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Distance / similarity measures facilitate in decision-making by identifying the discrimination or similarity 

between two or more course of actions to identify the best decision. Data available in the real world may 

not be in a crisp format. Intuitionistic fuzzy matrices are applicable managing uncertainty and useful in 

decision making, relational equation, clustering, etc. To take decision the divergence between two 

intuitionistic fuzzy matrices identifies dissimilarity between matrices. This paper presents a new divergence 

measure for intuitionistic fuzzy matrices with the verification of its validity. The fundamental properties are 

demonstrated for the new intuitionistic fuzzy divergence measure. A technique to solve multi-criteria 

decision-making problems is developed by utilizing the proposed intuitionistic fuzzy divergence measure. 

Finally, application in the medical diagnosis of this intuitionistic fuzzy divergence measure to decision 

making is shown using real data. 

Povzetek: Razvita je nova mera podobnosti mehkih matrik. Nova metoda omogoča reševanje problemov 

večkriterijskega odločanja in se uporablja v medicinski diagnostiki z uporabo realnih podatkov.

1 Introduction 
In real-world data involved in medical sciences, social 

sciences, engineering, and management are usually not all 

crisp, meticulous, and deterministic due to various 

uncertainties lying in the problem. Ambiguity may not be 

handled only dealing with fuzziness to reduce uncertainty 

of fuzzy values. Fuzzy sets use only crisp number for the 

membership value. However, in some situations the exact 

value of the function cannot be easily obtained. To tackle 

this issue, we should consider intuitionistic fuzzy data for 

linguistic evaluation for more reliable results than fuzzy 

data which allocates the degrees of membership and non-

membership and provide more degree of flexibility to the 

expert for expressing his judgment. In recent times, due to 

increasing complexity of socio-economic environment, 

intuitionistic fuzzy sets are more eminent than the fuzzy 

sets in maintaining the ambiguity and exaggeration of real-

life problems.  

In information theory, while studying the set of objects we 

must differentiate or discriminate two objects on the basis 

of some parameters associated with them. Divergence 

measure is a significant tool for evaluating the amount of 

discrimination. Shannon (1948) defined entropy measure 

for probability distribution. Kullback and Leibler (1951) 

firstly investigated divergence measure which assumed 

probability distribution deviates from the original one 

found applications in many studies. Bhandari and Pal 

(1993) give a fuzzy divergence information measure for 

discrimination of a fuzzy set A relative to some other fuzzy 

set B which has found wide applications in many fields 

such as image processing, signal processing, Fuzzy 

clustering, and pattern recognition etc. 

Atanassov (1986) proposed a generalization of fuzzy set, 

an intuitionistic fuzzy set, is characterized by two 

functions expressing the degree of membership and non-

membership and a hesitation index. IFSs have widely 

implemented by the researchers to examine problems with 

uncertainties. Intuitionistic fuzzy measures are more 

appropriate in decision making such as in medical 

diagnosis (Wei et al. (2011) and Wu and Zhang (2011)), 

engineering, speech recognition, pattern recognition (Li 

and Cheng, (2002); Mitchell (2003); Vlachos and 

Sergiadis (2007); Wei and Ye (2010)) and in many more 

areas. Wei and Ye (2010) proposed an improved version 

of Vlachos and Sergiadis (2007) intuitionistic fuzzy 

divergence and applied in pattern recognition. Later, 

various research scholars have paid attention on 

divergence measure for IFSs (Li and Cheng (2002); 

Vlachos and Sergiadis (2007); Verma and Maheshwari 

(2017)).  Yue and Jia (2017) investigated a GDM method 

based on projection measurement for IFSs to solve 

complex decision-making problem. He et al. (2020) 

proposed distance measures on IFSs based on IF 

dissimilarity functions and successfully applied on pattern 
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recognition. Taruna et al. (2021) studied fuzzy distance 

measure and applied successfully in medical diagnosis. 

Taruna et al. (2021) proposed a new parametric 

generalized exponential entropy measure on Intuitionistic 

vague sets. Arora and Naithani (2021) proposed 

logarithmic entropy measures under PFSs and demonstrate 

application proposed measures in detecting disease related 

to Post Covid-19 implications through TOPSIS method. 

Mishra et al. (2018) provides me direction to propose this 

work, they proposed an intuitionistic fuzzy divergence 

measure based on ELECTRE method for the performance 

of cellular mobile telephone service providers. The 

concept of intuitionistic fuzzy matrix was studied by Pal et 

al. (2002). Intuitionistic fuzzy matrices (IFM) generalize 

the fuzzy matrix presented by Thomson (2005) and has 

been more applicable in multi-criteria decision, 

bioinformatics, aircraft control and many related fields. It 

also helps in generalization of various results on fuzzy 

matrices and can be used in discussion in intuitionistic 

fuzzy relations. IFM can be used in linear intuitionistic 

fuzzy transformations whereas it can be helpful in non-

linear transformations. 

It is noticeable that the strength of a measure lies in its 

properties. The proposed measure has elegant properties 

proved in the paper, to enhance the applicability of this 

measure. Inspired by the above-mentioned work, we 

propose a divergence measure for intuitionistic fuzzy 

matrices for applying in multi criteria decision making in 

every field of real world like in medical, engineering, 

business where decision have to be taken on the basis of 

some criteria. The aim of the measure is to evaluate the 

optimal alternative under the set of the different ones. 

The remainder of the paper is organized as follows. 

Section 2 is devoted to introducing some well-known 

concepts, and notions related to fuzzy set theory, 

intuitionistic fuzzy set theory and intuitionistic fuzzy 

matrix theory. In section 3, we proposed a new 

intuitionistic fuzzy divergence measure for intuitionistic 

fuzzy matrix corresponding to Mishra et al. (2018). 

Section 4 provides more elegant properties of the proposed 

measure. It is followed by the applications of the proposed 

intuitionistic fuzzy divergence measure for the IFM to 

medical diagnosis and a method of multi-criteria decision 

making in section 5. Finally, some concluding remarks are 

drawn in section 6. 

 

2 Preliminaries 

This section is devoted to introducing some well-known 

concepts and the notions of fuzzy set theory and 

intuitionistic fuzzy set theory. Then, we recall the concepts 

and the notions related to fuzzy set theory and the 

axiomatic definition of intuitionistic fuzzy divergence 

measure. 

2.1   Definitions and preliminaries 

2.1.1   Fuzzy set 

The linguistic values of the alternative’s assessment are 

usually symbolized by fuzzy sets for dealing with 

fuzziness of real –world problem. Fuzzy sets are the sets 

whose elements have a degree of membership. Zadeh 

(1965) acquainted the fuzzy sets as the extension of the 

classical notion of sets i.e. crisp sets. 

Definition: A fuzzy set is a pair (Ủ, ḿ), where Ủ is a set 

and ḿ: Ủ → [0, 1] for each ỳ∈ Ủ, the value ḿ(ỳ) is called 

degree of membership of ỳ in (Ủ, ḿ). For a finite set Ủ = 

{ỳ1,ỳ2, …ỳ𝑛} the fuzzy set (Ủ, ḿ) is often denoted by  

{{
ḿ(ỳ1)

ỳ1
} , {

ḿ(ỳ2)

ỳ2
} , … {

ḿ(ỳ𝑛)

ỳ𝑛
}}. 

Definition: A fuzzy set ḿ(ỳ) on Ủ is defined by a 

membership function ḿ(ỳ): Ủ → [0,1]. For ỳ∈ Ủ, ḿ(ỳ) the 

membership function denotes the degree to which ỳ 

belongs to fuzzy set ḿ. 

2.1.2 Intuitionistic fuzzy set 

In some situation, fuzzy sets are not efficient for linguistic 

evaluation. Atanassov (1986) introduced generalization of 

fuzzy sets which can be applied in such situation. 

Intuitionistic fuzzy sets (IFSs) allocate degrees of 

membership and non-membership which give more 

degrees of flexibility to the decision expert for express her/ 

his evaluation. They can be implemented to model 

situations in which fuzzy sets do not provide all the 

available information. 

 

Definition (Atanassov, 1986) Let Ü = { 𝑢1, 𝑢2, … , 𝑢𝑛} be 

a discourse set, then an IFS Ġ on Ü is defined asĠ =
{⟨μi,  μĠ(μi),  vĠ(μi)|μi  ∈  Ü⟩}, 

Where  μĠ ∶   Ü → [0,1] and  vĠ ∶   Ü → [0,1]  show the 

membership degree and non-membership degree of μi to 

Ġ in Ü, respectively, with the condition 0 ≤  μĠ(μi)  ≤ 1, 0 

≤  vĠ(μi)  ≤ 1 and 0 ≤  μĠ(μi) +  vĠ(μi)  ≤ 1,       μi∈Ü. 

Here, the intuitionistic index (hesitancy degree) of an 

element μi  ∈  Ü to Ġ is given by   πĠ(μi)= 1 −  μĠ(μi) −
  vĠ(μi) and 0 ≤ πĠ(μi)  ≤ 1. 

2.1.3 Intuitionistic fuzzy matrix theory 

The intuitionistic fuzzy matrix theory is very simple and 

easily applicable in circumstances where agreeness is not 

sufficient we have to consider disagreeness for the same. 

The algorithms and algebra for intuitionistic fuzzy matrix 

theory are applicable for data related problems. Social 
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scientists apply this approach to analyze interactions 

between attributes and to analyze other analytical tools. 

Definition: intuitionistic fuzzy matrix: A intuitionistic 

fuzzy matrix(IFM)𝐴 of order 𝑚 × 𝑛 is defined as 𝐴 =
[< 𝑎𝑖𝑗𝜇 ,  𝑎𝑖𝑗𝑣 >]𝑚×𝑛

 where 0 ≤ 𝑎𝑖𝑗𝜇 ≤ 1is the 

membership value of the element 𝑎𝑖𝑗  in 𝐴 and 0 ≤  𝑎𝑖𝑗𝑣  ≤
1  be the non-membership value of element 𝑎𝑖𝑗  in matrix 

𝐴 maintaining the condition 0 ≤ 𝑎𝑖𝑗𝜇 +  𝑎𝑖𝑗𝑣 ≤ 1. For our 

convenience, we write 𝐴 as 𝐴 = [(𝑎𝑖𝑗𝜇 ,  𝑎𝑖𝑗𝑣)]𝑚×𝑛
. We 

can define an IFM  

𝐴 = [(𝑎𝑖𝑗𝜇 ,  𝑎𝑖𝑗𝑣)]𝑚×𝑛

= [

(𝜇11, 𝑣11) (𝜇12, 𝑣12) ⋯ (𝜇1𝑛, 𝑣1𝑛)
(𝜇21, 𝑣21) (𝜇22, 𝑣22) ⋯ (𝜇2𝑛, 𝑣2𝑛)

⋮ ⋮ ⋱ ⋮
(𝜇𝑚1, 𝑣𝑚1) (𝜇𝑚2, 𝑣𝑚2) ⋯ (𝜇𝑚𝑛, 𝑣𝑚𝑛)

] 

Example 2.3.1: Suppose a person wants to buy a mobile 

phone. He selected three companies to purchase a mobile 

phone, but he wants only one mobile phone of any of the 

following (Samsung, Mi, Vivo) three companies which 

suited him best according to features provided by 

manufacturer. There are three features (cost, camera, 

storage capacity) on the basis he can select best alternative 

for him out of those he has chosen. He assigns membership 

and non-membership values as follows: 

𝐴 = [

(0.1,0.5) (0.3,0.7) (0.4,0.6)
(0.7,0.2 (0.4,02) (0.5,0.3)

(0.2,0.6) (0.1,0.7) (0.9,0.0)
] 

is3 × 3 intuitionistic fuzzy matrix. 

