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Authors revise the concept of a distributed representation of data as well as two previously developed mod-
els: Holographic Reduced Representation (HRR) and Binary Spatter Codes (BSC). A Geometric Analogue
(GAc — "c" stands for continuous as opposed to its discrete version) of HRR is introduced – it employs
role-filler binding based on geometric products. Atomic objects are real-valued vectors in n-dimensional
Euclidean space while complex data structures belong to a hierarchy of multivectors. The paper reports on
a test aimed at comparison of GAc with HRR and BSC. The test is analogous to the one proposed by Tony
Plate in the mid 90s. We repeat Plate’s test on GAc and compare the results with the original HRR and
BSC — we concentrate on comparison of recognition percentage for the three models for comparable data
size, rather than on the time taken to achieve high percentage. Results show that the best models for storing
and recognizing multiple similar structures are GAc and BSC with recognition percentage highly above
90. The paper ends with remarks on perspective applications of geometric algebra to quantum algorithms.

Povzetek: Članek se ukvarja s porazdeljeno predstavitvijo podatkov, ki uporablja geometrijsko algrebro.

1 Introduction

Distributed representations of data are very different from
traditional structures (e.g. trees, lists) and complex struc-
tures bare little resemblance to their components, therefore
great care must be taken when composing or decomposing
a complex structure. The most widely used definition of a
distributed representation is due to Hinton et al. [13]. In
a distributed representation of data each concept is repre-
sented over a number of units and each unit participates in
the representation of some number of concepts. The size
of a distributed representation is usually fixed and the units
have either binary or continuous-space values. In most dis-
tributed representations only the overall pattern of activated
units has a meaning.

Let us consider an example of storing the following in-
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(part of the FedCSIS’2011 conference).

formation: “Fido bit Pat". The action in this statement
is bite and the features (i.e. roles) of this action are an
agent and an object, denoted biteagt and biteobj , while their
fillers are Fido and Pat respectively. If we consider stor-
ing the way that the action is performed, we can add a third
feature (role), e.g. biteway. If we store Fido, Pat, biteagt
and biteobj as vectors, we are able to encode “Fido bit Pat"
as

biteagt ∗ Fido+ biteobj ∗ Pat.

The operation of binding, denoted by “∗", takes two
vectors and produces another vector, often called a chunk
of a sentence. It would be ideal for the resulting vector not
to be similar to the original vectors but to have the same di-
mensions as the original vectors. Superposition, denoted
by “+", is an operation that takes any number of vectors
and creates another one that is similar to the original vec-
tors. Usually, the superimposed vectors are already the re-
sult of the binding operation.

Irrespectively of the mathematical model, the above op-
erations are defined in a way that allows to build complex
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statements, such as “John saw Fido bit Pat":

John ∗ seeagt +(biteagt ∗Fido+ biteobj ∗Pat) ∗ seeobj .

In order to decode information, we have to use the op-
eration of unbinding — it is the inverse (an exact inverse
or a pseudo-inverse) of binding enabling us to extract an
information from a complex statement, provided that we
have one of the bound vectors or a very similar vector as a
cue. Marking the unbinding operation by “♯" we obtain the
following answer to “Who bit Pat?":

(biteagt ∗ Fido+ biteobj ∗ Pat) ♯ biteagt = Fido′.

We cannot definitely say that the resulting vectorFido′ will
be an exact copy of Fido, as even an optimal scheme will
generate a considerable amount of noise. Since we cannot
expect that a noisy decoded information will be identical
to what was encoded, we have to rely heavily on various
similarity measures — they vary mostly by time taken by
computation and the accuracy.

Clean-up memory is an auto-associative collection of all
atomic objects and complex statements produced by the
system. Given a noisy extracted vector such structure must
be able to recall the most similar item stored or indicate,
that no matching object had been found.

Independently of the scheme considered, any represen-
tation should possess the following qualities

– composition and decomposition — rules of composi-
tion and decomposition must be applicable to all el-
ements of the domain, irrespectively of the degree of
complication of a given element. Further, decomposi-
tion should support structure-sensitive processing.

– fixed size — structures of different degree of compli-
cation should take up the same amount of space in or-
der to facilitate generalization. In the GAc model this
feature has been given up. Still, structures of different
complexity will be of the same type.

– similarity — the representation scheme should pro-
vide a quick way to compute similarity between anal-
ogous structures (e.g. Fido bit Pat Smith and
Fido bit John).

– noise reduction — decomposed statements should re-
semble their original counterpart.

– productivity — the model should be able to construct
complex nested structures using a set of only few
rules.

As far as previously developed models are concerned,
Holographic Reduced Representations (HRR), Binary
Spatter Codes (BSC), and Associative-Projective Neural
Networks (APNN) are distributed representations of cog-
nitive structures where binding of role–filler codevectors

maintains predetermined data size. In HRR [23] binding is
performed by means of circular convolution

(x~ y)j =
n−1∑
k=0

xkyj−kmodn.

of real n-tuples or, in ‘frequency domain’, by component-
wise multiplication of (complex) n-tuples,

(x1, . . . , xn)~ (y1, . . . , yn) = (x1y1, . . . , xnyn).

