
 Informatica 29 (2005) 233–240 233

A Survey of Contemporary Real-time Operating Systems
S. Baskiyar, Ph.D. and N. Meghanathan
Dept. of Computer Science and Software Engineering
Auburn University
Auburn, AL 36849, USA
baskiyar@eng.auburn.edu
http://www.eng.auburn.edu/~baskiyar

Keywords: scheduling, POSIX, kernels.

Received: June 26, 2004

A real-time operating system (RTOS) supports applications that must meet deadlines in addition to
providing logically correct results. This paper reviews pre-requisites for an RTOS to be POSIX 1003.1b
compliant and discusses memory management and scheduling in RTOS. We survey the prominent
commercial and research RTOSs and outline steps in system implementation with an RTOS. We select a
popular commercial RTOS within each category of real-time application and discuss its real-time
features. A comparison of the commercial RTOSs is also presented. We conclude by discussing the
results of the survey and suggest future research directions in the field of RTOS.
Povzetek: Podan je pregled operacijskih sistemov v realnem času.

1 Introduction
A real-time system is one whose correctness involves
both the logical correctness of outputs and their
timeliness [7]. It must satisfy response-time constraints
or risk severe consequences including failure. Real-time
systems are classified as hard, firm or soft systems. In
hard real-time systems, failure to meet response-time
constraints leads to system failure. Firm real-time
systems have hard deadlines, but where a certain low
probability of missing a deadline can be tolerated.
Systems in which performance is degraded but not
destroyed by failure to meet response time constraints are
called soft real-time systems.

An embedded system is a specialized real-time
computer system that is part of a larger system. In the
past, it was designed for specialized applications, but re-
configurable and programmable embedded systems are
becoming popular. Some examples of embedded
systems are: the microprocessor system used to control
the fuel/air mixture in the carburetor of automobiles,
software embedded in airplanes, missiles, industrial
machines, microwave ovens, dryers, vending machines,
medical equipment, and cameras.

We observe that the choice of an operating system is
important in designing a real-time system. Designing a
real-time system involves choice of a proper language,
task partitioning and merging, and assigning priorities to
manage response times. Language synchronization
primitives such as Schedule, Signal and Wait simplify
translation of design to code and also offer portability.
Depending upon scheduling objectives, parallelism and
communication [3] may be balanced. Merging highly
cohesive parallel tasks for sequential execution may
reduce overheads of context switches and inter-task

communications. The designer must determine critical
tasks and assign them high priorities. However, care
must be taken to avoid starvation, which occurs when
higher priority tasks are always ready to run, resulting in
insufficient processor time for lower priority tasks [9].
Non-prioritized interrupts should be avoided if there is a
task that cannot be preempted without causing system
failure. Ideally, the interrupt handler should save the
context, create a task that will service the interrupt, and
return control to the operating system. Using a task to
perform bulk of the interrupt service allows the service to
be performed based on a priority chosen by the designer
and helps preserve the priority system of the RTOS.
Furthermore, good response times may require small
memory footprints in resource-impoverished systems.
Clearly the choice of an RTOS in the design process is
important for support of priorities, interrupts, timers,
inter-task communication, synchronization, multipro-
cessing and memory management.

The organization of this paper is as follows. Section
2 outlines the basic requirements of an RTOS for POSIX
1003.1b compliance. Section 3 reviews memory
management and scheduling algorithms used in RTOS.
Section 4, classifies popular RTOS, compares
contemporary commercial RTOSs and discusses the real-
time features of two popular general-purpose operating
systems. Section 5 concludes by discussing the results of
this survey with a few suggestions for future research.

2 Features
The desirable features of an RTOS include the ability to
schedule tasks and meet deadlines, ease of incorporating
external hardware, error recovery, low task switching
latency, small footprint and overheads. The kernel is the
core of an OS that provides task scheduling, task

234 Informatica 29 (2005) 233–240 S. Beskiyar et al.

dispatching and inter-task communication. In embedded
systems, usually the kernel can serve as an RTOS while
commercial RTOSs like those used for air-traffic control
systems require all of the functionalities of a general
purpose OS. In this section, basic requirements of an
RTOS and POSIX compliance requirements have been
addressed.

2.1 Basic requirements
The following are the basic requirements of an RTOS:

(i) Multi-tasking and preemptable: To support multiple
tasks in real-time applications, an RTOS must be
multi-tasking and preemptable. The scheduler should
be able to preempt any task in the system and give
the resource to the task that needs it most. An RTOS
should also handle multiple levels of interrupts to
handle multiple priority levels.

