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Classification of microarray datasets has drawn attention of research community in last few years. 
Microarray datasets are characterized by high dimension and small sample size. To avoid curse of 
dimensionality good gene selection methods are needed. Here, we propose a two stage algorithm MICE for 
finding a small subset of relevant genes responsible for classification of high dimensional microarray datasets. 
The proposed method is based on the principle of Mutual Information and Cross Entropy. In first stage of 
algorithm, mutual information is employed to select a set of relevant genes and cross entropy is used to 
determine independent genes. In second stage, a wrapper based forward feature selection method is used to 
obtain a set of optimal genes for a given classifier. The efficacy of proposed algorithm is tested on seven well 
known publicly available microarray datasets. Comparison with other state-of-art methods shows that our 
proposed algorithm is able to achieve better classification accuracy with less number of genes.

Povzetek: Opisana je metoda za določanje relevantnih skupin genov za rakave bolezni.

1 Introduction
In last few years, classification of microarray datasets has 
drawn attention of research community. Various machine 
learning and data mining methods have been applied for 
classification of microarray datasets. But classification of 
microarray datasets faces many challenges. One of the 
main challenges is that such datasets are characterized by 
large number of genes and small number of samples. 
This small number of samples compared to the large 
number of genes wakes up the curse of dimensionality 
[2]. Also, many of these genes are not relevant to 
discriminate samples. These irrelevant genes not only 
have negative effect on the classification accuracy of the 
classifier but also increase data acquisition cost and 
learning time. For better classification there is a need to 
reduce dimension of such datasets.

Dimension Reduction can be done in two ways:
feature selection and feature extraction [8]. Feature 
Selection refers to reducing the dimensionality of 
measurement space by discarding redundant, noisy and 
irrelevant features. It leads to saving in measurement cost 
and the selected features retain their original physical 
interpretation.  In addition, the retained features may be 
important for understanding the physical process that 
generates patterns. Feature extraction methods like 
Principle Component Analysis, Independent Component 
Analysis utilize all the information contained in the 
measurement space to obtain a new transformed space 
and then important features are selected from the new 
transformed space. Transformed features generated by 
feature extraction methods may provide a better 

discriminative ability than the best subset of given 
features, but these new features may not provide any 
physical meaning. The choice between feature selection 
and feature extraction depend on the application domain 
and specific training data available. In microarray 
datasets one is not only interested in classifying the 
sample based on gene expression but also in identifying 
important genes/features. Hence dimension reduction is 
normally carried out with feature selection rather than 
feature extraction. Therefore, efficient feature/gene 
selection methods are necessary for selecting a small set 
of informative features/genes. Gene selection not only 
allows for faster and efficient model building by 
removing irrelevant, redundant and noisy features but 
also provides better understanding of genes which lead to 
a particular disease. 

There are numbers of feature selection methods 
proposed in last few years. These methods broadly fall 
into two categories: filter and wrapper methods [8]. Most 
filter methods employ statistical characteristics of data 
for feature selection which needs less computation. They 
independently measure the importance of features 
without involving any learning algorithm. The filter 
approach does not take into account the learning bias 
introduced by the final learning algorithm, so it may not 
be able to select the most relevant set of features for the 
learning algorithm.  Wrapper methods use learning 
algorithm for selecting feature set. It tends to find 
features better suited to the predetermined learning 
algorithm resulting in better performance. But, it is 
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computationally more expensive since the classifier must 
be trained for each candidate subset. Hence, when 
number of features is large wrapper approaches become 
unfeasible.

Many filter based feature/gene selection methods have 
been proposed in literature [1, 6, 14, 17, 22, 23]. Broadly 
they are categorized in two categories: univariate and 
multivariate evaluation methods. Univariate evaluation 
methods evaluate the relevance of each feature 
individually. They are simple and fast therefore 
appealing and popular [3, 7, 13, 26]. However, they 
assume that the features are independent of each other. 
Multivariate approaches, on the contrary, evaluate the 
relevance of features considering how they function as a 
group, taking into consideration their dependency [4, 5, 
9].