Bound n-tuples are superposed by addition, and unbinding
is performed by an approximate inverse. A dual formal-
ism, where real data are bound by componentwise multi-
plication, was discussed by Gayler [9]. In BSC [14, 15]
one works with binary n-tuples, bound by componentwise
addition mod 2,

(x1, . . . , xn)⊕ (y1, . . . , yn) =

= (x1 ⊕ y1, . . . , xn ⊕ yn),
xj ⊕ yj = xj + yj mod2, (1)

and superposed by pointwise majority-rule addition; un-
binding is performed by the same operation as binding.
APNN, introduced and further developed by Kussul [16]
and his collaborators [17], employ binding and superposi-
tion realized by a context-dependent thinning and bitwise
disjunction, respectively. As opposed to HRR and BSC,
APNN do not require an unbinding procedure to retrieve
component codevectors from their bindings. A detailed
comparison of HRR, BSC and APNN can be found in [24].

2 Geometric Algebra
One often reads that the above models represent data by
vectors, which is not exactly true. Given two vectors one
does not know how to perform, say, their convolution or
componentwise multiplication since the result depends on
basis that defines the components. Basis must be fixed in
advance since otherwise all the above operations become
ambiguous. It follows that neither of the above reduced
representations can be given a true and meaningful geomet-
ric interpretation. Geometric analogues of HRR [5] can be
constructed if one defines binding by the geometric prod-
uct, a notion introduced in 19th century works of Grass-
mann [11] and Clifford [8].

The fact that a geometric analogue of HRR is intrinsi-
cally geometric may be important for various conceptual
reasons — for example, the rules of geometric algebra may
be regarded as a mathematical formalization of the process
of understanding geometry. The use of geometric alge-
bra distributed representations has been inspired by a well-
known fact, that most people think in pictures, i.e. two-
and three-dimensional shapes, not by using sequences of
ones and zeroes. Mere strings of bits are not meaningful to
(most) humans, no matter how technically advanced they
are.
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In order to grasp the main ideas behind a geomet-
ric analogue of HRR let us consider an orthonormal ba-
sis b1, . . . , bn in some n-dimensional Euclidean space.
Now consider two vectors x =

∑n
k=1 xkbk and y =∑n

k=1 ykbk. The scalar

x · y = y · x

is known as the inner product. The bivector

x ∧ y = −y ∧ x

is the outer product and may be regarded as an oriented
plane segment (alternative interpretations are also possible,
cf. [7]). 1 is the identity of the algebra. The geometric
product of x and y then reads

xy =

n∑
k=1

xkyk 1︸ ︷︷ ︸
x·y

+
∑
k<l

(xkyl − ykxl)bkbl︸ ︷︷ ︸
x∧y

.

Grassmann and Clifford introduced geometric product by
means of the basis-independent formula involving the mul-
tivector

xy = x · y + x ∧ y (2)

which implies the so-called Clifford algebra

bkbl + blbk = 2δkl1.

when restricted to an orthonormal basis. Inner and outer
product can be defined directly from xy:

x · y =
1

2
(xy + yx),

x ∧ y =
1

2
(xy − yx).

The most ingenious element of (2) is that it adds two ap-
parently different objects, a scalar and a plane element, an
operation analogous to addition of real and imaginary parts
of a complex number. Geometric product for vectors x, y,
z can be axiomatically defined by the following rules:

(xy)z = x(yz),

x(y + z) = xy + xz,

(x+ y)z = xz + yz,

xx = x2 = |x|2,

where |x| is a positive scalar called the magnitude of x. The
rules imply that x · y must be a scalar since

xy + yx = |x+ y|2 − |x|2 − |y|2.

Geometric algebra allows us to speak of inverses of vectors:
x−1 = x/|x|2. x is invertible (i.e. possesses an inverse) if
its magnitude is nonzero. Geometric product of an arbitrary
number of invertible vectors is also invertible. The possi-
bility of inverting all nonzero-magnitude vectors is perhaps

the most important difference between geometric and con-
volution algebras.

Geometric products of different basis vectors

bk1...kj
= bk1

. . . bkj
,

k1 < · · · < kj , are called basis blades (or just blades).
In n-dimensional Euclidean space there are 2n different
blades. This can be seen as follows. Let {x1, . . . , xn} be a
sequence of bits. Blades in an n-dimensional space can be
written as

cx1...xn = bx1
1 . . . bxn

n

where b0k = 1, which shows that blades are in a one-to-
one relation with n-bit numbers. A general multivector is a
linear combination of blades,

ψ =
1∑

x1...xn=0

ψx1...xncx1...xn , (3)

with real or complex coefficients ψx1...xn . Clifford algebra
implies that

cx1...xncy1...yn =

= (−1)
∑

k<l ykxlc(x1...xn)⊕(y1...yn), (4)

where⊕ is given by (1). Multiplication of two basis blades
is thus, up to a sign, in a one-to-one relation with exclusive
alternative of two binary n-tuples. Accordingly, (4) is a
projective representation of the group of binary n-tuples
with addition modulo 2.