2.1.4 Boolean intuitionistic fuzzy matrix 

An IFM 𝐵 = [(𝑏𝑖𝑗𝜇 ,  𝑏𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛, is a 

Boolean intuitionistic fuzzy matrix of order 𝑚 × 𝑛 if all 

the elements of 𝐵 are either 0 𝑜𝑟 1 maintaining the 

condition 0 ≤ 𝑏𝑖𝑗𝜇 +  𝑏𝑖𝑗𝑣 ≤ 1. For example, 

𝐵 = [
(0,1) (1,0) (1,0)
(1,0) (0,1) (0,1)

] 

is2 × 3 boolean intuitionistic fuzzy matrix. 

 

2.1.5 Most intuitionistic fuzzy matrix 

An intuitionistic fuzzy matrix 𝐹 = [(𝑓𝑖𝑗𝜇 ,  𝑓𝑖𝑗𝑣)]𝑚×𝑛
∈

[ÏƑ(M)]𝑚×𝑛 , is said to be a most IFM of order 𝑚 × 𝑛 if all 

the elements of 𝐹 are equal to 0.5 maintaining the 

condition 0 ≤ 𝑓𝑖𝑗𝜇 +  𝑓𝑖𝑗𝑣 ≤ 1. For example, 

𝐹 = [

(0.5,0.5) (0.5,0.5)
(0.5,0.5) (0.5,0.5)

(0.5,0.5) (0.5,0.5)
] 

is3 × 2 most intuitionistic fuzzy matrix. 

2.1.6 Rectangle intuitionistic fuzzy matrix 

Let 𝑅 = [(𝑟𝑖𝑗𝜇 ,  𝑟𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 , If 𝑚 ≠ 𝑛, then 𝑅 

is called an intuitionistic fuzzy rectangular matrix. 

 

2.1.7 Square intuitionistic fuzzy matrix  

Let 𝑆 = [(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 , If 𝑚 = 𝑛, then 𝑆 

is called an intuitionistic fuzzy square matrix. 

2.1.8 Row-Intuitionistic Fuzzy Matrix: 

Let 𝑆 = [(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 , If 𝑚 = 1, then 𝑆 

is called an intuitionistic fuzzy row matrix. For example, 

𝑆 = [(0.1,0.8) (0.5,0.3) (0.8,0.1)] 

is 1 × 3 row matrix.  

2.1.9 Column-intuitionistic fuzzy matrix 

Let 𝑆 = [(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 , If 𝑛 = 1, then 𝑆 

is called a intuitionistic fuzzy column matrix. For example, 

𝑆 = [

(0.2,0.5)
(0.7,0.1)

(0.5,0.4)
] 

is 3 × 1 column fuzzy matrix.  
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2.1.10 Intuitionistic fuzzy diagonal matrix 

Let 𝑆 = [(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 ,If𝑛 = 𝑚 and 

𝑠𝑖𝑗𝜇 = 0 ,  𝑠𝑖𝑗𝑣 = 1 for all 𝑖 ≠ 𝑗 then 𝑆 is called a 

intuitionistic fuzzy diagonal matrix. For example, 

𝑆 = [

(0.4,0.2) (0,1) (0,1)
(0,1) (0.7,0.1) (0,1)

(0,1) (0,1) (0.2,0.5)
] 

is 3 × 3 fuzzy diagonal matrix.  

2.1.11 Scalar intuitionistic fuzzy matrix 

Let 𝑆 = [(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 ,If 𝑛 = 𝑚, and 

𝑠𝑖𝑗𝜇 = 0 ,  𝑠𝑖𝑗𝑣 = 1for all 𝑖 ≠ 𝑗  and 𝑠𝑖𝑗𝜇 = 𝑘,  𝑠𝑖𝑗𝑣 = 𝑝 ∈

[0, 1]∀𝑖 = 𝑗 then 𝑆 is called a fuzzy scalar matrix. For 

example 

𝑆 = [

(0.4,0.5) (0,1) (0,1)
(0,1) (0.4,0.5) (0,1)

(0,1) (0,1) (0.4,0.5)
] 

is3 × 3 fuzzy scalar matrix. 

2.1.12 Upper triangular intuitionistic fuzzy matrix 

Let 𝑆 = [(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 , where 𝑠𝑖𝑗 =

(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣) , If 𝑚 = 𝑛, and 𝑠𝑖𝑗 = (0,1) for all 𝑖 > 𝑗 then 𝑆 

is called a intuitionistic fuzzy upper triangular matrix. For 

example, 

𝑆 = [

(0.4,0.1) (0.5,0.2) (0.9,0.0)
(0,1) (0.2,0.3) (0.3,0.4)

(0,1) (0,1) (0.4,0.5)
] 

is 3 × 3 upper triangular matrix. 

 

 

 

2.1.13 Lower triangular intuitionistic fuzzy matrix 

Let 𝑆 = [(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 ,  where 𝑠𝑖𝑗 =

(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)  , If 𝑚 = 𝑛, and 𝑠𝑖𝑗 = (0,1)for all 𝑖 < 𝑗 then 𝑆 

is a intuitionistic fuzzy lower triangular matrix. For 

example, 

𝑆 = [

(0.4,0.3) (0,1) (0,1)
(0.5,0.4) (0.9,0.0) (0,1)

(0.3,0.6) (0,1) (0.1,0.6)
] 

is3 × 3 fuzzy lower triangular matrix. 

An intuitionistic fuzzy matrix is triangular if it is either 

intuitionistic fuzzy lower or intuitionistic fuzzy upper 

triangular matrix. 

Definition: Let 𝑆 = [(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈

[ÏƑ(M)]𝑚×𝑛 ,where𝑠𝑖𝑗 = (𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣),then the elements 

𝑠11, 𝑠22, … , 𝑠𝑚𝑚 are the diagonal elements and which they 

lie along the line is called the principal diagonal of the 

intuitionistic fuzzy matrix. 

2.2 Operations on two intuitionistic fuzzy 

matrices 

Here we performed some operation on Intuitionistic fuzzy 

matrices. Let us define two intuitionistic fuzzy matrices 𝑆 

and 𝑇 of order 3 × 3 as 

𝑆 = [

(0.7,0.0) (0.5,0.2) (0.2,0.0)
(0.3,0.7) (0.2,0.3) (0.1,0.7)

(0.3,0.5) (0.7,0.1) (0.6,0.2)
]                 (2.4.1) 

𝑇 = [

(0.2,0.5) (0.3,0.6) (0.1,0.5)
(0.5,0.3) (0.2,0.6) (0.6,0.3)

(0.8,0.0) (0.7,0.1) (1.0,0.0)
]                (2.4.2) 
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2.2.1 Addition and subtraction of two fuzzy 

matrices 

The addition of two intuitionistic fuzzy matrices is 

possible only when they have same order. Let 𝑆 =

[(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 , 𝑇 = [𝑡𝑖𝑗𝜇, 𝑡𝑖𝑗𝑣] ∈

[ÏƑ(M)]𝑚×𝑛 . Then we define addition and subtraction of 

intuitionistic fuzzy matrices of 𝑆 𝑎𝑛𝑑 𝑇as: 

𝑆 + 𝑇 = {max(𝑠𝑖𝑗𝜇 , 𝑡𝑖𝑗𝜇) ,min(𝑠𝑖𝑗𝑣 , 𝑡𝑖𝑗𝑣)} ∀𝑖 and 𝑗. 

𝑆 − 𝑇 = {min(𝑠𝑖𝑗𝜇 , 𝑡𝑖𝑗𝜇) ,max(𝑠𝑖𝑗𝑣 , 𝑡𝑖𝑗𝑣)} ∀ 𝑖 and 𝑗. 

The addition of above two matrices given by (2.4.1) and 

(2.4.2) is possible because they have same order and 

𝑆 + 𝑇 = [

(0.7,0.0) (0.5,0.2) (0.2,0.0)
(0.5,0.2) (0.2,0.3) (0.6,0.3)

(0.8,0.0) (0.7,0.1) (1.0,0.0)
] 

Clearly 𝑆 + 𝑇 is alsoan intuitionistic fuzzy matrix. 

However, addition of two standard IFMs is an 

intuitionistic fuzzy matrix. 

𝑆 − 𝑇 = [

(0.2,0.5) (0.3,0.6) (0.1,0.5)
(0.3,0.7) (0.2,0.6) (0.1,0.7)

(0.3,0.5) (0.7,0.1) (0.6,0.2)
] 

 

2.2.2 Product of two fuzzy matrices 

We need to define an operation corresponding to 

multiplication of two intuitionistic fuzzy matrices so that 

the product again happens to be an intuitionistic fuzzy 

matrix. The two types of operation which we have are 

max-min operation and min-max operation. We define 

multiplication of 𝑆 and 𝑇 as  

𝑆 ∗ 𝑇 = 𝑅 = [𝑟𝑖𝑗𝜇 ,  𝑟𝑖𝑗𝑣)]𝑚×𝑛
= { 𝑚𝑎𝑥𝑚𝑖𝑛((𝑠𝑖𝑗𝜇), (𝑡𝑖𝑗𝜇)),

𝑚𝑖𝑛𝑚𝑎𝑥((𝑠𝑖𝑗𝑣), (𝑡𝑖𝑗𝑣))} ∀  𝑖 𝑎𝑛𝑑 𝑗 . 

The product of two intuitionistic fuzzy matrices 𝑆 and 𝑇 

given by (2.4.1) and (2.4.2) is possible because they are 

square matrices of same order. 