One of the univariate methods determines the 
relevance of genes by computing the mutual information 
between each gene and the class label. The genes are 
ranked based on their relevance with class i.e. in 
decreasing order of their mutual information and then top
m genes are selected. In literature, it has been observed 
that the combination of individual good genes does not 
necessarily lead to good classification performance. 
Also, since genes are selected based on the correlation 
between individual gene and target class, it doesn’t 
capture the correlation among genes. Hence gene subset 
so obtained may contain redundant genes. A good gene 
selection method is the one that not only selects the 
relevant genes but also reduces redundancy among the 
selected gene subset. In literature, some multivariate 
methods have been suggested to reduce the redundancy 
among the selected set of genes [1, 15, 22]. However, 
these methods consider weighted average of only 
pairwise correlation instead of considering joint 
correlation among a set of features. Hence these 
approaches may not select the optimal feature subset in 
the presence of large number of redundant features.

In this paper, we have proposed a two stage algorithm 
MICE for determining an optimal feature subset. In the 
first stage, a pool of relevant and independent genes is 
created using Mutual Information (MI) and cross-entropy 
(CE). In second stage, forward feature selection is used 
to find a compact feature subset that minimizes 
classification error (maximizes classification accuracy), 
from the candidate feature set. 

This paper is organized as follows – Section 2 presents 
some of feature selection methods based on mutual 
information. Section 3 includes proposed algorithm 
MICE for gene selection based on mutual information 
and cross entropy. Experimental results on some well-
known publicly available datasets are presented in 
Section 4. Conclusions are drawn in Section 5.

2 Mutual Information
Mutual information (MI) measures the dependency 
between a feature set and target class. Mutual 

information );( CXmI between set of m features (Xm)

and class label (C) is given by 
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Higher value of MI means given feature set represents
the class well. Battiti [1] defined feature selection 
problem as the process of selecting the most relevant m
features from the initial set of d features. Ideally,

problem can be solved by maximizing );( CXmI , the 

joint entropy between set of features mX and the target

class C. But it is often difficult to estimate the joint 

probability density )( mp X . For this a greedy feature 

selection method based on mutual information (MIFS) 
was proposed by Battiti. Battiti [1] adopted a heuristic 
criterion for approximating the ideal solution. Battiti’s 
MIFS selects the subset of features which maximizes the 
information about the class corrected by subtracting a 
quantity proportional to average MI with the previously 
selected features. Kwak and Choi [15] proposed a greedy 
feature selection method called MIFS-U which provides 
a better estimate of the MI between input features and 
target class in comparison to MIFS. Peng et al. [22] 
suggested another variant of Battiti’s MIFS as min-
redundancy and max-relevance (mRMR) criterion. In this 
work a heuristic framework was suggested to minimize 
redundancy and maximize relevance to select important 
features incrementally [22].  In this incremental 

approach, mth feature jx can be selected from the 

remaining set of features which maximizes the following 
criterion: 
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where 1mS is the set of already selected (m-1) features.

However, MIFS, MIFS-U and mRMR algorithms use 
incremental search approach which considers weighted 
average of only pair-wise correlation instead of 
considering joint correlation among a set of features. 
Hence, these approaches might not select the optimal 
feature subset in presence of large number of redundant 
features. In this paper, we have calculated the joint MI 
between a set of features and target class C under the 
assumption that data follows multivariate normal 
distribution. We have employed cross entropy to 
determine dependency among selected genes. By 
combining MI and CE measures we are able to obtain a 
reduced set of non-redundant relevant genes. This allows
us to use a wrapper based forward feature selection at the 
second stage to search a compact feature subset, from the 
above gene set, that maximizes classification accuracy.

3 Proposed Method 
To measure the relevance of a gene subset, mutual 
information between gene subset and target class is 
calculated for which we should have the knowledge of 
the joint probability density. In reality, the probability 
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density is not known. So, we can assume parametric form 
of p(Xm) and p(Xm|C) and the parameters involved in 
parametric form of probability density can be estimated 
from the observed data. Here, we assume that the 
probability density p(Xm|C) follows  multivariate normal 
density which is given by
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where c , c are respectively mean and covariance of 

class C data. p(Xm) is also approximated by a 
multivariate normal density with mean  and 

covariance  . Under this approximation, the closed form 
expression for MI is known.  According to Padmanabhan 
and Dharanipragada [21], for multivariate normal 
density, the upper bound on mutual information is given 
by
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Equ. (4) gives an upper bound on joint mutual 
information between m-dimensional gene vector Xm and 
the target class C. However, the selected gene subset Xm

may contain redundant features which can degrade the 
performance of the classifier. We can reduce the 
redundancy by using cross-entropy. The cross entropy D
[12], measures the difference between the two 
probability distributions )()( XqandXf and is given 

by 
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If mxxxx ,...,,, 321 are statistically independent, 

then )().....()(),...,,( 221121 mmm xpxpxpxxxp  . In 

this case Dm becomes zero. When features are not 
statistically independent, Dm is given by 
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where 

mmm dxdxdxxxxpxxxpS ...),...,,(log),...,,(..... 212121 

and

iiii dxxpxpS )(log)(   mi ,...,2,1          (11)

mD can be used to measure dependency among 

genes. mD is nonnegative i.e. .0mD If genes 

mxxxx ,...,,, 321 are independent then 0mD , 

whereas if there is a dependency among the set of genes 

then .0mD Higher value of mD signifies greater 

dependency among the genes. For m dimensional 
multivariate normal density the values of joint entropy 