The GAc model is based on binding defined by geomet-
ric product (4) of blades while superposition is just addi-
tion of blades (3). The discrete GAd [19] is a version of the
GAc model obtained if ψx1...xn in (3) equal ±1. The first
recognition tests of GAd, as compared to HRR and BSC,
were described in [19]. In the present paper we go further
and compare HRR and BSC with GAc, a version employ-
ing “projected products” [5] and arbitrary real ψx1...xn

. We
also repeat Plate’s scaling test ([22], [23] – Appendix I) and
compare test results for GAc, HRR and BSC models.

Throughout this paper we shall use the following no-
tation: “∗" denotes binding roles and fillers by means of
the geometric product and “+" denotes the superposition
of sentence chunks. Additionally, “~" will denote binding
performed by circular convolution used in the HRR model
and a∗ denotes the involution of a HRR vector a. A “+"’ in
the superscript of x+ denotes the operation of reversing a
blade or a multivector x: (bk1...kj )

+ = bkj . . . bk1 . Asking
a question (i.e. decoding) will be denoted with “♯". The
size of a (multi)vector means the number of memory cells
it occupies in computer’s memory, while the magnitude of
a (multi)vector V = {v1, . . . , vn} is its Euclidean norm√∑n

i=1 v
2
i .

For our purposes it is important that geometric calculus
allows us to define in a very systematic fashion a hierar-
chy of associative, non-commutative, and invertible oper-
ations that can be performed on 2n-tuples. The resulting
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superpositions are less noisy than the ones based on con-
volutions, say. Such operations are in general unknown to
a wider audience, which explains popularity of tensor and
convolution algebras. Geometric product preserves dimen-
sionality at the level 2n-dimensional multivectors, where
n is the number of bits indexing basis vectors. Moreover,
all nonzero vectors are invertible with respect to geometric
product, a property absent for convolutions and important
for unbinding and recognition. A detailed analysis of links
between GAc, HRR and BSC can be found in [5]. In partic-
ular, it is shown that both GAc model and BSC are based on
two different representations (in group theoretical sense) of
the additive group of binary n-tuples with addition modulo
2. Actually, the latter observation was the starting point
for studying geometric algebra forms of reduced represen-
tations [6].

3 The GAc Model

Multivector (3) associated with n-dimensional Eu-
clidean space can be represented by the 2n-tuple
(ψ01...0n , . . . , ψ11...1n). Geometric product of two such
2n-tuples is again a 2n-tuple. In this sense geometric prod-
uct is analogous to bindings employed in HRR or BSC, but
we can still proceed in several inequivalent ways. For ex-
ample, since a product of two basis blades is again a basis
blade multiplied by±1, we can require that ψx1...xn = ±1.
Such a discrete version of GA HRR was tested vs. HRR
and BSC in [19], and will be denoted here by GAd (dis-
crete GA HRR).

The continuous GAc model differs greatly from GAd.
First of all, we do not begin with a general 2n-dimensional
multivector. Atomic objects are real-valued vectors in n-
dimensional Euclidean space, in practice represented by n-
tuples of components taken in some basis. A hierarchy of
multivectors is reserved for complex statements, formed
by binding and superposition of atomic objects. An n-
dimensional vector, when seen from the multivector per-
spective, is a highly sparse 2n-tuple: Only n out of 2n

components can be nonzero.
The procedure we employ was suggested in [5]. The

space of 2n-tuples is split into subspaces corresponding
to scalars (0-vectors), vectors (1-vectors), bivectors (2-
vectors), and so on. At the bottom of the hierarchy lay

vectors V ∈ Rn, having rank 1 and being denoted as
1

V .
An object of rank 2 is created by multiplying two ele-
ments of rank 1 with the help of the geometric product. Let
1

V= {α1, α2, α3} and
1

W= {β1, β2, β3} be vectors in R3.

A multivector
2

X of rank 2 in R3 comprises the following
elements (cf. [18])

2

X=
1

V
1

W=

α1

α2

α3

β1β2
β3

 =


α1β1 + α2β2 + α3β3

α1β2 − α2β1
α1β3 − α3β1
α2β3 − α3β2

 ,

the first entry in the array on the right being a scalar and
the remaining three entries being 2-blades. For arbitrary
vectors in Rn we would have obtained one scalar (or, more

conviniently:
(
n
0

)
scalars) and

(
n
2

)
2-blades.

Let
2

X= {γ1, γ2, γ3, γ4} and
1

V= {α1, α2, α3} be two mul-

tivectors in R3. A multivector
3

Z of rank 3 in R3 may be

created in two ways: as a result of multiplying either
1

V by
2

X or
2

X by
1

V . Let us concentrate on the first case

3

Z=
1

V
2

X=

α1

α2

α3



γ1
γ2
γ3
γ4

 =


α1γ1 − α2γ2 − α3γ3
α1γ2 + α2γ1 − α3γ4
α1γ3 + α2γ4 + α3γ1
α1γ4 − α2γ3 + α3γ2

 .
Here, the first three entries in the resulting matrix are 1-
blades, while the last entry is a 3-blade. For arbitrary multi-

vectors of rank 1 and 2 in Rn we would have obtained
(
n
1

)
vectors and

(
n
3

)
trivectors. We cannot generate multivec-

tors of rank higher than 3 in R3, but it is easy to check that

in spaces Rn>3 a multivector of rank 4 would have
(
n
0

)
scalars,

(
n
2

)
bivectors and

(
n
4

)
4-blades. The number of

k-blades in a multivector of rank r is described by Table 1.
It becomes clear that a multivector of rank r over Rn is ac-

tually a vector over a
∑⌊ r

2 ⌋
i=0

(
n

2i+ r mod 2

)
-dimensional

space.
As an example let us consider the following roles and

fillers being normalized vectors drawn randomly from Rn

with Gaussian distribution N(0, 1
n )

Pat = {a1, . . . , an},
male = {b1, . . . , bn},

66 = {c1, . . . , cn},

name = {x1, . . . , xn},
sex = {y1, . . . , yn},
age = {z1, . . . , zn}.