(ii) Dynamic deadline identification: In order to achieve
preemption, an RTOS should be able to dynamically
identify the task with the earliest deadline. To handle
deadlines, deadline information may be converted to
priority levels that are used for resource allocation.
Although such an approach is error prone,
nonetheless it is employed for lack of a better
solution.

(iii) Predictable synchronization: For multiple threads
to communicate among themselves in a timely
fashion, predictable inter-task communication and
synchronization mechanisms are required. Semantic
integrity as well as timeliness constitutes
predictability. Predictable synchronization requires
compromises [14]. Ability to lock/unlock resources
is one of the ways to achieve data integrity. To
illustrate this point, Java methods can be declared
with the keyword synchronized, e.g. synchronized
void AddOne(). Only one thread can call a
synchronized method on a particular object, other
threads trying to access that method on the same
object wait; thus performance degradation is
possible. Molesky, Shen, and Zlokapa [12] have
proposed the Deferred Bus Theorem for binding the
waiting time on a semaphore based on the number of
requesters, time spent in the critical region, and the
execution times of requesting and releasing a
semaphore. However, they assume that the user can
estimate the time each task may hold a lock, which
may not be always feasible. Although deadlines
may be assigned with semaphores, there is no
guarantee that critical tasks have access over non-
critical tasks. Another technique achieves speedup
by non-blocking (lock-free) synchronization using
FIFO queues [23]. The worst-case execution time of
accessing a shared data object can thus be bounded.

(iv) Sufficient Priority Levels: When using prioritized
task scheduling, the RTOS must have a sufficient
number of priority levels, for effective
implementation [9]. Priority inversion occurs when
a higher priority task must wait on a lower priority

task to release a resource and in turn the lower
priority task is waiting upon a medium priority task.
Two workarounds in dealing with priority inversion,
namely priority inheritance and priority ceiling
protocols (PCP), need sufficient priority levels.

In a priority inheritance mechanism, a task blocking
a higher priority task inherits the higher priority for
the duration of the blocked task. In PCP a priority is
associated with each resource which is one more
than the priority of its highest priority user. The
scheduler makes the priority of the accessing task
equal to that of the resource. After a task releases a
resource, its priority is returned to its original value.
However, when a task’s priority is increased to
access a resource it should not have been waiting on
another resource.

(v) Predefined latencies: The timing of system calls
must be defined using the following specifications:
• Task switching latency or the time to save the

context of a currently executing task and switch
to another.

• Interrupt latency or the time elapsed between
the execution of the last instruction of the
interrupted task and the first instruction of the
interrupt handler [4].

• Interrupt dispatch latency or the time to switch
from the last instruction in the interrupt handler
to the next task scheduled to run.

2.2 POSIX compliance
IEEE Portable Operating System Interface for Computer
Environments, POSIX 1003.1b provides the compliance
criteria for RTOS services and is designed to allow
application programmers write portable applications. The
services required for compliance include the following:
• Asynchronous I/O: The ability to overlap application

processing and application initiated I/O operations
[5]. To support user-level I/O, an embedded RTOS
should support the delivery of external interrupts
from an I/O device to a process in a predictable and
efficient manner.

• Synchronous I/O: The ability to assure return of the
interface procedure when the I/O operation is
completed [5].

• Memory locking: The ability to guarantee memory
residence by storing sections of a process that were
not recently referenced on secondary memory
devices [20].

• Semaphores: The ability to synchronize resource
access by multiple processes [17].

• Shared memory: The ability to map common
physical space into independent process specific
virtual space [5].

• Execution scheduling: The ability to schedule
multiple tasks. Common scheduling methods include

A SURVEY OF CONTEMPORARY... Informatica 29 (2005) 233–240 235

round robin and priority based preemptive
scheduling.

• Timers: Timers improve functionality and
determinism of the system [9].

• Inter-process Communication (IPC): Common
RTOS communication methods include mailboxes
and queues.

• Real-time files: The ability to create and access files
with deterministic performance.

• Real-time threads: Schedulable entities that have
individual timeliness constraints [9].

3 Memory management and
scheduling

This section addresses important issues of memory
management and scheduling in an RTOS.