Max-min Operation of Two Intuitionistic Fuzzy 

Matrices (taking membership value) 

Definition: Let 𝑆 = [𝑠𝑖𝑗𝜇] ∈ [ÏƑ(M)]𝑚×𝑛&𝑇 = [𝑡𝑖𝑗𝜇] ∈

[ÏƑ(M)]𝑛×𝑚 Then Max-min operation of 𝑆, 𝑇 on 𝜇 is 

defined by 𝑀𝑎𝑥 −𝑚𝑖𝑛(𝑆𝑚×𝑛, 𝑇𝑛×𝑚) = 𝑅𝑚×𝑚 =

[𝑟𝑖𝑗𝜇]𝑚×𝑚, where 𝑟𝑖𝑗𝜇 = max{min[(𝑠𝑖𝑗𝜇 , 𝑡𝑖𝑗𝜇)𝑓𝑜𝑟𝑗 =

1 𝑡𝑜 𝑛 ]} 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑚. 

Example: The Max-min operation of two matrices given 

by (2.4.1) and (2.4.2) is 

𝑀𝑎𝑥 − 𝑚𝑖𝑛(𝑆3×3, 𝑇3×3) = 𝑅3×3 = [
0.3 0.5 0.7
0.2 0.3 0.3
0.3 0.6 0.7

] 

Where, 

𝑟11 = 𝑚𝑎𝑥{min(0.7, 0.2) ,min(0.5, 0.3) ,min(0.2, 0.1)}

= 𝑚𝑎𝑥{0.2, 0.3, 0.1} = 0.3 

𝑟12 = 𝑚𝑎𝑥{min(0.7, 0.5) ,min(0.5, 0.2) ,min(0.2, 0.6)}

= 𝑚𝑎𝑥{0.5, 0.2, 0.2} = 0.5. 

and so on 

Min-Max Operation of Two Intuitionistic Fuzzy 

Matrices (non-membership value) 

Definition: Let 𝑆 = [𝑠𝑖𝑗𝑣] ∈ [ÏƑ(M)]𝑚×𝑛&𝑇 = [𝑡𝑖𝑗𝑣] ∈

[ÏƑ(M)]𝑛×𝑚 Then Min-man operation of 𝑆, 𝑇 is defined by 

𝑀𝑖𝑛 − 𝑚𝑎𝑥(𝑆𝑚×𝑛 , 𝑇𝑚×𝑛) = 𝑅𝑚×𝑚 = [𝑟𝑖𝑗𝑣]𝑚×𝑚, where 

𝑟𝑖𝑗𝑣 = min{max[(𝑠𝑖𝑗𝑣 , 𝑡𝑗𝑖𝑣)𝑓𝑜𝑟𝑗 = 1 𝑡𝑜𝑛]} 𝑓𝑜𝑟𝑖 =

1 𝑡𝑜𝑚. 
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Example: The Min-max operation of two matrices given 

by (2.4.1) and (2.4.2) is 

𝑀𝑖𝑛 −𝑚𝑎𝑥(𝑆3×3, 𝑇3×3) = 𝑅3×3 = [
0.5 0.3 0.0
0.6 0.6 0.3
0.5 0.3 0.1

] 

where, 

𝑟11 = 𝑚𝑖𝑛{max(0.0, 0.5) ,max(0.2, 0.6) ,max(0.0, 0.5)}

= 𝑚𝑖𝑛{0.5, 0.6, 0.5} = 0.5 

𝑟12

= 𝑚𝑖𝑛{max(0.0, 0 .3) ,max(0.2, 0.6) ,max(0.0, 0.3)}

= 𝑚𝑖𝑛{0.3, 0.6, 0.3} = 0.3. 

and so on. 

Here we find max-min and min-max products of 

membership and non-membership value of the matrices 

respectively to define the product of matrices 𝑆 and 𝑇 thus 

the product matrix 𝑅 is 

𝑅 = [

(0.3,0.5) (0.5,0.3) (0.7,0.0)
(0.2,0.6) (0.3,0.6) (0.3,0.3)

(0.3,0.5) (0.6,0.3) (0.7,0.1)
] 

2.2.3 Conjugate (complement) of intuitionistic fuzzy 

matrix 

Definition: Let 𝑆 = [(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 , 𝑇 =

[𝑡𝑖𝑗𝜇 , 𝑡𝑖𝑗𝑣] ∈ [ÏƑ(M)]𝑚×𝑛.then 𝑅 is conjugate 

(complement) of 𝑆 denoted by 𝑆𝑐 = 𝑅 = [𝑟𝑖𝑗], where 𝑟𝑖𝑗 =

( 𝑠𝑖𝑗𝑣, 𝑠𝑖𝑗𝜇) for all 𝑖 and 𝑗. 

Example: The conjugate (complement) operation of 

matrix given by (2.4.1) is 

𝑆𝑐 = 𝑅 = 𝑆 = [

(0.0,0.7) (0.2,0.5) (0.0,0.2)
(0.7,0.3) (0.3,0.2) (0.7,0.7)

(0.5,0.3) (0.1,0.7) (0.2,0.6)
] 

 

2.2.4 Transpose of intuitionistic fuzzy matrix 

Definition: Let 𝑆 = [(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 , 𝑅 =

[𝑟𝑖𝑗𝜇 , 𝑟𝑖𝑗𝑣] ∈ [ÏƑ(M)]𝑚×𝑛 ,where 𝑠𝑖𝑗 = (𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣), then 𝑅 

is transpose of 𝑆 denoted by 𝑆𝑇 = 𝑅 = [𝑟𝑗𝑖], where 𝑟𝑗𝑖 =

𝑠𝑖𝑗  for all 𝑖 and 𝑗. 

Example: The transpose operation of matrix given by 

(2.4.1) is 

𝑆𝑇 = 𝑅 = 𝑆 = [

(0.7,0.0) (0.3,0.7) (0.3,0.5)
(0.5,0.2) (0.2,0.3) (0.7,0.1)

(0.2,0.0) (0.1,0.7) (0.6,0.2)
] 

2.2.5 Union of two matrix 

Definition: Let 𝑆 = [(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 , 𝑅 =

[𝑟𝑖𝑗𝜇 , 𝑟𝑖𝑗𝑣] ∈ [ÏƑ(M)]𝑚×𝑛 , where 𝑠𝑖𝑗 = (𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣), 

𝑆 ∪ 𝑅 = {[𝑠𝑖𝑗𝜇 , 𝑠𝑖𝑗𝑣] ∪ [𝑟𝑖𝑗𝜇 , 𝑟𝑖𝑗𝑣]} 

= {𝑚𝑎𝑥(𝑠𝑖𝑗𝜇 , 𝑟𝑖𝑗𝜇),𝑚𝑖𝑛(𝑠𝑖𝑗𝜈 , 𝑟𝑖𝑗𝜈)} 

2.2.6 Intersection of two matrix 

Definition: Let 𝑆 = [(𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣)]𝑚×𝑛
∈ [ÏƑ(M)]𝑚×𝑛 , 𝑅 =

[𝑟𝑖𝑗𝜇 , 𝑟𝑖𝑗𝑣] ∈ [ÏƑ(M)]𝑚×𝑛 ,where 𝑠𝑖𝑗 = (𝑠𝑖𝑗𝜇 ,  𝑠𝑖𝑗𝑣), 

𝑆 ∩ 𝑅 = [𝑠𝑖𝑗𝜇 , 𝑠𝑖𝑗𝑣] ∩ [𝑟𝑖𝑗𝜇 , 𝑟𝑖𝑗𝑣] 

= [𝑚𝑖𝑛(𝑠𝑖𝑗𝜇 , 𝑟𝑖𝑗𝜇),𝑚𝑎𝑥( 𝑠𝑖𝑗𝜈 , 𝑟𝑖𝑗𝜈)] 
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3  Intuitionistic fuzzy divergence 

measueres 

Firstly, De Luca and Termini (1972) proposed entropy 

function for fuzzy set A is defined as follows: 

𝐻𝐷𝐿 =
−1

𝑛
∑[𝜇𝐴(𝑥𝑖)𝑙𝑛

𝑛

𝑖=1

𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖))𝑙𝑛(1

− 𝜇𝐴(𝑥𝑖)] 

Later, in 1989 Pal and Pal pioneered exponential entropy 

for fuzzy set A, which is as follows: 

𝐻𝑃𝑃(𝐴) =  
1

𝑛(√𝑒 − 1)
∑[

𝑛

𝑖=1

𝜇𝐴(𝑥𝑖)𝑒
(1−𝜇𝐴(𝑥𝑖))

+ (1 − 𝜇𝐴(𝑥𝑖))𝑒
𝜇𝐴(𝑥𝑖) − 1 

After towards, for the first time to measure the distinction 

for fuzzy sets Bhandari and Pal (1993) developed 

divergence measure for fuzzy set. 

Let A, B be two fuzzy set, then divergence measure is  

𝐽𝐵𝑃(𝐴, 𝐵) =  ∑𝜇𝐴(𝑥𝑖)𝑙𝑛
𝜇𝐴(𝑥𝑖)

𝜇𝐵(𝑦𝑖)

+ (1 − 𝜇𝐴(𝑥𝑖))𝑙𝑛
1 − 𝜇𝐴(𝑥𝑖)

1 − 𝜇𝐵(𝑦𝑖)
 

Later, Fan and Xie (1999) developed exponential 

divergence measure for fuzzy set is as follows: 

𝐽𝐹𝑋(𝐴, 𝐵) =  ∑[{1 − (1 −

𝑛

𝑖=1

𝜇𝐴(𝑥𝑖))𝑒
(𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑦𝑖)

+ (1 − 𝜇𝐴(𝑥𝑖))𝑒
(𝜇𝐵(𝑦𝑖)−𝜇𝐴(𝑥𝑖))}] 

Vlachos and Sergiadis (2007) introduced  

intuitionistic fuzzy divergence measure is as follows: 

𝐷𝑉𝑆(𝐴, 𝐵) =  ∑[𝜇𝐴(𝑥𝑖)𝑙𝑛 (
𝜇𝐴(𝑥𝑖)

((
1

2
) (𝜇𝐴(𝑥𝑖) + 𝜇𝐵(𝑦𝑖)))

)

𝑛

𝑖=1

+ 𝜈𝐴(𝑥𝑖)𝑙𝑛 (
𝜇𝐴(𝑥𝑖)

((
1

2
) (𝜈𝐴(𝑥𝑖) + 𝜈𝐵(𝑦𝑖)))

)] 

Verma and Maheshwari (2017) defined the Jenson 

Shannon divergence measure for fuzzy sets: 

𝐻𝑉𝑀(𝐴, 𝐵)

=  
1

𝑛(√𝑒 − 1)
∑[

𝑛

𝑖=1

𝜇𝐴(𝑥𝑖) + 𝜇𝐵(𝑦𝑖)

2
𝑒
2−𝜇𝐴(𝑥𝑖)−𝜇𝐵(𝑦𝑖)

2

+ (
2 − 𝜇𝐴(𝑥𝑖) − 𝜇𝐵(𝑦𝑖)