PSmith, who is a 66 year old male named Pat, is created
by first multiplying roles and fillers with the help of the
geometric product

PSmith =

= name ∗ Pat+ sex ∗male+ age ∗ 66
= name · Pat+ name ∧ Pat+ sex ·male+

sex ∧male+ age · 66 + age ∧ 66

=


∑n

i=1(aixi + biyi + cizi)

a1x2 − a2x1 + b1y2 − b2y1 + c1z2 − c2z1
a1x3 − a3x1 + b1y3 − b3y1 + c1z3 − c3z1

.

.

.
an−1xn − anxn−1 + bn−2yn

−bnyn−1 + cn−1zn − cnzn−1


= [d0, d12, d13, . . . , d(n−1)n]

T

= d0 + d12e12 + d13e13 + · · ·+ d(n−1)ne(n−1)n,

where e1, . . . , en are orthonormal basis blades. In order
to be decoded as much correctly as possible, PSmith
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Table 1: Numbers of k-blades in multivectors of various ranks in Rn

rank scalars vectors bivectors trivectors 4-blades . . . data size

1 0

(
n

1

)
0 0 0 . . . O

((n

1

))
2

(
n

0

)
0

(
n

2

)
0 0 . . . O

((n

0

)
+

(
n

2

))
3 0

(
n

1

)
0

(
n

3

)
0 . . . O

((n

1

)
+

(
n

3

))
4

(
n

0

)
0

(
n

2

)
0

(
n

4

)
. . . O

((n

0

)
+

(
n

2

)
+

(
n

4

))
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

2r

(
n

0

)
0

(
n

2

)
0

(
n

4

)
. . . O

(∑r
i=0

(
n

2i

))
2r + 1 0

(
n

1

)
0

(
n

3

)
0 . . . O

(∑r
i=0

(
n

2i + 1

))

should have the same magnitude as vectors representing
atomic objects, therefore it needs to be normalized. Finally,
PSmith takes the form of

PSmith = [d̂0, d̂12, d̂13, . . . , d̂(n−1)n]
T ,

where d̂i = di√∑(n−1)n
j=0,12 d2

j

.

PSmith is now a multivector of rank 2. The decoding
operation

name+PSmith

= name+(name · Pat+ name ∧ Pat
+sex ·male+ sex ∧male+ age · 66
+age ∧ 66)

will produce a multivector of rank 3 consisting of vectors
and trivectors. However, the original Pat did not contain
any trivector components — they all belong to the noise
part and the only interesting blades in name+PSmith
are vectors. The expected answer is a vector, there-
fore there is no point in calculating the whole multi-
vector name+PSmith and only then comparing it with
items stored in the clean-up memory. To be efficient,
one should generate only the vector-part while computing
name+PSmith and skip the noisy trivectors.

Let ⟨·⟩k denote the projection of a multivector on k-
blades. To decode PSmith’s name we need to compute

⟨name+PSmith⟩1
= name+namePat+ ⟨ name+(name ∧ Pat

+sex ·male+ sex ∧male+ age · 66
+age ∧ 66) ⟩1

= Pat+ noise = Pat′.

The resulting Pat′ will still be noisy, but to a lesser degree
than it would have been if the trivectors were present.

Formally, we are using a map ∗11,2 that transforms a mul-
tivector of rank 1 (i.e. an n-tuple) and a multivector of
rank 2 (i.e. a (1+ (n−1)n

2 )-tuple) into a multivector of rank
1 without computing the unnecessary blades. Let X be a
multivector of rank 2

X = ⟨X⟩0 + ⟨X⟩2 = x0 +
∑
l<m

xlmelem,

where xlm = −xml. If A = (A1, . . . , An) is a decoding
vector (actually, an inverse of a role vector), then

A ∗11,2 X = x0A+
∑
l,m

Alxlmem

=
∑
k

(
xAk +

∑
l

Alxlk
)
ek

=
∑
k

Ykek = Y,

with Y = (Y1, . . . , Yn) being an n-tuple, i.e. a multivector
of rank 1. More explicitly,

Yk = (A ∗11,2 X)k = x0Ak +
k−1∑
l=1

Alxlk −
n∑

l=k+1

Alxkl.

