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Geometric Analogues of Holographic Reduced Represen&a{iGA., which is the continuous version
of the previously developed discrete GA model) employ faler binding based on geometric products.
Atomic objects are real-valued vectorsrirdimensional Euclidean space and complex statementsdelon
to a hierarchy of multivectors. The property of GAnd HRR studied here is the ability to store pieces of
information in a given order by means of trajectory assamat\We describe results of three experiments:
finding correct item or correct place of an item in a sequenefinding the alignment of items in a
sequence without the precise knowledge of trajectory vecto

PovzetekClanek preduje ohranitev informacij pri obliki holografske hrambedatkov.

1 Introduction unrecognizable.
Let us consider an example of storing the following in-

rmation: “Fido bit Pat". The action in this statement
Is bite and the features (i.eroles) of this action are an
agentand an object, denoti@de, . andbite,s;, while their

The work presented here is a result of experimenting wit
trajectory association technique using the newly-dewdop

N : I _ : _
distributed representation model GE0] eé%”em areF'ido andPat respectively. If we consider stor-

An ideal distributed representation system needs to m L .
several criteria in order to successfully perform cogaeitiv Ing the way that the action is performed, we can add a third
feature (ole), €.9.biteyqy. If We storeFido, Pat, biteqg:

tasks. These include computational efficiency, noisetoler . s ¢ "
: o andbite,,; as vectors, we are able to encode “Fido bit Pat
ance, scaling and ability to represent complex structureg. J
The most widely used definition of a distributed represen-
tation of data is due to Hintoet al. [13]: in a distributed
representation of data@ach concept is represented over a The operation obinding, denoted by %", takes two
number of units and each unit participates in the representeectors and produces another vector, often callethek
tion of some number of concepts. The size of a distributeaf a sentence. It would be ideal for the resulting vector not
representation is usually fixed and the units have either bie be similar to the original vectors but to have the same di-
nary or continuous-space values. In most distributed repraensions as the original vectoiSuperposition, denoted
sentations only the overall pattern of activated units hasky “+", is an operation that takes any number of vectors
meaning. and creates another one that is similar to the original vec-
Such patterns of activity are hard to understand and iers. Usually, the superimposed vectors are already the re-
terpret, therefore they are often compared to greyscale iradlt of the binding operation.
ages. Distributed representations usually take the form of For more details and examples on distributed represen-
one-dimensional vectors, while greyscale images are twtations of data the reader should refer to [20].
dimensional matrices, but the way the pixels are aligned
(one-dimensional string or two-dimensional array) is of n% P . Pi fInf .
relevance. Since the information is distributed over tiee el reserving reces ot in ormation
ments of a vector, a great percentage of units (“pixels”)can  in a Given Order
be changed without making the vector (overall “picture™)
While some solutions to the problem of preserving pieces
This paper is based on A. PatykdskaPreserivng pieces of infor- - ot intormation in a given order have proved ingenious, oth-
mation in a given order in HRR and GApublished in the proceedings . . .
of the F' International Workshop on Advances in Semantic Informmtio €IS are obviously flawed. Let us consider the representation
Retrieval (part of the FedCSIS'2011 conference). of the wordeye — it has three letters, one of which occurs

biteqgt * Fido + bitegy; * Pat.
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twice. The worst possible choice of binding and superposbuilds a holographic lexicon representing both word mean-

tion would be to store quantities of letters, e.g. ing and word order from unsupervised experience with nat-
ural language texts comprising altogether 90000 words.
eye = twice * e 4+ once * y, This model uses simple convolution and superposition to

. o constructrn-grams recording the frequency of occurrence
since we would not be able to distinguishe from eey  of every possible word sequence that is encountered, a win-
or yee. Another ambiguous representation would be to regow of about seven words around the target word is usually

member the neighborhood of each letter taken into consideration. To predict a word in a completely
new sentence, the model looks up the frequency with which
eye = beforey e + betweene x y + after, xe. the potential target is surrounded by words present in the

) new sentence. To be useful;gram models need to be
Unfortunately, such a method of encoding causes WOrdined on massive amounts of text and therefore require
eye andeyeye to have the same representation extensive storage space. We will use a completely differ-
ent approach to remembering information order — trajec-

eyeye = beforeyxe+2-betweene xy + tory association described by Plate in [23]. Originallysth
(beforey +aftery) x e +aftery xe technique also used convolution and correlation, but this
= 2(beforey x e + between, * y time items stored in a sequence are actually superimposed,

+after, e) rather than being bound together.

