well to high dimensional spaces and can also handle dis-
crete function arguments with proper definition of metrics.

In general, the triangulation-based methods may be
mostly of theoretical interest, while the Tube regression
has all the features required of a practically useful machine

442 Informatica 35 (2011) 435–444 J. Žabkar et al.

(a) f(x, y) = x2 − y2 (b) f(x, y) = xy

(c) f(x, y) = sinx sin y (d) f(x, y) = Im(arcsin(x+ iy)4)

(e) Im(arctanh(x+ iy)3)

Figure 4: Accuracy of ∂Qf/∂Qx over different sizes of data sets. Results for ∂Qf/∂Qy are similar.

LEARNING PREDICTIVE QUALITATIVE MODELS. . . Informatica 35 (2011) 435–444 443

(a) Derivative w.r.t. x. (b) Derivative w.r.t. to y.

Figure 5: Qualitative models of function x2 − y2 with 98 additional random attributes.

(a) Derivative w.r.t. x. (b) Derivative w.r.t. to y.

Figure 6: Qualitative models of function x2 − y2 with added random uniform noise.

learning method.
We have put the methods at a practical test within Euro-

pean project XPERO (IST-29427). Our goal was to provide
a robot with an algorithm for autonomous learning. We
found qualitative models most suitable for this task. For
example, a particular case was to discover the relation be-
tween the area of the ball in the image from robot’s camera,
and the robot’s angle and distance from the ball [13]. The
robot learnt that the area of the ball is increasing with de-
creasing distance and decreasing with increasing angle (the
robot turning away from the ball, so it gradually vanishes
from the robot’s field of view).

Since the field of learning qualitative models from data
is rather unexplored, the paper opens more new interesting
questions than it answers. Pioneers of qualitative modelling
who constructed the models manually were able to describe
real phenomena using simpler models, not unlike the clas-
sification trees and rules presented here. Is this generally
the case? Do simple learning algorithms like tree induction,
suffice, or will actual problems require more sophisticated
algorithm, such as, for instance, support vector machines?

This paper follows the mathematical definition of partial
derivative which is essentially univariate. Partial deriva-
tives are linear and do not interact: the effect of changing
two quantities at the same time equals the sum of effects
of changing each of them separately. The exception to this
rule are certain kinds of singularities. Does this happen in
practice, especially in qualitative descriptions of problems?
Can it happen, for instance, that two economic measures
used separately decrease the inflation while using both to-
gether would increase it? Is treating each attribute sepa-
rately indeed appropriate? We leave these questions open
for further research.

Acknowledgements
This work was supported by the Slovenian research agency
ARRS (J2-2194, P2-0209) and by the European project

XMEDIA under EC grant number IST-FP6-026978.

References
[1] C. Bradford Barber, David P. Dobkin, and Hannu

Huhdanpaa. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software,
22(4):469–483, 1996.

[2] Ivan Bratko and Dorian Šuc. Learning qualitative
models. AI Magazine, 24(4):107–119, 2003.

[3] R. K. Gerçeker and A. Say. Using polynomial approx-
imations to discover qualitative models. In Proc. of
the 20th International Workshop on Qualitative Rea-
soning, Hanover, New Hampshire, 2006.

[4] Clark Jeffries. Qualitative stability and digraphs in
model ecosystems. Ecology, 55(6):1415–1419, 1974.

[5] Jayant Kalagnanam and Herbert A. Simon. Directions
for qualitative reasoning. Computational Intelligence,
8(2):308–315, 1992.

[6] Jayant Kalagnanam, Herbert A. Simon, and Yumi
Iwasaki. The mathematical bases for qualitative rea-
soning. IEEE Intelligent Systems, 6(2):11–19, 1991.

[7] Jayant Ramarao Kalagnanam. Qualitative analysis of
system behaviour. PhD thesis, Pittsburgh, PA, USA,
1992.

[8] Robert M. May. Qualitative stability in model ecosys-
tems. Ecology, 54(3):638–641, 1973.

[9] Paul A. Samuelson. Foundations of Economic Analy-
sis. Harvard University Press; Enlarged edition, 1983.

[10] Dorian Šuc. Machine Reconstruction of Human Con-
trol Strategies, volume 99 of Frontiers in Artificial In-
telligence and Applications. IOS Press, Amsterdam,
The Netherlands, 2003.

444 Informatica 35 (2011) 435–444 J. Žabkar et al.

(a) Modelled function; filled and hollow circles represent ex-
amples with s = 1 and s = 0, respectively.

(b) Qualitative tree based on Tube Regression.

Figure 7: The function used in the experiment with discrete attributes and the corresponding qualitative model.

[11] Dorian Šuc and Ivan Bratko. Induction of qualitative
trees. In L. De Raedt and P. Flach, editors, Proceed-
ings of the 12th European Conference on Machine
Learning, pages 442–453. Springer, 2001. Freiburg,
Germany.

[12] Dorian Šuc, Daniel Vladušič, and Ivan Bratko. Qual-
itatively faithful quantitative prediction. Artificial In-
telligence, 158(2):189–214, 2004.

[13] Jure Žabkar, Ivan Bratko, and Janez Demšar. Learn-
ing qualitative models through partial derivatives by
Padé. In Proceedings of the 21th International Work-
shop on Qualitative Reasoning, Aberystwyth, U.K.,
2007.

[14] Wolfram Research, Inc. Mathematica, version 7.0.
Wolfram Research, Champaign, Illinois, 2008.