The map ∗11,2 is an example of a projected product, intro-
duced in [5], reconstructing the vector part of AX without
computing the unnecessary parts. The projected product is
basis independent, as opposed to circular convolutions. In
general, ∗ml,k transforms the geometric product of two mul-

tivectors
l

A and
k

B into a multivector
m

C.
We now need to compare Pat′ with other items stored

in the clean-up memory using the dot product, and since
Pat′ is a vector, we need to compare only the vector part.
That means, if the clean-up memory contained a multivec-

tor
2t+1

M of an odd rank, we would also need to compute

Pat′ · ⟨
2t+1

M ⟩1 while searching for the right answer.
This method of decoding suggests that items stored in

the clean-up memory should hold information about their
ranks, which is dangerously close to employing fixed data
slots present in localist architectures. However, a rank of
a clean-up memory item can be “guessed" from its size.
In a distributed model we also should not “know" for sure
how many parts the projected product should reject, but
it can certainly reject parts spanned by blades of highest
grades. Unfortunately, since the geometric product is non-
commutative, questions concerning roles and fillers need to
be asked on different sides of a sentence, forcing atomic ob-
jects to hold information on whether they are roles or fillers
and thus, forcing them to be partly hand-generated. We can
either ask question always on the same side of a sentence
and be satisfied with less precise answers or always ask
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about only the roles or only the fillers. It becomes clear,
that recognition based on the hierarchy of multivectors and
the projected product is best applicable to tasks in which
questions need to be asked only on one side of the sentence
or in which sentences have predetermined structure.

Before providing formulas for encoding and decoding
a complex statement we need to introduce additional no-
tation for the projected product and the projection. We
have already introduced the projected product ∗ml,k trans-
forming the geometric product of two multivectors of ranks
l and k into a multivector of rank m. This will not al-
ways be the case for complex statements, since we can pro-
duce a multivector that will not be of any given rank. Let
∗ml,{α1,α2,...,αk} denote the projected product transforming

the geometric product of a multivector
l

A and a multivec-
tor B containing α1-blades, α2-blades,. . . and αk-blades

into a multivector
m

C. In this way, the projected product
∗11,2 may be written down as ∗11,{0,2}. By analogy, let
⟨·⟩{α1,α2,...,αk} denote the projection of a multivector on
components spanned by α1-blades, α2-blades,. . . and αm-
blades.

Let Ψ denote the normalized multivector encoding the
sentence “Fido bit PSmith", i.e.

Ψ = biteagt ∗ Fido︸ ︷︷ ︸
rank 2

+ biteobj ∗ PSmith︸ ︷︷ ︸
rank 2︸ ︷︷ ︸

rank 3

.

Multivector Ψ will contain scalars, vectors, bivectors and
trivectors and can be written down as the following vector

of dimension
∑3

i=0

(
n
i

)

Ψ = α︸︷︷︸
a scalar

+
n∑

i=1

βiei︸ ︷︷ ︸
vectors

+
n∑

1=i<j

γijeij︸ ︷︷ ︸
bivectors

+
n∑

1=i<j<k

δijkeijk︸ ︷︷ ︸
trivectors

.

4 More Examples of Encoding and
Decoding Sentences

The following examples illustrate various ways of asking
questions in the GAc architecture.

“Who was bitten?"
The answer to that question will be a multivector of rank 2

Ψ ♯ biteobj = ⟨bite+objΨ⟩{0,2}
= bite+obj ∗

2
1,{0,1,2,3} Ψ

= PSmith′ ≈ PSmith.

Let biteobj = {y1, . . . , yn}, PSmith′ will then have the
form

PSmith′ = (y1e1 + · · ·+ ynen) ∗21,{0,1,2,3}

(
n∑

i=1

βiei +
n∑

1=i<j<k

δijkeijk)

=

n∑
k=1

ykβk︸ ︷︷ ︸
a scalar

+

n∑
1=i<j

θijeij︸ ︷︷ ︸
bivectors

,

where

θij = yiβj − yjβi +
n∑

t=1
t ̸∈{i,j}

ytδijt

with δijt = δtij = −δitj . As previously, PSmith′

should be compared with appropriate items from the clean-
up memory to produce the most probable answer.

“What happened to PSmith?"
Asking about roles poses a problem of inverting a
(multi)vector. Since not all multivectors are invertible,
we have to be satisfied with reverses [5] of multivectors.
We will need another type of a projected product: let
∗m{α1,α2,...,αl},k denote the projected product transforming
the geometric product of a multivector B containing α1-

blades, α2-blades,. . . and αl-blades and a multivector
k

A

into a multivector
m

C. The answer to our question will be
a vector

Ψ ♯ PSmith = ⟨ΨPSmith+⟩1
= Ψ ∗1{0,1,2,3},2 PSmith

+

= bite′obj ≈ biteobj .

If we denote PSmith as

PSmith = z0 + z12e12 + · · ·+ z(n−1)ne(n−1)n

then

bite′obj = (
n∑

i=1

βiei +
n∑

1=i<j<k

δijkeijk)

∗1{0,1,2,3},2(z0 −
n∑

1=i<j

zijeij)

= ζ1e1 + · · ·+ ζnen,

where

ζk = βkz0 −
k−1∑
i=1

βizik +

n∑
i=k+1

βizki −
n∑

1=i<j
i,j ̸=k

δijkzij ,

with δijk = δkij = −δikj .