2
) 𝑒

(𝜇𝐴(𝑥𝑖)+𝜇𝐵(𝑦𝑖))

2

−
1

2
(𝜇𝐴(𝑥𝑖)𝑒

(1−𝜇𝐴(𝑥𝑖) + (1 − 𝜇𝐴(𝑥𝑖)𝑒
𝜇𝐴(𝑥𝑖)

+ 𝜇𝐵(𝑦𝑖)𝑒
(1−𝜇𝐵(𝑦𝑖) + (1 − 𝜇𝐵(𝑦𝑖)𝑒

𝜇𝐵(𝑦𝑖)) 

Symmetric measure of Verma and Maheshwari (2017) is 

based on given by Hung and Yang (2008) for IFSs is as 

follows: 

𝐷𝐻𝑌(𝐴, 𝐵) =  
1

1 − 𝜌
∑

[
 
 
 
 
 
 
 
 
 (
𝜇𝐴(𝑥𝑖) + 𝜇𝐵(𝑦𝑖)

2
)

𝜌

− (
𝜇𝐴

𝜌(𝑥𝑖) + 𝜇𝐵
𝜌(𝑦𝑖)

2
)

+(
𝜈𝐴(𝑥𝑖) + 𝜈𝐵(𝑦𝑖)

2
)

𝜌

−(
𝜈𝐴
𝜌(𝑥𝑖) + 𝜈𝐵

𝜌(𝑦𝑖)

2
) + (

𝜋𝐴(𝑥𝑖) + 𝜋𝐵(𝑦𝑖)

2
)

𝜌

−(
𝜋𝐴

𝜌(𝑥𝑖) + 𝜋𝐵
𝜌(𝑦𝑖)

2
)

]
 
 
 
 
 
 
 
 
 

𝑛

𝑖=1

 

Where𝜌 > 0 

Zhang and Jiang (2008) introduced intuitionistic fuzzy 

divergence measure is as follows: 

𝐷𝑍𝐽(𝐴, 𝐵)

= ∑[(
𝜇𝐴(𝑥𝑖) + 1 − 𝜈𝐴(𝑥𝑖)

2
) 𝑙𝑛

𝜇𝐴(𝑥𝑖) + 1 − 𝜈𝐴(𝑥𝑖)

((
1

2
) (𝜇𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)) + 2 + (𝜇𝐵(𝑥𝑖) − 𝜈𝐵(𝑦𝑖)))

𝑛

𝑖=1

+ (
𝜈𝐴(𝑥𝑖) + 1 − 𝜇𝐴(𝑥𝑖)

2
) 𝑙𝑛

𝜈𝐴(𝑥𝑖) + 1 − 𝜇𝐴(𝑥𝑖)

((
1

2
) (𝜈𝐴(𝑥𝑖) − 𝜇𝐴(𝑥𝑖)) + 2 + (𝜈𝐵(𝑦𝑖) − 𝜇𝐵(𝑦𝑖)))

] 

Mao et al. (2013) introduced an intuitionistic fuzzy 

divergence measure: 

𝐷𝐽𝑀(𝐴, 𝐵) =  ∑[𝜋𝐴(𝑥𝑖)𝑙𝑛
𝜋𝐴(𝑥𝑖)

((
1

2
) (𝜋𝐴(𝑥𝑖) + 𝜋𝐵(𝑦𝑖))

𝑛

𝑖=1

+ Δ𝐴(𝑥𝑖)𝑙𝑛
Δ𝐴(𝑥𝑖)

((
1

2
) (Δ𝐴(𝑥𝑖) + Δ𝐵(𝑦𝑖))

] 

Where Δ𝐴(𝑥𝑖) = |𝜇𝐴(𝑥𝑖) − 𝜈𝐴(𝑥𝑖)| 
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Properties of divergence measure for intuitionistic 

fuzzy sets 

Definition: Let 𝐴 & 𝐵 ∈ 𝐼𝐹𝑆𝑠 , then a mapping Ɗ ∶

 𝐼𝐹𝑆𝑠 ×  𝐼𝐹𝑆𝑠 →  𝑅  is said to divergence measure if it 

holds the postulates: 

(D1). Ɗ(A, B)  =  Ɗ(B, A).  

(D2). Ɗ(A, B) = 0  𝑖𝑓𝑓   𝐴 = 𝐵. 

(D3). Ɗ(A⋂C , B⋂C) ≤ Ɗ(A, B) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 C ∈

𝐼𝐹𝑆(𝑈). 

(D4).Ɗ(A⋃C, B ⋃C) ≤ Ɗ(A, B)𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 C ∈ 𝐼𝐹𝑆(𝑈). 

 

4 Divergence measure for 

intuitionistic fuzzy matrix 

In this section, a divergence measure for intuitionistic 

fuzzy matrices 𝐴 & 𝐵 is proposed which is based on 

Vlachos and Sergiadis (2007). The validity of the proposed 

measure is also verified. 

Here first we define a non-probabilistic divergence 

measure of intuitionistic fuzzy matrices: 

Definition: Let [ÏƑ(M)]𝑚×𝑛 be the set of all intuitionistic 

fuzzy matrices having 𝑚 rows and 𝑛 columns and 𝑋 & 𝑌 ∈

[ÏƑ(M)]𝑚×𝑛. Then a mapping 𝐽 ∶  [ÏƑ(M)]𝑚×𝑛 ×

 [ÏƑ(M)]𝑚×𝑛  →  𝑍 is called non-probabilistic divergence 

measure of intuitionistic fuzzy matrices if and only if it 

follows properties given below: 

4.1 Properties of proposed divergence 

measure for IFMs 

Let   A, B, C ∈ [ÏƑ(M)]𝑚×𝑛, divergence measure Ɗ(A, B)  

given by (3.) satisfies the following postulate: 

(P1). Ɗ(A, B)  =  Ɗ(B, A).  

(P2). Ɗ(A, Ac) = 1 𝑖𝑓𝑓 A ∈

                   [ÏƑ(M)]𝑚×𝑛. 

(P3). Ɗ(A, B) = 0  𝑖𝑓𝑓   𝐴 = 𝐵  0 ≤

                  Ɗ(A, B) ≤ 1. 

(P4). Ɗ(A, B)  =  Ɗ(Ac, Bc)and  

                   Ɗ(Ac, B) =  Ɗ(A, Bc). 

(P5). Ɗ(A, B) ≤ Ɗ(A, C)andƊ(B, C) ≤

                   Ɗ(A, C) for A ⊆ B ⊆ C. 

(P6). Ɗ(A⋃B, A⋂ B) = Ɗ(A, B). 

(P7). Ɗ(A⋃B, C) ≤ Ɗ(A, C) +

                   Ɗ(B, C)   𝑓𝑜𝑟 𝑎𝑙𝑙 C ∈                    [ÏƑ(M)]𝑚×𝑛. 

(P8). Ɗ(A⋂B, C) ≤ Ɗ(A, C) +

                   Ɗ(B, C)   𝑓𝑜𝑟 𝑎𝑙𝑙 C ∈                      [ÏƑ(M)]𝑚×𝑛. 

(P9).           Ɗ(A⋂C , B⋂C) ≤

                    Ɗ(A, B) 𝑓𝑜𝑟 𝑎𝑙𝑙 C ∈ [ÏƑ(M)]𝑚×𝑛. 

(P10). Ɗ(A⋃C, B ⋃C) ≤ Ɗ(A, B)𝑓𝑜𝑟 𝑎𝑙𝑙 C ∈

            [ÏƑ(M)]𝑚×𝑛. 

Here we proposed a divergence measure for intuitionistic 

fuzzy matrices 𝑋 and 𝑌 of order 𝑚 × 𝑛 which is 

logarithmic in nature as follows:  
Ɗ(𝐴,𝐵) =

−1

𝑚𝑛
∑ ∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 (

𝜇𝐴(𝑥𝑖𝑗)+𝜇𝐵(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜇𝐴(𝑥𝑖𝑗)+𝜇𝐵(𝑦𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗)+𝜇𝐵(𝑦𝑖𝑗))+(𝜈𝐴(𝑥𝑖𝑗)+𝜈𝐵(𝑦𝑖𝑗)))

+(
𝜈𝐴(𝑥𝑖𝑗)+𝑣𝐵(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈𝐴(𝑥𝑖𝑗)+𝑣𝐵(𝑦𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗)+𝜇𝐵(𝑦𝑖𝑗))+ (𝜈𝐴(𝑥𝑖𝑗)+𝜈𝐵(𝑦𝑖𝑗)))

−(
𝜋𝐴(𝑥𝑖𝑗)+𝜋𝐵(𝑦𝑖𝑗)

2
)

−
1

2

{
 
 
 

 
 
 𝜇𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗)+𝜈𝐴(𝑥𝑖𝑗)
)

+𝑣𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗)+𝜈𝐴(𝑥𝑖𝑗)
)

+𝜇𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗)+𝜈𝐵(𝑦𝑖𝑗)
)

+𝑣𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗)+𝜈𝐵(𝑦𝑖𝑗)
) − (𝜋𝐴(𝑥𝑖𝑗) + 𝜋𝐵(𝑦𝑖𝑗))}

 
 
 

 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛
𝑗=1

𝑚
𝑖=1                                                          

(4.1) 

where 𝜇𝐴(𝑥𝑖𝑗), 𝑣𝐴(𝑥𝑖𝑗) ∈ 𝑋  & 𝜇𝐵(𝑦𝑖𝑗), 𝑣𝐵(𝑦𝑖𝑗) ∈ 𝑌 

Now to show that our proposed measure is a valid measure 

since it satisfies all the above axioms which are proved in 

the following theorems: 

Theorem (P1): Ɗ(𝐴: 𝐵) is symmetric measure 

i.e.Ɗ(𝐴: 𝐵) = Ɗ(𝐵: 𝐴). 