= 2eye.
3 Trajectory Associacion
Real-valued vectors are normalized in most distributed rep
resentation models, therefore the facto2 @fould be most In the HRR model vectors are normalized and therefore can
likely lost in translation. Suchontextual roles (Smolen- be regarded as radii of a sphere of radius 1. If we attach a
sky [25]) cause problems when dealing with certain typesequence of items, say, B, C, D, E to arrowheads of five
of palindromes. Remembering positions of letters is alsof those vectors, we obtain a certaimjectory associated
not a good solution with sequenced BCDE. This is a geometric analogue to
the method of loci which instructs to remember a list of
eye = letter firse * € + lettersecond * y + letterinira * € jtems by associating each term with a distinctive location

along a familiar path. Lek be a randomly chosen HRR
as we need to redundantly repeat the first letter as the thiyjdctor and let

letter, otherwise we could not distinguislye from ey or 4 . 4
ye. Secondly, this method of encoding will not detect sim- F=keok'=k"1eok i>1

ilarity betweereye andyeye. L L .
Pike argues in [21] that matrix-based memory is multiP€ [tSith power, with k% = k. The sequencéascpr i

directional, i.e. it allows both forward and backward asthen stored as
_sociation — having two vectors andb and their bi_nd— Supcpp = A®k+Bek+C@kd+ Dok + E@ k5.
ing M = ab we can extract both andb by performing
a reverse operation on the appropriate side of the matri@f course, each power éfneeds to be normalized before
Convolution-correlation systems, on the other hand, ikgabeing bound with a sequence item. Otherwise, every sub-
bindingsa ® b andb ® a as identical. We will use a similar sequent power of would be larger or smaller than its pre-
technique, asking right-hand-side and left-hand-sidesgquedecessor. As a result, every subsequent item stored in a
tions during experiments described in the following secsequence would have a bigger or a smaller share in vector
tions. Sapcpg- Obviously, this method cannot be applied to the
A quantum-like attempt to tackle the problem of infor-discrete GA model or to BSC, since it is impossible to ob-
mation ordering was made in [1] — a version of semantiain more than two distinct powers of a vector with the use
analysis, reformulated in terms of a Hilbert-space problenof XOR as a means of binding.
is compared with structures known from quantum mechan- This technique has a few obvious advantages present in
ics. In particular, an LSA matrix representation ([1, 18]) i HRR but not in GA had we wished to use ordinary vec-
rewritten by the means of quantum notation. Geometric aters as first powers — different powers of a vedtawvould
gebra has also been used extensively in quantum mechartlesn be multivectors of different ranks. Whilé andki+!
([2, 4, 3]) and so there seems to be a natural connection kere very similar in HRR, in GAthey would not even share
tween LSA and GA, which is the ground for fututre work the same blades. Further, the similaritykéfand &+ in
on the problem of preserving pieces of information in 4RR is the same as the similarity bf andk’*™, whereas
given order. in GA. that similarity would depend on the parity ©&nd
As far as convolutions are concerned, the most interest- In the light of these shortcomings, we need to use an-
ing approach to remembering information in a given ordewsther structure acting as a first power in order to make tra-
has been described in [12]. Authors present a model thigtctories work in GA. Lett be a random normalized full
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multivector overR™ and let us define powers ofin the be recognized more often as the correct answer. Indeed,

following way Figure 1 shows that in HRR the frequencies of the powers
) of ¢ align with ¢ being recognized most often aritdbeing
=t recognized least often. In GAthe percentage diagrams
tt = ("1t fori > 1. for various powers of lay close to each other and often

intertwine, still the relationship between the powers of
We will store vectors:; ... a; in a sequence,, ., Using  similar to the one observed in HRR.
powers of the multivector Since lower powers of are recognized correctly more
often, higher powers of come up more often as the in-
correct answer t§ # A. Vectort? is the correct answer to
Seeses i A. However, ift3 is not recognized, the next most
similar answer will be® because it contains three “copies”
of t3, indicated here by brackets

(S ()1~ a2 (£ (tx 1t} #t) =)

and to find out the place of item we need to compute

Sa1mal = a1t + a2t2 4+ 4 altl.