S and marginal entropy iS [12] are given as follows:
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Using equ. (12) and equ. (13), we can rewrite equ. (10)
as
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Since the value of mD increases with number of 

features so there is need of defining normalized value 

of mD .  It is known that marginal entropy iS is always 

less than equal to joint entropy S i.e. SSi    

mi ,...,2,1 . This allows us to write

mSSSS m  ...21                                              (15)      

   
Using equ. (10) and equ. (15), we have
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The normalized value of mD is given by
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Here, 10  mD . Zero value of mD corresponds to 
gene set consisting of independent genes.  Higher value 

of mD signifies more dependence among genes. To 
consider a set of independent genes, we can choose a 

threshold T. If the value of mD is less than equal to 
threshold value T then gene subset is considered as a set 
of independent genes.  

We have employed MI to measure relevance between 
a subset of genes and class label. Cross entropy is used to 
measure redundancy among genes. Our proposed 
algorithm MICE is incremental in nature and consists of 
two phase. In the first phase a set S of relevant and 
independent genes is created. We initially start with S as 
empty set and F a set which contain all the genes. Mutual 
information of each gene with respect to target class is 
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estimated using equ 4.  The gene which maximizes 
mutual information is selected. Let it be xk, then       
S={xk }and F=F- {xk.}. Now a set of genes independent 
of selected gene subset S is created. This is done by 
calculating the cross entropy of SU{xj} for all xj in F. i.e. 
D(S,xj). All the features whose D(S,xj) >T are considered 
dependent with respect to the geneset S and hence these 
genes are removed from F. Again, a gene xi in F which 
maximizes the mutual information of set S=SU{xi} with 
respect to target class, is selected and included in set S. 
This gene xi is removed from F. We determine 
consequently gene subset F which contains genes 
independent of S using cross entropy. This process is 
repeated till F becomes empty. In this way we create a 
set of independent and relevant genes.

In the second stage an optimal set of genes is 
determined from the gene subset selected in the first 
stage. To obtain the optimal set we have used a wrapper 
based forward feature selection. We have used 
classification accuracy as a criterion in the forward 
feature selection. The gene subset that maximizes the 
classification accuracy is selected. The outline of the 
proposed algorithm MICE is as follows.

MICE Algorithm

Input–Initial Set of genes,Class Labels C,Classifier M

PHASE 1 // to determine a subset of relevant and 
independent genes S
1. Intialization: Set F=”initial set of genes” ; S =  //Set 
of Selected Attributes
2. Choose Threshold value T.

3. For each gene ix in F calculate );( CxI i using  (4)

4. Select the gene kx which maximizes Mutual 

Information );( CxI i i.e.  ),(max CxI
i

x ik 

5. }{ kxSS  ;  }{ kxFF 

6. Calculate ),( jm xSD for all Fx j  ;

if ),( jm xSD >T    }{ jxFF  //Identifying  set of 

independent genes F with respect to S

7. Choose a gene from Fxk  which maximizes 

);,( CxSI k

8. }{ kxSS  , }{ kxFF 

9. Repeat steps 6-8 till F becomes empty 
10. Return S

PHASE 2 // to determine subset of genes which provides 
maximum classification accuracy
1. Initialization R = 
2. For each Sxi  calculate classification accuracy 

for classifier M.