Proof: To prove Ɗ(𝐴: 𝐵) is symmetric measure we show 

Ɗ(𝐴: 𝐵) − Ɗ(𝐵: 𝐴) = 0 
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Ɗ(𝐵, 𝐴)

=
−1

𝑚𝑛
∑∑

[
 
 
 
 
 
 
 
 
 
 
 
 

(
 𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)

2
) 𝑙𝑜𝑔

 𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)

(( 𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)) + (𝜈𝐴(𝑥𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)))

𝑛

𝑗=1

𝑚

𝑖=1

+ (
𝑣𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)

2
) 𝑙𝑜𝑔

𝑣𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)

(( 𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)) + 𝑣𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗))

− (
𝜋𝐵(𝑦𝑖𝑗) + 𝜋𝐴(𝑥𝑖𝑗)

2
) −

1

2

{
 
 
 
 
 
 

 
 
 
 
 
 +𝜇𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
)

+𝑣𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
)

+𝜇𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

+𝑣𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

− (𝜋𝐵(𝑦𝑖𝑗) + 𝜋𝐴(𝑥𝑖𝑗)) }
 
 
 
 
 
 

 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 

 

Ɗ(𝐴,𝐵) −  Ɗ(𝐵, 𝐴)

=
−1

𝑚𝑛
∑∑[(

𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)) + (𝜈𝐴(𝑥𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)))

𝑛

𝑗=1

𝑚

𝑖=1

+ (
𝜈𝐴(𝑥𝑖𝑗) + 𝑣𝐵(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈𝐴(𝑥𝑖𝑗) + 𝑣𝐵(𝑦𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)) + (𝜈𝐴(𝑥𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)))

− (
𝜋𝐴(𝑥𝑖𝑗) + 𝜋𝐵(𝑦𝑖𝑗)

2
)

−
1

2
{𝜇𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
) + 𝑣𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝑣𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

+ 𝜇𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
) + 𝑣𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (

𝑣𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
)

− (𝜋𝐴(𝑥𝑖𝑗) + 𝜋𝐵(𝑦𝑖𝑗))}

− (
 𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)

2
) 𝑙𝑜𝑔

 𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)

(( 𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)) + (𝜈𝐴(𝑥𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)))

+ (
𝑣𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)

2
) 𝑙𝑜𝑔

𝑣𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)

(( 𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)) + 𝑣𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗))

− (
𝜋𝐵(𝑦𝑖𝑗) + 𝜋𝐴(𝑥𝑖𝑗)

2
)

−
1

2
{𝜇𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
) + 𝑣𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (

𝑣𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
)

+ 𝜇𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
) + 𝑣𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝑣𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

− (𝜋𝐵(𝑦𝑖𝑗) + 𝜋𝐴(𝑥𝑖𝑗))}] 

=
−1

𝑚𝑛
∑ ∑ [0]𝑛

𝑗=1
𝑚
𝑖=1 . 

Hence, we can say that the divergence measure is 

symmetric in nature. 

Theorem (P2): Ɗ(A, B) = 0  𝑖𝑓𝑓   𝐴 = 𝐵         0 ≤

 Ɗ(A, B) ≤ 1. 

Theorem (P3): Ɗ(A, Ac) = 1  𝑖𝑓𝑓 A ∈ [ÏƑ(M)]𝑚×𝑛. 

Proof: Since ℱ(𝑥) = 𝑥𝑙𝑜𝑔𝑥 𝑎𝑛𝑑 0 ≤ 𝑥 ≤ 1 ,then 

ℱ′(𝑥) = 1 + 𝑙𝑜𝑔𝑥 and ℱ′(𝑥) =
1

𝑥
≻ 0. 

As a result, ℱis a convex function of X. Therefore, for 

any two points 𝑥 𝑎𝑛𝑑 𝑦  in (0,1] the following inequality 

holds:
ℱ(𝑥)+ℱ(𝑦)

2
≤ ℱ (

𝑥+𝑦

2
). Consequently, 𝑥𝑙𝑜𝑔𝑥 +

𝑦𝑙𝑜𝑔𝑦 − (𝑥 + 𝑦) log (
𝑥+𝑦

2
) ≥ 0, with the equality hold 

only for 𝑥 = 𝑦. In addition, if  𝑥 = 𝑦 = 0  the equality 

holds also. Therefore, we observe that the inequality has 

the same form of [2018]. Hence, it follows that 0 ≤

Ɗ(𝐴, 𝐵) ≤ 1,Ɗ(𝐴, 𝐵) = 0  if and only if 𝐴 = 𝐵 and 

Ɗ(A, Ac) = 1 .  

Theorem(P4): Ɗ(A, B)  =  Ɗ(Ac, Bc)and Ɗ(Ac, B) =

 Ɗ(A, Bc). 

Proof: (i) Ɗ(A, B) =

 Ɗ(Ac, Bc), to prove this first find Ɗ(Ac, Bc). 

 

 

 

Ɗ(Ac, Bc) 
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=  
−1

𝑚𝑛
∑∑[(

𝜈𝐴(𝑥𝑖𝑗) + 𝑣𝐵(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈𝐴(𝑥𝑖𝑗) + 𝑣𝐵(𝑦𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)) + (𝜈𝐴(𝑥𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)))

𝑛

𝑗=1

𝑚

𝑖=1

+ (
 𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)

2
) 𝑙𝑜𝑔

 𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)

(( 𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)) + (𝜈𝐴(𝑥𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)))

− (
𝜋𝐵(𝑦𝑖𝑗) + 𝜋𝐴(𝑥𝑖𝑗)

2
)

−
1

2
{𝜇𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
) + 𝑣𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝑣𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

+ 𝜇𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
) + 𝑣𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (

𝑣𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
)

− (𝜋𝐵(𝑦𝑖𝑗) + 𝜋𝐴(𝑥𝑖𝑗))}] 

 

 

 

 

 

 

 

= Ɗ(𝐴, 𝐵) 

(ii)Ɗ(Ac, B) =  Ɗ(A, Bc) 

Proof: To prove this, taking L.H.S. 

Ɗ(Ac, B)

=
−1

𝑚𝑛
∑∑[(

𝑣𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝑣𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)

((𝑣𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)) + 𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗))

𝑛

𝑗=1

𝑚

𝑖=1

+ (
𝜇𝐴(𝑥𝑖𝑗) + 𝑣𝐵(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜇𝐴(𝑥𝑖𝑗) + 𝑣𝐵(𝑦𝑖𝑗)

((𝑣𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)) + 𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗))

− (
𝜋𝐴(𝑥𝑖𝑗) + 𝜋𝐵(𝑦𝑖𝑗)

2
)

−
1

2
{𝑣𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝑣𝐴(𝑥𝑖𝑗)

𝑣𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
) + 𝜇𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

+ 𝜇𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
) + 𝑣𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (

𝑣𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
)

− (𝜋𝐴(𝑥𝑖𝑗) + 𝜋𝐵(𝑦𝑖𝑗))}] 

Now, taking R.H.S,  

Here, from L.H.S and R.H.S it is clear that Ɗ(Ac, B) =
 Ɗ(A, Bc). 

Theorem(P5):Ɗ(A, B) ≤ Ɗ(A, C) and Ɗ(B, C) ≤

Ɗ(A, C) for A ⊆ B ⊆ C. 

Proof: Let A ⊆ B ⊆ C , then  𝜇𝐴 ≤ 𝜇𝐵 ≤ 𝜇𝐶  and  𝜈𝐴≥ 

𝑣𝐵  ≥  𝑣𝐶, then 

Let |𝜇𝐴 − 𝜇𝐵| + |𝑣𝐴 − 𝑣𝐵| + |𝜋𝐴 − 𝜋𝐵| ≤  |𝜇𝐴 − 𝜇𝐶| + 

|𝑣𝐴 − 𝑣𝐶|+  |𝜋𝐴 − 𝜋𝐶|, 

|𝜇𝐵 − 𝜇𝐶| + |𝑣𝐵 − 𝑣𝐶| + |𝜋𝐵 − 𝜋𝐶| ≤  |𝜇𝐴 − 𝜇𝐶| + 

|𝑣𝐴 − 𝑣𝐶| +  |𝜋𝐴 − 𝜋𝐶|, 

Therefore, 

Ɗ(A, B) ≤ Ɗ(A, C)and Ɗ(B, C) ≤ Ɗ(A, C). 

For the proof of further properties, we consider IFM 𝐺 

into two parts 𝐺1and 𝐺2, such that  

 

𝐺1 = {𝑥𝑖𝑗  𝑜𝑟 𝑦𝑖𝑗  ;  𝑥𝑖𝑗 ∈ 𝑋 𝑜𝑟 𝑦𝑖𝑗 ∈ 𝑌; 𝑥𝑖𝑗  ≥  𝑦𝑖𝑗}

𝐺2 = {𝑥𝑖𝑗  𝑜𝑟 𝑦𝑖𝑗  ;  𝑥𝑖𝑗 ∈ 𝑋 𝑜𝑟 𝑦𝑖𝑗 ∈ 𝑌; 𝑥𝑖𝑗 < 𝑦𝑖𝑗}
} 

 (2) 

And note that for all 𝑥𝑖𝑗 , 𝑦𝑖𝑗 ∈  𝐺1, 

𝜇𝐴(𝑥𝑖𝑗) ≥  𝜇𝐵(𝑦𝑖𝑗)and𝑣𝐴(𝑥𝑖𝑗) < 𝑣𝐵(𝑦𝑖𝑗) 

And also, for all 𝑥𝑖𝑗 , 𝑦𝑖𝑗 ∈  𝐺2, 

𝜇𝐴(𝑥𝑖𝑗) < 𝜇𝐵(𝑦𝑖𝑗)and 𝑣𝐴(𝑥𝑖𝑗) ≥  𝑣𝐵(𝑦𝑖𝑗) 

Theorem(P6):Ɗ(A⋃B, A⋂ B) = Ɗ(A, B). 

Proof: To prove the result, we should prove the following 

relation 

Ɗ(A⋃B, A⋂B) = Ɗ(A⋃B ∣ A⋂B ) + Ɗ(A⋂B|A⋃ B) 

By using the definition of (1), first we have 
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Ɗ(A⋃B ∣ A⋂B ) = 

−1

𝑚𝑛
∑∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (

𝜇A⋃B(𝑥𝑖𝑗) + 𝜇A⋂B(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜇A⋃B(𝑥𝑖𝑗) + 𝜇A⋂B(𝑦𝑖𝑗)

((𝜇A⋃B(𝑥𝑖𝑗) + 𝜇A⋂B(𝑦𝑖𝑗)) + 𝜈A⋃B(𝑥𝑖𝑗) + 𝜈A⋂B(𝑦𝑖𝑗))

+(
𝜈A⋃B(𝑥𝑖𝑗) + 𝑣A⋂B(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈A⋃B(𝑥𝑖𝑗) + 𝑣A⋂B(𝑦𝑖𝑗)

((𝜇A⋃B(𝑥𝑖𝑗) + 𝜇A⋂B(𝑦𝑖𝑗)) + (𝜈A⋃B(𝑥𝑖𝑗) + 𝜈A⋂B(𝑦𝑖𝑗)))

−(
𝜋A⋃B(𝑥𝑖𝑗) + 𝜋A⋂B(𝑦𝑖𝑗)

2
)

−
1

2

{
 
 
 
 
 
 

 
 
 
 
 
 𝜇A⋃B(𝑥𝑖𝑗)𝑙𝑜𝑔(

𝜇A⋃B(𝑥𝑖𝑗)

𝜇A⋃B(𝑥𝑖𝑗) + 𝜈A⋃B(𝑥𝑖𝑗)
)

+𝑣A⋃B(𝑥𝑖𝑗)𝑙𝑜𝑔 (
𝑣A⋃B(𝑥𝑖𝑗)