To answer a questionWhat is the second item in a se-
quence?in GA. we need to use the projected product

N ,- The second most similar item will Bé because it contains
(ai)"Say...ay =t two “copies" oft, and so on. The item least similar t&

_ will be ¢. This relationship should be best observable in
Some may argue that such encoding puts a demand pipp ‘since the powers can be multiplied from either side.

items in the glean-up memory to hold information if they), GA. the powers oft can be increased from one side
are r_oles or fillers, which is d_angero_usly clo_se to ernploy6nly and the relation between them should be less visible.
ing fixed data slots present in localist archnec_tures. Aq:j ure 2 shows that high powers bére recognized more
tually, elements of a sequence can be recognized by g, i cases when the proper answer is not recognized —
size, relatively shorter than the size of multivedtand its ¢ yij| yse this relationship in an experiment described in

powers. _ , , Section 6.
We present three experiments using trajectory associa-

tion and we comment on test results for HRR and .GA

models. Firstly, we studied if an item can be retrieved giveb ~ Correct Item Detection

a sequence and an appropriate powet, @&nd vice versa

— if a sequence and an item can lead to the power ofHere we tested if trajectory association allows us to ask
associated with that item. Finally, we tested whether bothWhat is therth item in a sequencé?

HRR and GA models can find the alignment of items in IRV
a sequence without the precise knowledge of vettor L,~S§t" = { S@ (tx )Jr In HRR,
its powers. Since the normalization using the square root S5(t%) in GA.,

of the. r!umber of chunks prqved very noisy in Stat?menWhereLx € {A,B,C,D,E} denotes theth letter in a
containing powers of the trajectory vector, we decided tQeqyence. During 1000 tests for (multi)vector sizes rapgin
improve the HRR model. The HRR vectors in our testgqm 95 15 29 we asked that question for every permutation
were normalized by dividing them with their magnitude. sequence of the sdtd, B,C, D, E}, there were 120000
guestions altogether for every (multi)vectér
4 Correct Place Detection Again, we tested both HRR and GAnodels using a
clean-up memory consisting only of expected answers, i.e.
letters{A, B, C, D, E}. The results for both models (Fig-
In this experiment we investigated if powers of aure 3) were similar with GA performing slightly better
(multi)vectort carry enough information about the originalthan HRR. In both models the first few letters of a sequence
t. During 1000 tests for (multi)vector sizes ranging frolm were more often recognized correctly than the last letters.
to 28 we asked the following question for every sequefice Among the erroneously recognized letters, the last few let-
(a permutation of letter§A, B, C, D, E}): “Where isA?"  ters of a sequence were most often offered as the most prob-
able answer, which will come in handy in the next Section.
SHA = { S®A = t* ?n HRR, The diagrams for GAlie closer together, once again indi-
ATS~t* inGA.. cating that trajectory association spreads informationemo

. . evenly in GA than in HRR.
This amounted to 120000 questions altogether. For the pur-

pose of the experiment described in Section 6 we used the
clean-up memory consisting of powerstainly. 6 Iltem Alignment
Ideally, every position of the letted should come up as
the correct answer the same number of times. Howevérhe three previous tests were not very demanding for tra-
since high powers of acquire noise, lower powers shouldjectory associations. Finally, we tested whether the HRR
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t 2 3 -eeee- td e 5 —
[%] of +* recognized correctly — HRR
100% = M = 24000
100% N=od N=25 N=26 N=27 N=28
L4 t 59.25% 63.67% 72.51% 80.77% 88.08%
s0% 2 52.80% 61.60% 70.52% 80.26% | 87.93%
L4 t3 47.37% 59.37% 68.00% 79.11% 87.85%
60% 4 46.22% 57.35% 66.40% 76.48% 87.01%]
. . . . . t5 47.60% 57.23% 66.35% 75.05% | 85.97%
2'4 2I5 2I6 2I7 2I8 "
[%] of ™ recognized correctly — GA 100% = 120000 ~ 24000
100% S RS RO R7 RS
1 t 56.17% 67.31% 76.24% 86.73% | 93.70%
8% t2 52.72% 64.88% 74.53% 85.58% | 94.05%
1 3 57.00% 68.30% 74.85% 84.13% | 92.68%
60% 4 52.53% 64.25% 73.00% 83.93% 92.90%
5 54.05% 65.89% 74.59% 84.06% 91.33%
T T T T T N

24 95 96 o7 o8

Figure 1: Correct recognition &f # A ~ ¢* in HRR and GA using clean-up memory df, ¢2,¢3,¢*,¢5}, 1000 trials.