3. )(_max]max_,[ ik xAccClassif
i

accx 

4. }{ kxRR  ; }{ kxSS  ;    RR min_

// R_min is the gene subset corresponding to 
maximum accuracy

5. For each Sx j  calculate classification_accuracy 

of S U{xj} for classifier M
6.   )(_maxmax__, ik xSAccClassif

i
accnewx 

7. }{ kxRR  , }{ kxSS 

8.
If new_max_acc > max_acc  then R_min=R; 
max_acc=new_max_acc;

9. Repeat steps 5-8 until max_acc=100 or S = 
10. Retum R_min, max_acc

4 Experimental Setup and Results
To test the efficacy of our proposed algorithm MICE, we 
have carried out experiments on seven well known 
datasets. Colon, Leukemia, Prostate, Lung cancer and 
Ovary datasets are downloaded from Kent Ridge Bio-
medical Dataset data repository [31]. For SRBCT we 
have used the dataset used by Khan [13]. NCI60 data is 
downloaded from the NCI Genomics and Bioinformatics 
Group Datasets resource [32]. The details of these 
datasets are given in Table 1. Before carrying 
experiments datasets are normalized using Z-score. In 
NCI60 dataset one class contained only two samples, so 
this class is removed from the dataset. Also number of 
samples belonging to each class is very small, therefore 
2000 genes with highest variance are selected and then 
algorithm is applied on the reduced set of 2000 genes.

Table 1: Datasets Used.

Dataset
No. of 

Samples
No. of 

Features
Classes

Colon 62 2000 2
SRBCT 83 2308 4
Leukemia 72 7129 3
Prostate 102 5966 2
Ovary 253 15154 2
Lungcancer 181 12533 2
NCI60 60 2000 9

After normalizing the datasets, the first phase of our 
proposed algorithm MICE is applied to obtain the subset 
of relevant and independent genes. We performed 
experiments with different values of threshold. The value 
of threshold is varied from 0.1 to 0.9 with an increment 
of 0.1. It is observed that subset of genes selected is same 
for threshold values between 0.4 and 0.6. So, the value of 
threshold T is set as 0.5 in our experiments i.e. all the 

genes with mD greater than 0.5 are rejected as 
dependent genes. The number of the reduced genes 
obtained after phase I of MICE algorithm for each 
dataset is given in Table 2.
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Table 2: Size of Reduced Dataset after Phase I.

Dataset
Original No. Of 
genes

No. of genes 
selected

Colon 2000 56
SRBCT 2308 46
Leukemia 7129 54
Prostate 5966 66
Ovary 15154 98
Lungcancer 12533 159
NCI60 2000 60

It can be observed from Table 2 that the number of 
relevant genes obtained is significantly smaller in 
comparison to the original gene set. Now once a reduced 
set of relevant and independent genes is obtained, phase 
II of MICE algorithm is applied. Phase II of our proposed 
algorithm uses a forward feature selection strategy with a 
known classifier to obtain a set of genes which 
maximizes classification accuracy. We have employed 
four classifiers: linear discriminant classifier (LDC), 
quadratic discriminant classifier (QDC), k-nearest 
neighbor (KNN) and support vector machine (SVM). 
Classification accuracy is calculated using leave-one-out 
cross validation (LOOCV). The algorithm is 
implemented in matlab. For KNN the optimal value of k 
is chosen. In SVM linear kernel is used. Results of our 
algorithm MICE are presented in Table 3. It contains 
maximum classification accuracy achieved along with 
the number of genes obtained by our algorithm MICE. It 
can be observed from Table 3 that our algorithm MICE is 
able to achieve maximum classification accuracy with 
small number of genes. For all the classifiers used we are 
able to achieve good classification accuracy with few 
numbers of genes. We compared the performance of our 
algorithm MICE with well known algorithm mRMR 
given by Peng et al (2005). The code of mRMR_d and 
mRMR_q is taken from [30]. As a preprocessing step, 
datasets are discretized into 3 values using   . The 

values which are less than   are assigned -1 , 

values between   and   are assigned value 0 

and rest 1. Discretized data are passed to mRMR_d and 
mRMR_q and a ranked list of features is obtained from 
both the methods. Using the ranked list of genes obtained 
from mRMR, classification accuracy (LOOCV) is 
calculated as genes are added one by one. The maximum 
classification accuracy along with the minimum number 
of genes obtained for each classifier is shown in Table 3.  
We can observe the following from Table 3:
1. For Colon dataset a maximum accuracy of 96.77% is    

achieved with genes selected   by   our   proposed 
algorithm MICE. It is achieved with 14 genes with  
QDC. For KNN results of MICE are better than 
mRMR. For SVM and LDC classification accuracy 
using MICE is same as  mRMR.

2. For SRBCT dataset maximum classification accuracy 
of 100% is achieved with 15 genes with LDC and 
SVM classifier using MICE. For QDC results of 
MICE are better than mRMR. Only for KNN 
performance of mRMR is better.

Table 3: Comparison of maximum classification 
accuracy along with number of genes for different 
classifiers using various genes selection methods.