3.1 Memory management
An RTOS uses small memory size by including only the
necessary functionality for an application while
discarding the rest [22]. Below we discuss static and
dynamic memory management in RTOSs.

Static memory management provides tasks with
temporary data space. The system’s free memory is
divided into a pool of fixed sized memory blocks, which
can be requested by tasks. When a task finishes using a
memory block it must return it to the pool. Another way
to provide temporary space for tasks is via priorities. A
pool of memory is dedicated to high priority tasks and
another to low priority tasks. The high-priority pool is
sized to have the worst-case memory demand of the
system. The low priority pool is given the remaining free
memory. If the low priority tasks exhaust the low priority
memory pool, they must wait for memory to be returned
to the pool before further execution [1].

Dynamic memory management employs memory
swapping, overlays, multiprogramming with a fixed
number of tasks (MFT), multiprogramming with a
variable number of tasks (MVT) and demand paging.
Overlays allow programs larger than the available
memory to be executed by partitioning the code and
swapping them from disk to memory. In MFT, a fixed
number of equalized code parts are in memory at the
same time. As needed, the parts are overlaid from disk.
MVT is similar to MFT except that the size of the
partition depends on the needs of the program in MVT.
Demand paging systems have fixed-size pages that reside
in non-contiguous memory, unlike those in MFT and
MVT [7]. In many embedded systems, the kernel and
application programs execute in the same space i.e., there
is no memory protection.

3.2 Scheduling
In this section, we very briefly outline scheduling
algorithms employed in real-time operating systems. We
note that predictability requires bounded operating
system primitives. A feasibility analysis of the schedule

may be possible in some instances. The scheduling
literature is vast and the reader is referred to [15] for a
detailed discussion.

Task scheduling can be either performed
preemptively or non-preemptively and either statically or
dynamically. For small applications, task execution
times can be estimated prior to execution and the
preliminary task schedules statically determined. Two
common constraints in scheduling are the resource
requirements and the precedence of execution of the
tasks. Typical parameters associated with tasks are:

• Average execution time
• Worst case execution time
• Dispatch costs
• Arrival time
• Period (for periodic tasks).

The objective of scheduling is to minimize or maximize
certain objectives. Typical objectives minimized are:
schedule-length, average tardiness or laxity.
Alternatively, maximizing average earliness and number
of arrivals that meet deadlines can be objectives. In [15]
scheduling approaches have been classified into: static
table driven approach, static priority driven preemptive
approach, dynamic planning based approach, dynamic
best effort approach, scheduling with fault tolerance and
resource reclaiming. We briefly discuss the approaches
below.

(i) Static table driven: The feasibility and schedule
are determined statically. A common example
is the cyclic executive, which is also used in
many large-scale dynamic real-time systems [2].
It assigns tasks to periodic time slots. Within
each period, tasks are dispatched according to a
table that lists the order to execute tasks. For
periodic tasks, there exists a feasible schedule if
and only if there is a feasible schedule within
the least common multiple of the periods. A
disadvantage of this approach is that a-priori
knowledge of the maximum requirements of
tasks in each cycle is necessary.

(ii) Static priority driven preemptive: The feasibility
analysis is conducted statically. Tasks are
dispatched dynamically based upon priorities.
The most commonly used static priority driven
preemptive scheduling algorithm for periodic
tasks is the Rate Monotonic (RM) scheduling
algorithm [8]. A periodic system must respond
with an output before the next input. Therefore,
the system’s response time should be shorter
than the minimum time between successive
inputs. RM assigns priorities proportional to the
frequency of tasks. It can schedule any set of
tasks to meet deadlines if the total resource
utilization less than ln 2. If it cannot find a
schedule, no other fixed-priority scheduling
scheme will. But it provides no support for
dynamically changing task periods/priorities and
priority inversion. Also, priority-inversion may
occur when to enforce rate-monotonicity, a non-
critical task of higher frequency of execution is

236 Informatica 29 (2005) 233–240 S. Beskiyar et al.

assigned a higher priority than a critical task of
lower frequency of execution.

(iii) Dynamic planning based: The feasibility
analysis is conducted dynamically—an arriving
task is accepted for execution only when
feasible. The feasibility analysis is also a
source for schedules. The execution of a task is
guaranteed by knowing its worst-case execution
time and faults in the system. Tasks are
dispatched to sites by brokering resources in a
centralized fashion or via bids. A technique
using both centralized and bidding-approach
performs marginally better than any one of them
but is more complex [15].