[ 2 3 - 4 e o —

[%] of t* recognized incorrectly as other powerstof— HRR

0% T
8w T
100% = 120000 = 24000
3
6% T
N=24 N=25 N=26 N=27 N=28
1 t 9.35% 5.83% 3.65% 1.96% 0.78%
4% RN
ot 2 9.23% 7.08% 5.20% 3.11% 1.37%
1 N 3 9.28% 8.09% 6.35% 4.63% 2.42%
2%
t 9.85% 8.72% 7.40% 5.53% 3.47%
. 5 11.63% 10.44% 8.56% 6.43% | 4.59%
T T T T T N
24 25 26 27 28
[%] of t* recognized incorrectly as other powerstof- GA
0% T
8w T
100% = 120000 = 24000
6% T
R4 RS RO R7 RS
t 8.70% 5.76% 4.30% 2.44% 1.21%
a% T
+2 9.08% 6.88% 5.13% 2.89% 1.33%
3 9.16% 7.01% 5.11% 3.10% 1.42%
2%
+4 9.37% 7.23% 5.49% 3.18% 1.42%
5 9.20% 6.99% 5.34% 3.51% 1.69%

24 95 96 o7 o8

Figure 2: Incorrect recognition &f # A ~ t* in HRR and GA using clean-up memory df, ¢, +3,¢*,¢°}, 1000 trials.

and GA. models were capable of performing the following“black box" that inputs randomly chosen letter vectors and
task: in return outputs a (multi)vector representing always the
same sequence, irrespectively of the dimension of data. In-
Given onlya set of lettersd, B,C, D, E' and an en-  sjde, the black box generates (multi)vectarg, +3, ¢4, .
coded sequenctyeees comprlsed of those five letters Their values are known to the observer but their names are
find out the position of each letter in that sequence. not, Since we can distinguish letters from non-letters, the

We assumed that no direct access o its powers is given naive approach woulld be to try out all 120 alignments of
P 9 letters A, B, C, D and E using all possible combinations

— they do belong to the clean-up memory, but cannot b
retrieved “by name”. One may think of this problem as & gf non- Ietters as the powers aofUnfortunately, powers of
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Ly e Lo L3y eoo. Ly ceee- Ly

100%
§ N=25 N=26 N=27 N=28 N=29
Ly 68.03% 81.94% 92.21% 97.58% 99.59%
80%
8 Lo 58.56% 70.15% 80.46% 90.25% 96.75%
L3 53.05% 62.00% 72.71% 83.09% 91.46%
60%
v Ly 50.13% 57.61% 67.06% 78.31% | 85.79%
. Ls 47.20% 54.43% 63.18% 71.13% 81.24%|
t t t t t N
25 26 27 28 29
[%] of letters recognized correctly — GA
100% RS R6 R7 78 )
L1 68.30% 80.88% 91.96% 97.36% 99.61%
80%
: Lo 68.43% 77.08% 86.12% 94.03% 98.33%
L3 63.73% 74.52% 82.89% 89.56% 96.70%
60%
: Ly 62.28% 72.47% 80.63% 89.39% 96.18%
Ls 60.78% 70.19% 78.52% 85.15% 95.19%
+ + + + + N
25 26 27 28 29
[%] of letters recognized incorrectly as other letters — HRR
50% T
40% T
30% T
8 N=25 N=26 N=27 N=28 N=29
L1 31.98% 18.07% 7.79% 2.42% 0.41%
20% T NN I
RN 2 41.44% 29.85% 19.54% 9.75% 3.25%
. L3 46.95% 38.00% 27.29% 16.91% 8.54%
0% T -
? S Ly 49.87% 42.39% 32.94% 21.69% 14.21%
e Ls 52.80% 45.57% 36.82% 28.87% 18.76%]
+ + + N
25 26 27 28 29
[%] of letters recognized incorrectly as other letters — GA
40% T
30% T
5 RS RS r7 RS R
Ly 31.70% 19.12% 8.04% 2.65% 0.39%
20% T
Lo 31.57% 22.93% 13.88% 5.97% 1.68%
L3 36.27% 25.48% 17.11% 10.44% 3.30%
10% T
Ly 37.72% 27.53% 19.37% 10.61% 3.83%
Ls 39.22% 29.81% 21.48% 14.85% 4.81%

Figure 3: Recognition o6, 1.,1..1,5 § t* =~ L, in HRR and GA using clean-up memory containing letters only, 1000
trials.