“What did Fido do?"
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The last question in this example will produce an answer
having the form of a vector

Ψ ♯ F ido = ⟨ΨFido+⟩1
= Ψ ∗1{0,1,2,3},1 Fido

+

= bite′agt ≈ biteagt.

If Fido = {v1, . . . , vn}, then

bite′agt = (α+ γ12e12 + · · ·+ γ(n−1)ne(n−1)n)

∗1{0,1,2,3},1(v1e1 + · · ·+ vnen)

= ϑ1e1 + . . . ϑnen,

where

ϑk = αvk −
k−1∑
i=1

γikvi +

n∑
i=k+1

γkivi.

Those tedious calculations imply that the GAc model is
best applicable to sentences having a similar or identical
complexity structure, otherwise it may be hard to automa-
tize the process of asking questions and retrieving answers.
Because of this limitation, this construction seems to be a
promising candidate for a holographic database.

5 Overview of Plate’s Scaling Test
Plate [23] describes a simulation in which approximately
5000 HRR 512-dimensional vectors were stored in the
clean-up memory. The purpose of his simulation was to
study efficiency of the HRR model but also to provide a
counterexample to the claim that role-filler representations
do not permit one component of a relation to be retrieved
given the others. We will repeat Plate’s test on several mod-
els and compare the results.

Let us consider the following atomic objects

numx (x = 0, . . . , 2500),
times,
plus,

fillers,

result,
operand.

}
roles

At the beginning of the scaling test, relations concerning
multiplication and addition are constructed. For example,
“2 · 3 = 6" is constructed as

times2,3 = times+ operand ∗ (num2 + num3)

+result ∗ num6.

Generally, relations are constructed in the following way

timesx,y = times+ operand ∗ (numx + numy)

+ result ∗ numx·y,

plusx,y = plus+ operand ∗ (numx + numy)

+ result ∗ numx+y.

x and y range from 0 to 50 with y ≤ x making a total of
2501 number vectors and 2652 instances of each timesx,y
and plusx,y. As one can notice, the same operand role is
used for both x and y to preserve commutativity of multi-
plication and addition.

Plate writes, that a relation can be “looked up" by sup-
plying enough information to distinguish a specific relation
from others. For example, to look up “2 · 3 = 6" one needs
to find the most similar relation R to any of the following
fragmentary statements

(case 1) times+ operand ∗ num2

+operand ∗ num3,

(case 2) times+ operand ∗ num2

+result ∗ num6,

(case 3) times+ operand ∗ num3

+result ∗ num6,

(case 4) operand ∗ num2 + operand ∗ num3

+result ∗ num6.

Retrieving the missing piece of information in the first three
cases can be done by asking any of the subquestions

(case 1) R ♯ result,

(case 2) R ♯ operand,

(case 3) R ♯ operand.

Case 4 is somewhat more problematic — to look up a miss-
ing relation name (times or plus) one needs to have a sep-
arate clean-up memory containing only relation names or
to use an alternative encoding in which there is a role for
relation names. We will alter Plate’s test by using the latter
method.

Plate states that he had tried one run of the system mak-
ing a query for each component missing in every relation
— this amounted to 10608 queries. A further 7956 queries
had been made to decode the missing component except for
the relation name. Plate goes on to claim, that the system
made no errors.

There appear to be two misstatements in Plate’s claims.
Firstly, we cannot treat subquestions regarding cases 2 and
3 separately, as there are two equally probable answers to
each of these subquestions, provided that relations R2 and
R3 point correctly to timesx,y . Secondly, consider a frag-
mentary piece of information

times+ operand ∗ num0 + result ∗ num0.

In this situation, the missing component can be any of the
numbers numx where x ∈ {0, . . . , 50} and thus, there are
51 atomic objects that are equally probable to be the right
answer. This suggests that Plate regards several answers
as valid ones, as long as the similarity of these answers ex-
ceeds some threshold. To work out the missing component,
one then needs to check which of those potential answers
is not in the original set used for retrieval.

Such a method of investigating scaling properties has
more than a few advantages:
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– Inaccuracies mentioned above act as a test if all atomic
objects are created and treated equally. Ideally, ev-
ery atomic object of the numx form should be rec-
ognized as a correct answer to the “zero problem" for
number of trials

51 · 100% of the time.

– Prime numbers greater than 100 do not appear in any
of timesx,y and plusx,y relations, therefore they test
if the model is immune to garbage data.

– Numbers ranging from num0 to num100 may be con-
structed in a multitude of ways by addition (num0 by
multiplication) and any given sentence chunk result∗
numz will appear quite often in the plusx,y relation.
Hence, this is a great way of checking if the model
deals with excessive similarity of a number of com-
plex statements.

– Atomic objects bound with operand and result range
in variety. On the other hand, there are just two atomic
objects acting as an operation — does it affect in
any way the recognition of operation filler? Indeed,
it will be shown in Section 7 that recognition of the
operation chunk turns out to be quite interesting de-
pending on the choice of the architecture.