𝜇A⋃B(𝑥𝑖𝑗) + 𝜈A⋃B(𝑥𝑖𝑗)
)

+𝜇A⋂B(𝑦𝑖𝑗)𝑙𝑜𝑔(
𝜇A⋂B(𝑦𝑖𝑗)

𝜇A⋂B(𝑦𝑖𝑗) + 𝜈A⋂B(𝑦𝑖𝑗)
)

+𝑣A⋂B(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣A⋂B(𝑦𝑖𝑗)

𝜇A⋂B(𝑦𝑖𝑗) + 𝜈A⋂B(𝑦𝑖𝑗)
)

− (𝜋A⋃B(𝑥𝑖𝑗) + 𝜋A⋂B(𝑦𝑖𝑗)) }
 
 
 
 
 
 

 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛

𝑗=1

𝑚

𝑖=1

 

 

=−1

𝑚𝑛
∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 (

𝜇𝐴(𝑥𝑖𝑗)+𝜇𝐵(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜇𝐴(𝑥𝑖𝑗)+𝜇𝐵(𝑦𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗)+𝜇𝐵(𝑦𝑖𝑗))+(𝜈𝐴(𝑥𝑖𝑗)+𝜈𝐵(𝑦𝑖𝑗)))

+(
𝜈𝐴(𝑥𝑖𝑗)+𝑣𝐵(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈𝐴(𝑥𝑖𝑗)+𝑣𝐵(𝑦𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗)+𝜇𝐵(𝑦𝑖𝑗))+ (𝜈𝐴(𝑥𝑖𝑗)+𝜈𝐵(𝑦𝑖𝑗)))

−(
𝜋𝐴(𝑥𝑖𝑗)+𝜋𝐵(𝑦𝑖𝑗)

2
)

−
1

2

{
 
 
 

 
 
 𝜇𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗)+𝜈𝐴(𝑥𝑖𝑗)
)

+𝑣𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗)+𝜈𝐴(𝑥𝑖𝑗)
)

+𝜇𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗)+𝜈𝐵(𝑦𝑖𝑗)
)

+𝑣𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗)+𝜈𝐵(𝑦𝑖𝑗)
) − (𝜋𝐴(𝑥𝑖𝑗) + 𝜋𝐵(𝑦𝑖𝑗))}

 
 
 

 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝐺1  

 

+ ∑ [(
𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)

((𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)) + (𝜈𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)))𝑥𝑖𝑗,𝑦𝑖𝑗∈𝐺2

+ (
𝜈𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)

((𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)) + (𝜈𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)))

− (
𝜋𝐵(𝑦𝑖𝑗) + 𝜋𝐴(𝑥𝑖𝑗)

2
)

−
1

2
{𝜇𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
) + 𝑣𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (

𝑣𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
)

+ 𝜇𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
) + 𝑣𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝑣𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

− (𝜋𝐵(𝑦𝑖𝑗)+𝜋𝐴(𝑥𝑖𝑗))}] 

Now, again from the definition (1), we have 

𝐷(A⋂B|A⋃B) = 

 
−1

𝑚𝑛
∑∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (

𝜇A⋂B(𝑥𝑖𝑗) + 𝜇A⋃B(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜇A⋂B(𝑥𝑖𝑗) + 𝜇A⋃B(𝑦𝑖𝑗)

((𝜇A⋂B(𝑥𝑖𝑗) + 𝜇A⋃B(𝑦𝑖𝑗)) + (𝜈A⋂B(𝑥𝑖𝑗) + 𝜈A⋃B(𝑦𝑖𝑗)))

+(
𝜈A⋂B(𝑥𝑖𝑗) + 𝑣A⋃B(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈A⋂B(𝑥𝑖𝑗) + 𝑣A⋃B(𝑦𝑖𝑗)

((𝜇A⋂B(𝑥𝑖𝑗) + 𝜇A⋃B(𝑦𝑖𝑗)) + (𝜈A⋂B(𝑥𝑖𝑗) + 𝜈A⋃B(𝑦𝑖𝑗)))

−(
𝜋A⋂B(𝑥𝑖𝑗) + 𝜋A⋃B(𝑦𝑖𝑗)

2
)

−
1

2

{
 
 
 
 
 
 

 
 
 
 
 
 𝜇A⋂B(𝑥𝑖𝑗)𝑙𝑜𝑔(

𝜇A⋂B(𝑥𝑖𝑗)

𝜇A⋂B(𝑥𝑖𝑗) + 𝜈A⋂B(𝑥𝑖𝑗)
)

+𝑣A⋂B(𝑥𝑖𝑗)𝑙𝑜𝑔(
𝑣A⋂B(𝑥𝑖𝑗)

𝜇A⋂B(𝑥𝑖𝑗) + 𝜈A⋂B(𝑥𝑖𝑗)
)

+𝜇A⋃B(𝑦𝑖𝑗)𝑙𝑜𝑔(
𝜇A⋃B(𝑦𝑖𝑗)

𝜇A⋃B(𝑦𝑖𝑗) + 𝜈A⋃B(𝑦𝑖𝑗)
)

+𝑣A⋃B(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣A⋃B(𝑦𝑖𝑗)

𝜇A⋃B(𝑦𝑖𝑗) + 𝜈A⋃B(𝑦𝑖𝑗)
)

− (𝜋A⋂B(𝑥𝑖𝑗) + 𝜋A⋃B(𝑦𝑖𝑗)) }
 
 
 
 
 
 

 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛

𝑗=1

𝑚

𝑖=1

 

−1

𝑚𝑛
∑

[
 
 
 
 
 
 
 
 
 
 
 
 

∑

[
 
 
 
 
 
 
 
 
 
 
 
 

(
𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)

((𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)) + (𝜈𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)))𝑥𝑖𝑗,𝑦𝑖𝑗∈𝐺2

+ (
𝜈𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)

((𝜇𝐵(𝑦𝑖𝑗) + 𝜇𝐴(𝑥𝑖𝑗)) + (𝜈𝐵(𝑦𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)))

− (
𝜋𝐵(𝑦𝑖𝑗) + 𝜋𝐴(𝑥𝑖𝑗)

2
) −

1

2

{
 
 
 
 
 
 

 
 
 
 
 
 𝜇𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
)

+𝑣𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
)

𝐴

+𝜇(𝑥𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

+𝑣𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

− (𝜋𝐵(𝑦𝑖𝑗)+𝜋𝐴(𝑥𝑖𝑗)) }
 
 
 
 
 
 

 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 

+∑ ∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (

𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)) + (𝜈𝐴(𝑥𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)))

+ (
𝜈𝐴(𝑥𝑖𝑗) + 𝑣𝐵(𝑦𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈𝐴(𝑥𝑖𝑗) + 𝑣𝐵(𝑦𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐵(𝑦𝑖𝑗)) + (𝜈𝐴(𝑥𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)))

− (
𝜋𝐴(𝑥𝑖𝑗) + 𝜋𝐵(𝑦𝑖𝑗)

2
) −

1

2

{
 
 
 
 
 
 

 
 
 
 
 
 𝜇𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

+𝑣𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

+𝜇𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
)

+𝑣𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗) + 𝜈𝐵(𝑦𝑖𝑗)
)

− (𝜋𝐴(𝑥𝑖𝑗) + 𝜋𝐵(𝑦𝑖𝑗)) }
 
 
 
 
 
 

 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝐺2

 

Finally, by adding these two equations, we get 

Ɗ(A⋃B, A⋂ B) = Ɗ(A⋃B, A⋂B)
= Ɗ(A⋃B ∣ A⋂B ) + Ɗ(A⋂B|A⋃ B) 

Ɗ(A, B). 
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Theorem (P7):Ɗ(A⋃B, C)  ≤ Ɗ(A, C) + Ɗ(B, C). 

Proof: Consider the expression 

Ɗ(A, C) + Ɗ(B, C) −  Ɗ(A⋃B, C) 

=
−1

𝑚𝑛
∑∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (
𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐶(𝑧𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐶(𝑧𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐶(𝑧𝑖𝑗)) + (𝜈𝐴(𝑥𝑖𝑗) + 𝜈𝐶(𝑧𝑖𝑗)))

+(
𝜈𝐴(𝑥𝑖𝑗) + 𝑣𝐶(𝑧𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈𝐴(𝑥𝑖𝑗) + 𝑣𝐶(𝑧𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐶(𝑧𝑖𝑗)) + (𝜈𝐴(𝑥𝑖𝑗) + 𝜈𝐶(𝑧𝑖𝑗)))

− (
𝜋𝐴(𝑥𝑖𝑗) + 𝜋𝐶(𝑧𝑖𝑗)

2
) −

1

2

{
 
 
 
 
 
 

 
 
 
 
 
 𝜇𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐴(𝑥𝑖𝑗)

𝜇𝐴⋃𝐵(𝑥𝑖𝑗) + 𝜈𝐴⋃𝐵(𝑥𝑖𝑗)
)

+𝑣𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

+𝜇𝐶(𝑧𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐶(𝑧𝑖𝑗)

𝜇𝐶(𝑧𝑖𝑗) + 𝜈𝐶(𝑧𝑖𝑗)
)

+𝑣𝐶(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐶(𝑧𝑖𝑗)

𝜇𝐶(𝑧𝑖𝑗) + 𝜈𝐶(𝑧𝑖𝑗)
)

− (𝜋𝐴(𝑥𝑖𝑗) + 𝜋𝐶(𝑧𝑖𝑗)) }
 
 
 
 
 
 

 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛

𝑗=1

𝑚

𝑖=1

 

+−1

𝑚𝑛
∑ ∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (

𝜇𝐵(𝑦𝑖𝑗)+𝜇𝐶(𝑧𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜇𝐵(𝑦𝑖𝑗)+𝜇𝐶(𝑧𝑖𝑗)

((𝜇𝐵(𝑦𝑖𝑗)+𝜇𝐶(𝑧𝑖𝑗))+(𝜈𝐵(𝑦𝑖𝑗)+𝜈𝐶(𝑧𝑖𝑗)))

+(
𝜈𝐵(𝑦𝑖𝑗)+𝑣𝐶(𝑧𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈𝐵(𝑦𝑖𝑗)+𝑣𝐶(𝑧𝑖𝑗)

((𝜇𝐵(𝑦𝑖𝑗)+𝜇𝐶(𝑧𝑖𝑗))+(𝜈𝐵(𝑦𝑖𝑗)+𝜈𝐶(𝑧𝑖𝑗)))

−(
𝜋𝐵(𝑦𝑖𝑗)+𝜋𝐶(𝑧𝑖𝑗)

2
)

−
1

2

{
 
 
 
 

 
 
 
 𝜇𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗)+𝜈𝐴⋃𝐵(𝑦𝑖𝑗)
)

+𝑣𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗)+𝜈𝐵(𝑦𝑖𝑗)
)

+𝜇𝐶(𝑧𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐶(𝑧𝑖𝑗)