t are different each time the black box produces a sequendetters only.
We will use an algorithm based on the assumption that

if not recognized correctly, is more similar to highest pow- The algorithm for finding out the position of each letter
ers of¢ as shown in Section 4. The second assumption isegins with asking a question described by equation (1) —
that letters lying closer to the end of the sequence are ofy/here in the seqUENCE,ees. iS the letterL, ?":

ten offered as the incorrect answer to questions concerning

letters (Section 5). The clean-up memdrfor this experi- Seeees ® (Lz)* iNnHRR

ment consists of all five letters and the five powers. dfle Seeese t Ly = { (Ly)* Seeses i GA. }

will also use an auxiliary clean-up memofycontaining (Y ~ ¢ (1)
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[%]of { B, C, D, E}

50% T
°E Asking with A
40% T o
op E N=100 N=200 N=300 N=400 N=500
°E
30% T o °D o D nonA |[1643 960 616 506 393 =100%
86 °p D
°c  © o B 19.90% 16.04% 12.66% 8.30% 6.62%
20% T °p c [CHES
°p (e] C  |2556% 22.92% 22.73% 21.94% 18.58%
o
0% T B D |26.78% 27.71% 28.73% 32.02% 30.03%
B o
) ) ) ) ) B E  |27.75% 33.33% 35.88% 37.75% 44.78%
t t t t t
N
100 200 300 400 500
[%]of {A, C, D, E}
50% T
Asking with B
40% T o
: op E N=100* N=200* N=300 N=400 N=500
°FE
30% T R °p °p °p °p nonB |2474 1588 1133 837 628 =100%
°c  °c c °c o4 A |18.03% 18.14% 12.71% 9.44% 8.28%
20% T
: °a °a C  |25.14% 24.87% 22.51% 23.30% 21.97%
o
0% T A A o D |29.59% 28.90% 30.98% 30.59% 30.89%
A
) ) ) ) ) E  |27.24% 28.09% 33.80% 36.68% 38.85%
t t t t t
N
100 200 300 400 500
[%]of {A, B, D, E}
50% T
Asking with C'
40% T o
om E N=100 N=200 N=300 N=400 N=500
o o
30% T op B o £ o ° nonC |3003 2214 1694 1346 1121 =100%
o D D
8 B o g o o A |2251% 18.16% 18.00% 15.30% 13.83%
20% T ° ° B B °p
A Ao, B |24.18% 22.81% 21.55% 21.47% 20.07%
o
A
0% T D |2551% 26.06% 27.86% 27.64% 28.55%
) ) ) ) ) E  |2781% 32.97% 32.59% 35.59% 37.56%
N
100 200 300 400 500
[%]of {A, B, C, E}
50% T
Asking with D
40% T
N=100* N=200 N=300 N=400 N=500
o
30% T o °g °E B nonD |3432 2686 2264 1808 1564 =100%
68 8& 8 °g °C
oS o g : %] o A |2171% 22.23% 20.19% 17.64% 18.67%
20% T B
: A ey o4 B |26.84% 24.72% 24.03% 25.77% 21.16%
0% T C |2544% 25.58% 25.66% 26.05% 27.37%
) ) ) ) ) E  |26.02% 27.48% 30.12% 30.53% 32.80%
t t t t t
N
100 200 300 400 500
[%]of {A, B, C, D}
50% T
Asking with £
40% T
: N=100* N=200% N=300 N=400" N=500
30% T o 8p %o 8p nonE |3754 3116 2617 2353 1921 =100%
©
g ] °p op op A |2477% 20.31% 19.79% 19.46% 18.84%
20% T °A  °a °4 o
A B |2512% 25.48% 23.42% 22.90% 23.27%
0% T C  |26.08% 28.34% 27.59% 29.20% 28.37%
) ) ) ) ) D |24.03% 25.87% 29.19% 28.35% 29.52%
N

Figure 4: Finding letter alignment in a sequetescpr in HRR, 10000 trials.

for each letterL, € L. Next, we need to find the item in z’th position in the sequenct,eeee ?"":
the clean-up memorg\ £ that is most similar t¢t”)’. Let

us denote this item by. With high probability,z is the g P { Sesess ® 2™ @n HRR }
power of¢ associated with the position of the lettgg, in seees (Seesse zT)1  INGA.
the sequencl....., although, if recognized incorrectly, = L'~L,. )

will most likely point to some othet’>*. Now let us ask a
second question (eq. (2)) — “Which letter is situated at th&/e use the projected product in GhAecause we are look-
ing for a letter vector placed on the position indicated by
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z. In HRR the resultingl’ should be compared with let- contradictory alignments have been preceded withi"a “

ters only. In most casek’ will point to the correct letter. When being asked with the last letter of the sequence, HRR