3. For Leukemia dataset maximum classification 
accuracy of 100% is achieved with 6 genes in QDC 
classifier and 15 genes in KNN classifier using 
MICE. Same classification accuracy is achieved 
using MICE with LDC as with mRMR but with less 
number of genes. 

4. For prostate dataset maximum classification accuracy 
of 99.02% is achieved with 45 genes in SVM 
classifier using MICE. Also for other classifiers, the 
accuracy achieved by our algorithm MICE is better 
in comparison to mRMR.

5. For Ovary dataset maximum classification accuracy 
of 100% is achieved for all classifiers using different 
gene selection methods but the number of genes 
selected by our proposed method MICE is same or 
comparitively less.

6. For Lungcancer dataset maximum classification 
accuracy of 100% is achieved for all classifiers using 
genes selected by our method MICE . The number of 
genes selected by MICE are significantly less in 
comparison to mRMR with QDC, KNN and SVM. 
The best result is obtained for KNN using only 3 
genes.
For NCI60 dataset maximum classification accuracy 
of 87.93% is achieved with 36 genes in SVM 
classifier using MICE. For LDC and QDC classifier 
accuracy achieved using genes selected by MICE is 
better in comparison to mRMR. For KNN and SVM
performance of mRMR is better than MICE.

7. The performance of our proposed algorithm MICE 
with different classifiers is better in comparison to 

Dataset Classifier MICE
(LOOCV)

mRMR_d
(LOOCV)

mRMR_q
(LOOCV)

Colon LDC 91.94(9) 91.94(3) 90.32(6)

QDC 96.77(14) 88.71(6) 87.10(27)
KNN 96.77(31) 93.55(5) 91.94(32)

SVM 93.55(23) 93.55(18) 93.55(50)
SRBCT LDC 100(15) 97.59(21) 98.80(30)

QDC 98.80(10) 49.40(66) 71.08(73)
KNN 98.80(15) 100(83) 100(29)
SVM 100(15) 100(19) 100(15)

Leukemia LDC 98.61(12) 97.22(35) 98.61(14)
QDC 100(6) 95.83(5) 88.89(9)
KNN 100(15) 97.22(75) 97.22(80)
SVM 98.61(7) 98.61(60) 100(18)

Prostate LDC 97.06(6) 96.10(6) 96.08(8)
QDC 96.08(4) 92.16(22) 89.22(9)
KNN 98.04(9) 97.16(14) 98.04(27)
SVM 99.02(45) 98.04(87) 98.04(26)

Ovary LDC 100(5) 100(4) 100(8)
QDC 100(4) 100(4) 100(8)
KNN 100(4) 100(4) 100(10)
SVM 100(3) 100(5) 100(8)

LungCancer LDC 100(44) 100(36) 99.45(14)
QDC 100(5) 100(40) 100(41)
KNN 100(3) 100(20) 100(5)
SVM 100(4) 100(23) 100(6)

NCI60 LDC 84.48(26) 75.86(94) 82.76(67)
QDC 56.90(5) 56.90(5) 43.10(5)
KNN 86.21(18) 89.66(95) 87.93(98)
SVM 87.93(36) 81.03(34) 89.66(97)
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mRMR algorithm in terms of classification accuracy 
in most cases. Our proposed algorithm MICE also 
provides a smaller subset of relevant genes for most 
of the cases.

The comparative results of classification accuracy 
obtained by different methods as the genes are added one 
by one for Leukemia dataset are shown in Figure 1. It 
can be observed from Figure 1 that classification 
accuracy obtained  by our algorithm is more in 
comparison to mRMR_d and mRMR_q with the same 
number of genes for all the classifier. Similar results are
observed for other datasets also.

To check the relevance of the selected genes subset 
we carried out 10 fold cross validation using the selected 
genes for all the datasets. Experiment is repeated 10 
times. The average accuracy of 10 runs along with 
standard deviation is given in Table 4. It can be observed 
from the table that the 10 fold cross validation accuracy 
does not deviate much from LOOCV accuracy except for 
NCI60 dataset with QDC classifier. This shows that the 
gene set selected is not over fitted.