𝜇𝐶(𝑧𝑖𝑗)+𝜈𝐶(𝑧𝑖𝑗)
)

+𝑣𝐶(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐶(𝑧𝑖𝑗)

𝜇𝐶(𝑧𝑖𝑗)+𝜈𝐶(𝑧𝑖𝑗)
)

− (𝜋𝐵(𝑦𝑖𝑗) + 𝜋𝐶(𝑧𝑖𝑗)) }
 
 
 
 

 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑛
𝑗=1

𝑚
𝑖=1  

 

 

 

 

 

 

=

−1

𝑚𝑛
∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 𝑙𝑜𝑔

𝜇𝐵(𝑦𝑖𝑗)+𝜇𝐶(𝑧𝑖𝑗)

((𝜇𝐵(𝑦𝑖𝑗)+𝜇𝐶(𝑧𝑖𝑗))+(𝜈𝐵(𝑦𝑖𝑗)+𝜈𝐶(𝑧𝑖𝑗)))

+(
𝜈𝐵(𝑦𝑖𝑗)+𝑣𝐶(𝑧𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈𝐵(𝑦𝑖𝑗)+𝑣𝐶(𝑧𝑖𝑗)

((𝜇𝐵(𝑦𝑖𝑗)+𝜇𝐶(𝑧𝑖𝑗))+(𝜈𝐵(𝑦𝑖𝑗)+𝜈𝐶(𝑧𝑖𝑗)))

−(
𝜋𝐵(𝑦𝑖𝑗)+𝜋𝐶(𝑧𝑖𝑗)

2
)

−
1

2

{
 
 
 
 

 
 
 
 𝜇𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗)+𝜈𝐴⋃𝐵(𝑦𝑖𝑗)
)

+𝑣𝐵(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐵(𝑦𝑖𝑗)

𝜇𝐵(𝑦𝑖𝑗)+𝜈𝐵(𝑦𝑖𝑗)
)

+𝜇𝐶(𝑧𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐶(𝑧𝑖𝑗)

𝜇𝐶(𝑧𝑖𝑗)+𝜈𝐶(𝑧𝑖𝑗)
)

+𝑣𝐶(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐶(𝑧𝑖𝑗)

𝜇𝐶(𝑧𝑖𝑗)+𝜈𝐶(𝑧𝑖𝑗)
)

−(𝜋𝐵(𝑦𝑖𝑗) + 𝜋𝐶(𝑧𝑖𝑗)) }
 
 
 
 

 
 
 
 

]
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+ ∑

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 (
𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐶(𝑧𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐶(𝑧𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐶(𝑧𝑖𝑗)) + (𝜈𝐴(𝑥𝑖𝑗) + 𝜈𝐶(𝑧𝑖𝑗)))

−(
𝜋𝐴(𝑥𝑖𝑗) + 𝜋𝐶(𝑧𝑖𝑗)

2
)

+(
𝜈𝐴(𝑥𝑖𝑗) + 𝑣𝐶(𝑧𝑖𝑗)

2
) 𝑙𝑜𝑔

𝜈𝐴(𝑥𝑖𝑗) + 𝑣𝐶(𝑧𝑖𝑗)

((𝜇𝐴(𝑥𝑖𝑗) + 𝜇𝐶(𝑧𝑖𝑗)) + (𝜈𝐴(𝑥𝑖𝑗) + 𝜈𝐶(𝑧𝑖𝑗)))

−
1

2

{
 
 
 
 
 
 

 
 
 
 
 
 𝜇𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (

𝜇𝐴(𝑥𝑖𝑗)

𝜇𝐴⋃𝐵(𝑥𝑖𝑗) + 𝜈𝐴⋃𝐵(𝑥𝑖𝑗)
)

+𝑣𝐴(𝑥𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐴(𝑥𝑖𝑗)

𝜇𝐴(𝑥𝑖𝑗) + 𝜈𝐴(𝑥𝑖𝑗)
)

+𝜇𝐶(𝑧𝑖𝑗)𝑙𝑜𝑔 (
𝜇𝐶(𝑧𝑖𝑗)

𝜇𝐶(𝑧𝑖𝑗) + 𝜈𝐶(𝑧𝑖𝑗)
)

+𝑣𝐶(𝑦𝑖𝑗)𝑙𝑜𝑔 (
𝑣𝐶(𝑧𝑖𝑗)

𝜇𝐶(𝑧𝑖𝑗) + 𝜈𝐶(𝑧𝑖𝑗)
)

− (𝜋𝐴(𝑥𝑖𝑗) + 𝜋𝐶(𝑧𝑖𝑗)) }
 
 
 
 
 
 

 
 
 
 
 
 

]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥𝑖𝑗,𝑦𝑖𝑗∈𝐺2

 

 

≥0 

This proves the theorem. 

Theorem(P8):Ɗ(A⋂B, C)  ≤ Ɗ(A, C) + Ɗ(B, C). 

Proof: We omit proof because theorem as it is similar to 

theorem (P7). 

Theorem (P9): Ɗ(A⋂C , B⋂ C) ≤ Ɗ(A, B) 𝑓𝑜𝑟 𝑎𝑙𝑙 C ∈
[ÏƑ(M)]𝑚×𝑛 . 
 

Theorem(P10): Ɗ(A⋃C, B ⋃C) ≤ Ɗ(A, B)𝑓𝑜𝑟 𝑎𝑙𝑙 C ∈
[ÏƑ(M)]𝑚×𝑛. 

Proof: To prove theorem (P9) and (P10), we define eight 

subsets as follows: 

𝑆 = {𝑠𝑖 ∈ 𝑆| 𝐴(𝑠𝑖) ≤ 𝐵(𝑠𝑖) = 𝐶(𝑠𝑖)}⋃{𝑠𝑖 ∈ 𝑆| 𝐴(𝑠𝑖)
= 𝐶(𝑠𝑖) ≤ 𝐵(𝑠𝑖)} 

            ⋃{𝑠𝑖 ∈ 𝑆| 𝐴(𝑠𝑖) ≤ 𝐵(𝑠𝑖) < 𝐶(𝑠𝑖)}⋃{𝑠𝑖

∈ 𝑆| 𝐴(𝑠𝑖) ≤ 𝐶(𝑠𝑖) < 𝐵(𝑠𝑖)} 



A New Divergence Measure for Intuitionistic Fuzzy Matrices… Informatica 47 (2023) 19–34 31 

            ⋃{𝑠𝑖 ∈ 𝑆| 𝐴(𝑠𝑖) < 𝐵(𝑠𝑖) ≤ 𝐶(𝑠𝑖)}⋃{𝑠𝑖

∈ 𝑆| 𝐴(𝑠𝑖) ≤ 𝐶(𝑠𝑖) < 𝐵(𝑠𝑖)} 

             ⋃{𝑠𝑖 ∈ 𝑆| 𝐶(𝑠𝑖) < 𝐴(𝑠𝑖) ≤ 𝐵(𝑠𝑖)}⋃{𝑠𝑖

∈ 𝑆| 𝐶(𝑠𝑖) < 𝐵(𝑠𝑖) < 𝐴(𝑠𝑖)} 

From Montes et al.(2002), 

|(A⋃C)(𝑠𝑖) − (B ⋃C)(𝑠𝑖)|≤|𝐴(𝑠𝑖) − 𝐵(𝑠𝑖)| 𝑎𝑛𝑑 

 |(A⋂C)(𝑠𝑖) − (B ⋂C)(𝑠𝑖)|≤|𝐴(𝑠𝑖) − 𝐵(𝑠𝑖)| 

Therefore, from Theorem (P5), we get 

Ɗ(A⋂C , B⋂C) ≤ Ɗ(A, B) and Ɗ(A⋃C, B ⋃C) ≤

Ɗ(A, B)𝑓𝑜𝑟 𝑎𝑙𝑙 C ∈ [ÏƑ(M)]𝑚×𝑛. 

 

4.2   Application in medical diagnosis 

The divergence measure for IFM can be utilized to 

quantify the significance of attribute in a specified 

organized task. 

In the study, the proposed divergence measure is applied 

on a real data taken from a specialist (decision maker). 

The case study consists of four patients having six 

symptoms and decision- maker provide information about 

possibility of disease patient may suffer in intuitionistic 

fuzzy form. He also provides us Intuitionistic Fuzzy 

values for symptoms corresponding to disease as well as 

about patient. 

Our main motive is to find closeness of patient and 

disease based on symptoms. The application of above 

measure as follows. 

 

4.3   Algorithm for application in multiple-

criteria decision-making 

IFM is a suitable tool for better demonstrating the 

imperfectly defined facts and data, as well as imprecise 

knowledge than fuzzy matrix (FM). In this section, we 

present a five-stage technique to solve a multiple criteria 

decision-making problem under an intuitionistic fuzzy 

environment. 

 

Method: 

 Let 𝐶 = ( 𝑐1, 𝑐2, … 𝑐𝑚) be the set of choices and 𝐹 =
( 𝑓1, 𝑓2, … , 𝑓𝑛) be the set of criteria. Assume that the 

characteristics of the choice 𝐶𝑘 in terms criteria 𝐹, entered 

by the decision maker, are represented by the following 

IFSs: 

𝐶𝑘 = {〈𝐹𝑖 , (µ𝑐𝑘 , 𝑣𝑐𝑘〉| 𝐹𝑖  ∈ 𝐹 } , k = 1, 2,…, m. 

Where µ𝑐𝑘  indicates the degree that the 𝐶𝑘 (choice) 

satisfies the criteria 𝐹𝑖 and  𝑣𝑐𝑘 indicates the degree that 

choice 𝐶𝑘 does not satisfy the criteria𝐹𝑖. 
Using the divergence measure (DMIFM) defined in eq. 

(), we set out the following approach to solve multi- 

decision -making problems. 

Step 1: Find the ideal solution I defined as follows: 

I = {〈𝐹𝑖, (µ𝐼(𝐹𝑖), 𝑣𝐼(𝐹𝑖)〉|𝐹𝑖  ∈ 𝐹 } where for each i=1, 

2,..., n. 

 

(µ𝐼(𝐹𝑖), 𝑣𝐼(𝐹𝑖) = (max µ𝑐𝑘( 𝐹𝑖)),min µ𝑐𝑘(𝐹𝑖)) 
Step 2: Construct an Intuitionistic fuzzy matrix of choices 

by taking choices as rows and parameters (criteria) as 

columns 

[Ƈij] = [cij]𝑚×𝑛
 

Step 3: Calculate divergence between ideal solution I and 

in each row matrix of [cij]1×𝑛
 by the proposed measure. 

 

Step 4: Find the minimum value from the divergence 

which shows the best alternative out of other. 

Step 5: Stop. 