However, in a small fraction of test results] will point  provided less accurate answers and so did 8Ayielding

to letters surroundind..,, because: has been mistakenly more contradictions than in case of previous letters. It is

decoded ag? for somey # x. Also, letters preceding,  impossible to avoid contradictory alignments in GBe-

should come up less often than letters proceeding cause we do not know which letter is the last one and the
algorithm for recovering letter alignment in GAnstructs

Figure 4 presents test results for HRR. The data in Figuigs to write down the partial alignment with that letter be-

4 should be interpreted as follows: the first row of eaCﬁhg proceeded by another letter. The remaining alignments
table next to a graph contains the vector lengths of the dgsaint correctly to the sequen&& zcp e

used in 5 consecutive experiments (10000 trials each). The

second row contains the number of faulty answers within A< B
those 10000 trials. The next 4 rows present the percentage =~ ¢ <D < E
of occurence of a "faulty” letter within all faulty answers A<BC<D |\ . 4 . B.Cc<D<E.
presented in the second row. A=<C
Faulty alignments (i.e. those, for which the percentages B<D<E
corressponding to letters do no align increasingly within a A< E

single column) have been marked with ‘@ ‘in the table

headings. We usefapcpr as the mysterious encoded?y Conclusion

SequeNnCeS..eee- IN €ach case we crossed out the most

frequently occurring letter and we concentrated on the fraye have shown that multivector powers in G#ave prop-

quency of the remaining letters. In HRR, for sufficientlyerties similar to convolutive powers of HRR vectors
large vector sizes, the frequencigsof all letters € £ . o , o
aligned correctly — (multi)vectorst'~" and ¢* are similar in much the

same way as tand t7,

— items placed near the beginning of a sequence are re-

fp<fe<Jp</n ask_mg W_'thA’ membered more prominently and thus, are recognized
fa<fc<fp<fe asking with, correctly more often,

< < < asking withC, .
fa<is<fp</E . g ) — items placed near the end of a sequence are remem-
fa<fp<fc</[e asking withD, bered less precisely and often come up as the most
fa<fs<fc</fp asking withE. probable answer when the correct item is not recog-

nized.
It was straightforward that these inequalities lead fo<

fs < fo < fp < fr and correctly identify the encoded We have used the last two properties to find the align-
sequence aSABCDE- Test results are less accurate Whe[ﬁnent of sequence items without the eXp"Cit knowledge of
we asked about letters lying closer to the end of a sequenéBulti)vector powers. While HRR retrieved the original
therefore the size of the vector should be adequately longlignment without greater problems, GAeft us with an
Moreover, the longer the vector, the larger the differenc@asily soluble logical puzzle providing fragmentary atign
between the frequencies. ments.

GA, was expected to perform worse in this experiment, These properties can be used to build holographic lexi-
because we can construct powers of a mu“veﬂo} by cons, dictionaries and other structures that requirerﬂjori
multiplying it with ¢ from one side only. Another reason order information and word meaning in the same pattern.
for poor performance was that the frequencies of the pow-
ers oft recognized incorrectly tend to cluster in G&Fig- Acknowledgement
ure 2). Indeed, Table 1 shows that letter frequencies do not
align correctly at all. We therefore needed to slightly modJ his work was supported b@rant G.0405.0%&f the Fund
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Table 1: Finding letter alignment in a sequerstesopr in GA., 10000 trials.

R® fa fB fc fp fE
asking withA | 71.60% | 8.22% | 6.44% | 2.72% | 6.47%
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asking withC' | 7.28% | 9.52% | 67.25% | 9.67% | 6.28%
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R°® fa [B fc fp JE
asking withA | 80.34% | 5.34% | 4.61% 5.08% 4.63%
asking withB | 6.56% | 73.91% | 7.48% | 4.67% 7.38%
asking withC' | 6.71% | 7.47% | 72.83% | 7.68% | 5.31%
asking withD | 6.79% 5.37% 7.42% | 72.30% | 8.12%
asking withE' | 5.52% 7.77% 5.58% | 8.54% | 72.59%
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R’ fa /B fc fo IE
asking withA | 89.78% | 2.42% | 2.91% | 2.37% 2.52%
askingwithB | 3.78% | 83.92% | 4.04% | 4.44% | 3.82%
asking withC' | 4.30% | 4.79% | 80.54% | 5.11% | 5.26%
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R® fa fB fc fp fE
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