6 Notation
For the purpose of explaining test results, let us introduce
the following notation. Let S∗

x,y and S+
x,y denote relations

S∗
x,y = operation ∗ times+ operand ∗ numx +

operand ∗ numy + result ∗ numx·y,

S+
x,y = operation ∗ plus+ operand ∗ numx +

operand ∗ numy + result ∗ numx+y,

for y ≤ x. We chose to use a separate role for a rela-
tion name to enable encoding the information given only
operands and the result. Let F op

i,x,y denote fragmentary
statements for i ∈ {1, 2, 3, 4} and op ∈ {∗,+}

F op
1,x,y = Sop

x,y − result ∗ numx op y,

F op
2,x,y = Sop

x,y − operand ∗ numx,

F op
3,x,y = Sop

x,y − operand ∗ numy,

F op
4,x,y = Sop

x,y − operation ∗ op.

If v is an element of the clean-up memory, then let N(v)
denote the closest neighbor of v, i.e. an element of the
clean-up memory that is most similar to v. If v has more
than one neighbor, then all subquestions during the test
are asked to all of v’s neighbors. In HRR, GAd (with the
Hamming measure of similarity) and GAc it is extremely
unlikely for an element of the clean-up memory to have
more than one neighbor due to the continuous nature of
data in these architectures. Let Qop

i,x,y = N(F op
i,x,y) for

i ∈ {1, 2, 3, 4} and op ∈ {∗,+}. During the test we asked

subquestions concerning components missing in F op
i,x,y and

obtained the following (sets of) answers

qop1,x,y = N(Qop
1,x,y ♯ result),

qop2,x,y = N(Qop
2,x,y ♯ operand),

qop3,x,y = N(Qop
3,x,y ♯ operand),

qop4,x,y = N(Qop
4,x,y ♯ operation).

We assume that a missing component is identified correctly
if it is the only neighbor to appropriate answer qop·,x,y or it
belongs to the set of neighbors of qop·,x,y .

7 Test Results
The software for all tests was developed by A. Patyk-
Łońska in Java language. All tests were performed on
an ordinary PC with dualcore AMD processor with 2 GB
RAM.

Tables 2 through 4 compare scaling test results for

– GAc and HRR, both using dot-product as a similarity
measure.

– BSC using Hamming distance as a similarity measure.

Although BSC and HRR models need only n-dimensional
vectors, this is not quite the case for and GAc, which needs
1 + n(n−1)

2 numbers to represent multivectors of rank 2
over Rn. We present recognitions test results close to 100%
and comment on vector length required for each model to
achieve such percentage. The real number of memory cells
used up by each model is given in brackets in the table
headings.

The answers to subquestions Qop
2,x,y ♯ operand and

Qop
3,x,y ♯ operand were considered to be correct if any of

the two possible operands came up as the item most sim-
ilar to those subquestions. In case of other questions and
subquestions only exact answers were taken into consider-
ation.

50 runs of the test were performed on each model. Un-
like in Plate’s test, x and y ranged from 0 to only 20. Hence,
there are 401 number vectors and 462 relation vectors.

The “zero problem" is clearly visible in each tested
model, as the recognition percentage of Q∗

3,x,y barely ex-
ceeds 90%. Nevertheless, Q∗

3,x,y almost always contains at
least one of the operands from the original sentence S∗

x,y

since the recognition percentage of q∗3,x,y reaches 100%
for sufficiently large data size. On the whole, the recogni-
tion percentage of q∗2,x,y and q∗3,x,y does not differ greatly
from the recognition percentage of q+2,x,y and q+3,x,y in any
model.
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Table 2: Recognition percentage for GAc.
Questions R10 R20 R30 R40

(46) (191) (436) (781)
Q∗

1,x,y 89.76% 99.98% 99.99% 100.0%
q∗1,x,y 39.44% 95.28% 99.58% 99.88%

Q∗
2,x,y 91.12% 99.73% 99.98% 100.0%

q∗2,x,y 36.24% 83.86% 97.92% 99.81%
Q∗

3,x,y 83.97% 91.15% 91.33% 91.34%
q∗3,x,y 41.27% 84.92% 98.05%∆ 99.82%∆

Q∗
4,x,y 98.90% 99.60% 99.63% 99.59%

q∗4,x,y 42.01% 95.56% 99.24% 99.52%
Q+

1,x,y 89.39% 99.99% 100.0% 100.0%
q+1,x,y 39.09% 95.99% 99.76% 99.95%

Q+
2,x,y 86.96% 99.59% 99.96% 100.0%

q+2,x,y 35.32% 83.84% 97.97% 99.79%
Q+

3,x,y 87.00% 99.63% 99.96% 100.0%
q+3,x,y 35.12% 83.84% 97.98% 99.79%

Q+
4,x,y 99.05% 99.53% 99.51% 99.54%

q+4,x,y 45.84% 94.73% 99.14% 99.49%

Table 3: Recognition percentage for HRR.
Questions N = 200 N = 300 N = 400 N = 500
Q∗