 4.4   A case study 

There are four patients of a Doctor Suraj, Raunak, Aditya 

and Akash in a clinic. They are suffering from a particular 

disease having some symptoms. The doctor needs to take 

decision which patient is suffering from which disease. 

Our proposed measure helps the doctor to take decision 

for the same. To solve this multiple criterion decision-

making problem, we considered some symptoms 

corresponding to diseases and patients. 

The set of symptoms is considered as: 

1. Fever 

2. Cough 

3. Abdominal pain 

4. Nausea 

5. Chest pain 

6. Body ache. 

The set of disease is considered as: 

1. Malaria 

2. Chikungunya 

3. Typhoid 

4. Stomach infection 

5. Respiratory  

6. Dengue 
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Let 𝑃 = {𝑝1 , 𝑝2, 𝑝3, 𝑝4} be the set of patients. The set of 

symptoms isṠ = {𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6} and the set of 

disease is considered as Ḋ = {𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑑5, 𝑑6}. 

Now, the set representation of patient corresponding to 

symptoms is as follows: 

𝑃1 = {(Ṡ1, < [0.8,0.1] >), (Ṡ2, < [0.55,0.1] >)(Ṡ3,
< [0.2,0.8] >), (Ṡ4, < [0.6,0.2] >), 

(Ṡ5, < [0.1,0.6] >), (Ṡ6, < [0.5,0.1] >)} 

𝑃2 = {(Ṡ1, < [0.7,0.2] >), (Ṡ2, < [0.65,0.10] >)(Ṡ3,
< [0.8,0.1] >), (Ṡ4, < [0.8,0.1] >), 

(Ṡ5, < [0.1,0.7] >), (Ṡ6, < [0.1,0.7] >)} 

𝑃3 = {(Ṡ1, < [0.20,0.6] >), (Ṡ2, < [0.8,0.1] >), (Ṡ3,
< [0.1,0.8] >), (Ṡ4, < [0.1,0.8] >), 

(Ṡ5, < [0.7,0.1] >), (Ṡ6, < [0.1,0.7] >)} 

𝑃4 = {(Ṡ1, < [0.7,0.1] >), (Ṡ2, < [0.6,0.2] >)(Ṡ3,
< [0.2,0.7] >), (Ṡ4, < [0.2,0.6] >), 

(Ṡ5, < [0.2,0.6] >), (Ṡ6, < [0.7,0.1] >)} 

The tabular representation (Table 1) of these four sets is 

as follows: 

Table 1: Intuitionistic fuzzy values for patients having 

Symptoms 
Patien

t\sym

ptom 

Fever Cough Abdo

minal 

pain 

Naus

ea 

Ches

t pain 

Body 

ache 

𝑃1 [0.8,0.1

] 

[0.55,0.

1] 

[0.2,0.

8] 

[0.6,

0.2] 

[0.1,

0.6] 

[0.5,

0.1] 

𝑃2 [0.7,0.2

] 

[0.65,0.

1] 

[0.8,0.

1] 

[0.8,

0.1] 

[0.1,

0.7] 

[0.1,

0.7] 

𝑃3 [0.2,0.6

] 

[0.8,0.1

] 

[0.1,0.

8] 

[0.1,

0.8] 

[0.7,

0.1] 

[0.1,

0.7] 

𝑃4 [0.7,0.1

] 

[0.6,0.2

] 

[0.2,0.

7] 

[0.2,

0.6] 

[0.2,

0.6] 

[0.7,

0.1] 

 

The Matrix Representation of Patient – Symptom is as 

follows: 

𝑃 = [

[0.8,0.1] [0.55,0.1] [0.2,0.8]
[0.7,0.2] [0.65,0.1] [0.8,0.1]

[0.2,0.6]
[0.7,0.1]

[0.8,0.1]
[0.6,0.2]

[0.1,0.8]
[0.2,0.7]

[0.6,0.2]
[[0.8,0.1]

[0.1,0.8]
[0.2,0.6]

[0.1,0.6]
[0.1,0.7]

[0.7,0.1]
[0.2,0.6]

[0.5,0.1]
[0.1,0.7]

[0.1,0.7]
[0.7,0.1]

] 

The Tabular Representation (Table 2) of Disease 

corresponding to Symptoms is: 

Table 2: Intuitionistic fuzzy values for symptoms for 

disease 

Disease 

\Sympto

m 

𝑆1 𝑆2 𝑆3 𝑆4 𝑆5 𝑆6 

Ḋ1 [0.8,0.1] [0.6,0.3] [0.7,0.2] [0.7,0.3] [0.1,0.9] [0.7,0.1] 

Ḋ2 [0.9,0.1] [0.6,0.2] [0.1,0.8] [0.25,0.7] [0.0,0.9] [0.8,0.1] 

Ḋ3 [0.9,0.1] [0.8,0.15] [0.8,0.05] [0.85,0.1] [0.1,0.75] [0.6,0.2] 

Ḋ4 [0.8,0.2] [0.7,0.2] [0.9,0.1] [0.85,0.1] [0.1,0.8] [0.2,0.8] 

Ḋ5 [0.25,0.65] [0.9,0.1] [0.15,0.85] [0.2,0.7] [0.8,0.1] [0.1,0.8] 

Ḋ6 [0.85,0.1] [0.6,0.3] [0.2,0.75] [0.25,0.65] [0.2,0.7] [0.8,0.1] 

 

Matrix Representation of Disease-Symptom Matrix is as: 

𝐷

=

[
 
 
 
 
 
[0.8,0.1] [0.6,0.3]
[0.9,0.1]
[0.9,0.1]

[0.8,0.2]
[0.25,0.65]
[0.85,0.1]

[0.6,0.2]
[0.8,0.15]

[0.7,0.2]
[0.9,0.1]
[0.6,0.3]

[0.7,0.2] [0.7,0.3]
[0.1,0.8]
[0.8,0.05]

[0.9,0.1]
[0.15,0.85]
[0.2,0.75]

[0.25,0.7]
[0.85,0.1]

[0.85,0.1]
[0.2,0.7]
[0.25,0.65]

[0.1,0.9] [0.7,0.1]
[0.0,0.9]
[0.10,0.75]

[0.1,0.8]
[0.8,0.1]
[0.2,0.7]

[0.8,0.1]
[0.6,0.2]

[0.2,0.8]
[0.1,0.8]
[0.8,0.1]]

 
 
 
 
 

 

Now, we find the divergence between these two matrices 

(𝑃 𝐴𝑛𝑑 𝐷) or say patient-symptom matrix and disease –

symptom matrix by using the proposed measure eq. (4.1): 

Now, we find the divergence between 𝑃1 to each 𝐷𝑖  by 

using proposed measure as: 

𝐼(𝑃1: 𝐷1) = 3.539078,   𝐼(𝑃1: 𝐷2) = 𝟐. 𝟎𝟔𝟎𝟎𝟒, 

𝐼(𝑃1: 𝐷3) = 3.577851, 𝐼(𝑃1: 𝐷4) = 3.037955, 

  𝐼(𝑃1: 𝐷5) =   2.701628,    𝐼(𝑃1: 𝐷6) = 2.887842 

We find the smallest difference is 2.06004 corresponding 

to 𝐷2. Thus, we conclude that patient one is suffering 

from disease 𝐷2. Similarly, we find the divergence for 

each patient from the considered set of disease. 

Divergence for each patient from the considered set of 

disease are given in the following table 3representing 

minimum value of divergence which shows patient is 

suffering from the disease. 
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Table 3: Patient suffering from disease 

Patient 

 \ Disease 

Malaria  Chikungun

ya 

Typhoid  Stomach 

infection  

Respiratory  Dengue  

Suraj 3.539078 2.06004 3.577851 3.037955 2.701628 2.887842 

Raunak 3.903724 3.064673 3.637417 2.07845 3.006128 3.93541 

Aditya  2.717735 2.39147 2.726718 2.379052 2.336949 3.003302 

Akash 3.69964 2.502108 3.684939 3.733669 2.221304 3.28197 

 

From table 3 we can conclude that Suraj is suffering from 

Chikungunya, Rounak is suffering from stomach 

infection, Aditya is suffering from respiratory problem, 

Radhika is suffering from respiratory problem. 

Application in MCDM: Pattern Recognition: 

Divergence Measure are convenient tool to estimate dissimilarity 

between two probability functions and are therefore applied in 

various field. 

Example 1: Let there are three patterns A, B, Cof type 

Intuitionistic Fuzzy sets in X. and the IFSs values for 

these IFSs are as follows: 

𝐴 = {(0.3, 0.6), (0.6,0.2), (0.4,0.5)} 

𝐵 = {(0.2, 0.8), (0.2,0.5), (0.3,0.6)} 

𝐶 = {(0.1, 0.7), (0.4,0.1), (0.6,0.3)} 

𝐷 = {(0.4, 0.3), (0.7,0.2), (0.1,0.8)} 

Assume that a sample P is given as follows 

Pattern 𝑃 = {(0.4, 0.5), (0.6,0.4), (0.6,0.1)} 

Now to find dissimilarity between patterns to sample 

pattern, we need to apply divergence measure  

𝐷(𝐴, 𝑋) =  2.378125, ,𝐷(𝐵, 𝑋) =  1.903091, 

𝐷(𝐶, 𝑋) =  𝟏. 𝟕𝟗𝟔𝟖𝟑𝟏, 𝐷(𝐷, 𝑋) =  2.003087 

Here, divergence value between pattern C and X is 

minimum. Therefore, we can say that Pattern C is more 

like X than others. 

5   Conclusion 

In this paper, we have recommended an adaptable 

technique for solving multi-criteria decision-making 

problem. Using the idea of Mishra et al. (2018) a new 

divergence measure for intuitionistic fuzzy matrix has 

developed. Proposed measure is a valid measure as it 

satisfies all the axioms. Some operations which may be 

applied on intuitionistic fuzzy matrices are defined. Its 

fundamental advantage is the capacity to combine the 

subjective information and attitude character of the 

decision maker in estimating the interaction of divergence 

degree. The proposed measure satisfies properties which 

are valuable in tacking any dynamic issue. The 

intuitionistic fuzzy divergence measure can be utilized in 

circumstances relying on the importance of decision 

makers. It can be utilized in situations where data should 

be in degree of membership and non-membership values. 

However, in many real-life situations, semantic factors 

are utilized to address subjective information. An 

application of multiple criteria decision-making in 

medical diagnosis is also demonstrated by taking 

information from a doctor. This divergence measure in 

medical diagnosis to take decision which disease based 

on symptoms the patient follows. We may select the best 

lternative in preference to other available alternatives in 

multi-criteria decision-making problem. Using the 

similar methodology different information measures such 

as entropy, inclusion, similarity etc. can be derived. Also, 

further hybridization of intuitionistic fuzzy with vague, 

soft and rough sets can be done to extend the applicability 

of the same. 
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