(iv) Dynamic best effort approach: Here no
feasibility check is performed. A best effort is
made to meet deadlines and tasks may be
aborted. However, the approaches of Earliest
Deadline First (EDF) and Minimum Laxity First
(MLF) are often optimal when there are no
overloads. Research into overloaded conditions
is still in its infancy. Earliest deadline first
(EDF) scheduling can schedule both static and
dynamic real-time systems. Feasibility analysis
for EDF can be performed in O(n2) time, where
n is the number of tasks [7]. Unlike EDF, MLF
accounts for task execution times.

(v) Scheduling with fault tolerance: A primary
schedule will run by the deadline if there is no
failure and a secondary schedule will run by the
deadline on failure. Such a technique allows
graceful degradation but incurs cost of running
another schedule. In hard real-time systems,
worst-case blocking must be minimized for fault
tolerance.

(vi) Scheduling with resource reclaiming: The
actual task execution time may be shorter than
the one determined a-priori because of
conditionals or worst-case execution
assumptions. The task dispatcher may try to
reclaim such slacks, to the benefit of non real-
time tasks or improved timeliness guarantees.

4 Commercial RTOSs
In this section, we select a prominent commercial RTOS
for each class of real-time application and discuss its
features. For small memory devices Windows CE has
been discussed, for hard real-time systems, LynxOS, for
embedded applications VxWorks, Jbed for the Java
platform and pSOS for an object-oriented operating
system. But first, we list the common capabilities of
these operating systems.
• Efficiency: Most RTOSs are micro-kernels with low

overhead. In some, almost no context switch
overhead is incurred in sending a message to the
system service provider.

• Non-preemptable system calls: Certain portions of
system calls are non-preemptable to support mutual

exclusion. These parts are optimized, made as
deterministic as possible.

• Prioritized scheduling: For POSIX compliance, all
RTOSs offer at least 32 priority levels. The number
of priority levels range from 32-512.

• Priority inversion control: A means of handling
priority inversion.

• Memory management support: Support for virtual
memory management exists but not necessarily
paging. The users are offered choices among
multiple levels of memory protection.

4.1 Windows CE
Windows CE [13] is a modular, portable real-time
embedded OS for small memory, mobile 32-bit devices.
Windows CE slices CPU time among threads and
provides 256 priority levels. To optimize performance,
all threads are enabled to run in kernel mode. Windows
CE kernel has the following features:
• While executing non-preemptive code in the kernel,

translation look-aside buffer (TLB) misses are
avoided by moving all kernel data into physical
memory.

• Kcalls, all non-preemptable portions of the kernel,
are broken into small sections reducing the duration
of non-preemptable code.

• All kernel objects (such as processes, threads,
critical sections, mutexes, events and semaphores)
are dynamically allocated in virtual memory.

• For portability, an equipment adaptation layer
isolates device dependent routines. The equipment
manufacturer can specify trusted modules and
processes to prevent unauthorized applications from
accessing system application programming
interfaces.

4.2 LynxOS
LynxOS [10] is a POSIX compatible, multithreaded OS
designed for complex real-time applications that require
fast, deterministic response. It is scalable from large
switching systems down to small-embedded products.
The micro-kernel can schedule, dispatch interrupts, and
synchronize tasks. Other services offered by the kernel
lightweight service modules, are TCP/IP streams, I/O and
file systems, sockets, etc. In response to an interrupt, the
kernel dispatches a kernel thread, which can be
prioritized and scheduled similar to other threads. The
priority of the interrupt handling kernel thread is the
priority of the user thread that handles the interrupting
device. This mechanism ensures predictable response
even in the presence of heavy I/O. The OS depends upon
hardware memory management units for memory
protection, but does offer optional demand paging. It
uses scheduling policies such as prioritized FIFO,
dynamic deadline monotonic scheduling, time-slicing
etc. It has 512-priority levels and supports remote
operation.

A SURVEY OF CONTEMPORARY... Informatica 29 (2005) 233–240 237

4.3 VxWorks
VxWorks [21] is a widely adopted RTOS in the
embedded industry with a visual development
environment. It is scalable with over 1800 APIs and is
available on popular CPU platforms. It offers network
support, file system and I/O management. The micro-
kernel supports 256 priority levels, multitasking,
deterministic context switching and preemptive and
round robin scheduling, semaphores and mutual
exclusion with inheritance. TCP, UDP, sockets and
standard Berkeley network services can all be scaled in
or out of the networking stack as necessary. It can be set
up so that each task has a private virtual memory upon
request. For portability a Board Support Package
interfaces with the hardware-dependent layer.