1,x,y 29.1% 27.06% 26.28% 28.51%
q∗1,x,y 31.08%∆ 30.03%∆ 30.30%∆ 32.23%∆

Q∗
2,x,y 54.72% 52.06% 53.10% 53.32%

q∗2,x,y 98.99%∆ 99.92%∆ 99.98%∆ 100.0%∆

Q∗
3,x,y 50.53% 47.93% 49.80% 51.21%

q∗3,x,y 98.92%∆ 99.90%∆ 99.97%∆ 100.0%∆

Q∗
4,x,y 89.23% 90.56% 90.51% 90.29%

q∗4,x,y 90.28%∆ 92.69%∆ 92.42%∆ 92.31%∆

Q+
1,x,y 28.26% 29.46% 28.03% 28.81%

q+1,x,y 27.32% 29.37% 28.02% 28.80%
Q+

2,x,y 53.91% 54.48% 55.26% 54.68%
q+2,x,y 98.72%∆ 99.90%∆ 99.99%∆ 99.99%∆

Q+
3,x,y 53.73% 55.23% 55.34% 54.62%

q+3,x,y 98.67%∆ 99.91%∆ 99.98%∆ 100.0%∆

Q+
4,x,y 98.70% 98.75% 98.66% 98.75%

q+4,x,y 97.16% 98.55% 98.64% 98.74%
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Table 4: Recognition percentage for BSC.
Questions N = 200 N = 300 N = 400 N = 500
Q∗

1,x,y 86.71% 91.65% 93.78% 94.74%
q∗1,x,y 82.82% 90.62% 93.87%∆ 94.95%∆

Q∗
2,x,y 94.42% 97.60% 99.03% 99.44%

q∗2,x,y 99.68%∆ 99.97%∆ 99.98%∆ 100.0%∆

Q∗
3,x,y 86.87% 89.43% 90.50% 90.97%

q∗3,x,y 99.15%∆ 99.47%∆ 99.65%∆ 100.0%∆

Q∗
4,x,y 94.39% 95.58% 95.39% 95.50%

q∗4,x,y 90.78% 94.89% 95.22% 95.44%
Q+

1,x,y 86.38% 91.59% 93.65% 94.71%
q+1,x,y 81.71% 90.28% 93.27% 94.57%

Q+
2,x,y 94.23% 97.77% 99.19% 99.52%

q+2,x,y 99.36%∆ 99.94%∆ 100.0%∆ 100.0%∆

Q+
3,x,y 94.54% 97.39% 98.77% 99.48%

q+3,x,y 99.41%∆ 99.94%∆ 100.0%∆ 100.0%∆

Q+
4,x,y 95.40% 95.38% 95.65% 95.66%

q+4,x,y 91.81% 94.27% 95.02% 95.27%

Table entries marked with a “∆" indicate that despite
the wrong recognition of a fragmentary sentence, the miss-
ing component has been identified correctly. In all tested
models such situations arise for sentences with one of the
operands missing. For HRR, however the missing item
has been “accidentally" correctly identified also in cases of
missing operation ∗ times and result ∗ timesx,y compo-
nents. Such recognition did not occur in cases of missing
operation ∗ plus and result ∗ plusx,y components, which
is distressingly asymmetric.

HRR turned out to be the worst model during this exper-
iment. The recognition percentage of Q∗

1,x,y and Q+
1,x,y is

dangerously low when compared to other Q’s. Both Q∗
1,x,y

and Q+
1,x,y are retrieved from the clean-up memory given

only two operands and the operation type. Since we have
only two operation types, Q∗

1,x,y and Q+
1,x,y will not differ

greatly from each other. This phenomenon is also observ-
able in BSC (but not in GAc), where the recognition per-
centage of Q1’s is only slightly lower than that of the other
Q’s. Apart from that weakness, BSC performs as well as
GAc for adequate data size.

8 Conclusion

Authors developed a new model of distributed representa-
tions of data based on geometric algebra. Although the data
representations of sentences encoded in this model may
have varying lengths (as opposed to HRR and BSC), it can
be justified by the fact that it is quite logical for sentences
that hold more information to have larger ”volume".

Tedious calculations presented in Section 3 imply that
the GAc model is best applicable to sentences having a
similar or identical complexity structure, otherwise it may
be hard to make the process of asking questions and re-
trieving answers automatic. Because of this limitation, this

construction seems to be a promising candidate for a holo-
graphic database.

Although research in distributed representations has
been thriving in the past decades, no one has yet developed
a software tool that would employ distributed representa-
tions to implement databases with real-life contents. Of
course, some attempts at scaling has been made so far, but
they were rather narrowly aimed at specific tasks. Authors
hope to develop such a tool in the (near) future.

9 Further Perspectives –
Quantum-like Computation Based
on Geometric Algebra

Quantum algorithms [17] employ tensor product binding
and thus are analogous to Smolensky’s tensor product rep-
resentations [25]. The peculiarity of quantum computation
is in its putative implementation: hardware based on the
rules of micro-world automatically guarantees parallelism
of processing the entire superposition of bound objects.
The same property, however, makes quantum processors
extremely sensitive to noise so it is by no means evident
that working devices will be practically constructed.

The question is if we really have to look for micro-world
implementations of quantum computation. Replacing ten-
sor products by geometric products one obtains a one-to-
one map between quantum mechanical superpositions and
multivectors [2, 4], and all elementary quantum gates have
geometric analogues [3]. This proves that quantum algo-
rithms can be, in principle, implemented in systems de-
scribed by geometric algebra.
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