Table 4: 10 fold cross-validation accuracy achieved by 
the genes selected by MICE for different classifier. 
Quantity in bracket represents standard deviation.
Dataset Classifier

LDC QDC KNN SVM
Colon 91.13(1.14) 86.32(3.30) 96.32(1.41) 91.13(1.90)
SRBCT 99.40(0.85) 96.39(2.13) 98.07(1.3) 99.52(1.02)
Leukemia 96.94(1.71) 98.89(1.28) 99.44(0.97) 98.33(0.59)
Prostate 96.67(0.69) 96.20(1.08) 96.78(0.93) 96.96(1.26)
Ovary 100(0) 100(0) 99.88(0.27) 100(0)
LungC 99.17(0.39) 99.83(0.27) 99.89(0.23) 100(0)
NCI60 75.69(3.68) 41.72(2.12) 81.72(2.72) 79.66(4.36)

In literature a number of gene selection methods have 
been proposed and applied on these datasets. In Table 5, 
we have compared performance of our proposed method 
in terms of classification accuracy achieved and number 
of genes selected with some already existing gene 
selection methods in literature [6, 9, 10, 11, 13, 16, 18, 
19, 20, 24, 25, 26, 27, 28, 29]. From Table 5, it can be 
observed that the performance of our proposed algorithm 
MICE is significantly better in terms of both 
classification accuracy and number of genes selected.

5 Conclusion 
In this paper, we proposed a two stage algorithm MICE 
for finding a small subset of relevant genes responsible 
for better classification of high dimensional microarray 
datasets. The proposed method is based on the principle 
of Mutual Information and Cross Entropy. In first stage
of algorithm, Mutual information is employed to select a
set of relevant genes and Cross Entropy is used to
determine independent genes. This provides a set of 
independent and relevant genes and reduces the size of 
gene set significantly. This allows us to use wrapper 
approach at the second stage. The use of wrapper method
at the second stage gives a better subset of genes.
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Figure 1: Classification accuracy Vs number of genes for 
Leukemia dataset using  (a) LDC (b) QDC  (c) KNN (d) 
SVM.

Experimental results show that our proposed method
MICE is able to achieve a better classification accuracy
with small number of genes. In case of Lungcancer and
Ovary 100% accuracy is achieved with 3 genes.  For 
other datasets, the method provides competitive
accuracy. Comparisons with other state-of-art methods 
show that our proposed algorithm is able to achieve 
better or comparable accuracy with less number of 
features in all the datasets.
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Table 5: Comparison of Maximum Classification 
accuracy and number of genes selected with other state 
of art methods.

COLON

Proposed method                                       96.77(14)
PSO+ANN [27]                                          88.7
Chen and Zhao [29]                                    95.2
BIRSW [24]                                                85.48(3.50)
BIRSF [24]                                                 85.48(7.40)

OVARY

Proposed Method                                      100(3)
PSO+ANN [27]                                          97.0
NB [10]                                                      96.2
BKS [10]                                                   97.0
DT[10]                                                       97.8
Chen and Zhao [29]                                    99.6

PROSTATE

Proposed Method                                      99.02(45)
GAKNN [16]                                              84.6(205)
BIRS [24]                                                    91.2(3)
Hong and Cho [[10]                                    96.3(79)

NCI60 

Proposed Method                                      87.93(36)
Jirapech-Umpai [11]                                  76.23 
Liu [19]                                                      88.52 
Ooi [20]                                                      85.37 
Lin [18]                                                       87.80 
ReliefF/SVM [28]                                      58.33(30)
mRMR/RelieF  [28]                                  68.33(30)

LEUKEMIA

Proposed Method                                     100(6)
GS2+KNN [27]                                          98.6(10)
GS1+SVM [27]                                          98.6(4)
Cho’s+SVM [27]                                        98.6(80)
Ftest + SVM [27]                                      98.6(33)
Fu and Liu [6]                                           97.0(4)
Guyon [9]                                                  100(8)
Tibsrani [26]                                              100(21)
Chen and Zhao [29]                                   98.6

SRBCT

Proposed Method                                     100(15)
GS2+SVM [27]                                        100(96)
GS1+SVM  [27]                                        98.8(34)
Cho’s+SVM [27]                                       98.8(80)
Ftest + SVM [27]                                      100(78)
Fu and Liu [6]                                          100(19)
Tibsrani [26]                                             100(43)
Khan [13]                                                100(96)

LUNGCANCER

Proposed Method                                   100(3)
GS2+KNN [27]                                        93.1(44)
GS1+SVM [27]                                      98.6(4)
Cho’s+SVM [27]                                     98.6(80)
Ftest + SVM [27]                                     98.6(94)
Shah and Kaushik [25]                           100(8)
PSO+ANN [27]                                      98.3
Chen and Zhao [29]                                 98.3
GAKNN [16]                                          95.6(325)
Hong and Cho [10]                                  99.4(135)
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