4.4 Jbed
Jbed [6] is a real-time operating system for embedded
systems. It supports applications and device drivers
written in Java. Instead of interpreting byte-codes, Jbed
translates byte-codes to machine code prior to class
loading. Its modular architecture allows dynamic code
loading and scaling from small to high performance
devices. It supports real-time memory allocation,
exception handling and automatic object destruction.
Hard real-time applications are supported via specific
class libraries. It supports ten thread priority levels and
EDF scheduling.
Jbed light is a smaller version for fast and precompiled
applications. It contains the basic components such as the
core virtual machine, a small set of standard Java
libraries, and the Jbed libraries required to directly access
peripherals. The Java virtual machine calls are
implemented in the kernel. This avoids the need for a
slow Java Native Interface, otherwise needed to make
system calls. Current versions support ARM7, 68k and
the PowerPC architectures.

4.5 pSOS
The objects, in object-oriented pSOS, include tasks,
memory regions, message queues, and semaphores. It
schedules tasks in preemptive priority-driven or EDF and
handles priority inversion by both priority inheritance
and priority-ceiling protocol. The application developer
has complete control over interrupt handling. User tasks
may also run in supervisory mode. Device drivers may
be dynamically loaded. A memory region is a physically
contiguous block of memory, created in response to a
call from an application. pSOS allocates memory regions
to tasks. As other objects, a memory region may be local
or global.

4.6 General purpose operating systems
In this section, we outline real-time features of two
popular general-purpose operating systems: Windows
NT and Unix, Table 1 shows a comparison1.

Real-time feature Windows
NT

Native
Unix

Preemptive, priority-based
multitasking

Yes Yes

Deferred interrupt threads Yes No
Non-degrading priorities Yes No
Memory locks Yes Yes

Table 1. Real-time features of Windows NT and Unix

• Preemption: Although Windows NT kernel is non-
preemptable there are points within the kernel where
preemption is allowed. Real-time Unix also allows
preemption points within system calls.

• Deferred Procedure Calls (DPCs): DPCs are queued
calls to kernel mode functions to be executed later.
They are used by drivers to schedule I/O operations
that do not necessarily have to take place in an
interrupt service routine at a high interrupt level and
can be safely postponed until the level has been
lowered. Such a mechanism allows servicing of
interrupts within interrupts, if the processor disables
future interrupts when an interrupt is being serviced.

• Non-degrading priorities: To ensure fairness, the
system continuously manipulates thread priorities in
Unix and Windows NT. However, Windows NT
provides a band of interrupt priorities that cannot be
altered. Accordingly, there exist two types of thread
priorities: a real-time class and a dynamic class.
Real-time class threads operate with fixed priorities
that are not altered by the kernel. There are 16
priority levels in the real-time class. But any given
thread is restricted only to a subset of priorities in
the range of (+ or -) 2 levels of its initial priority, but
not beyond the set of priorities of its class.

Although Windows NT provides fast response times, it is
not as deterministic as a hard RTOS [11] because of
deferred procedure calls. Since user threads have lower
priority than DPCs or ISRs, mouse and keyboard
handlers may preempt urgent processes. Also, DPCs are
not preempted by other DPCs/threads. Furthermore, the
developer has no control over third party drivers.

Since Windows NT kernel does not support priority
inheritance, deadlocks may occur. It does not support
prioritized queuing for inter-thread communication. In
other words, if multiple threads are blocked waiting on a
resource, they will be granted access in FIFO rather than
priority order unlike an RTOS.

1 Although Windows NT was not intended to be an
RTOS it has been used as one in some instances.

238 Informatica 29 (2005) 233–240 S. Beskiyar et al.

4.7 Other commercial RTOS
Table 2 lists other common commercial RTOSs and their
main features with respect to the basic requirements of an
RTOS discussed in Section 2. All of the products below
use a prioritized FIFO scheme for scheduling.

4.8 Research kernels
We now discuss three real-time kernels, Extensible
Micro-kernel for Embedded ReAL-time Distributed
Systems (EMERALDS), Spring and Arx to provide an
overview of the scope and type of ongoing research in
the field of RTOS. Other prominent research kernels
include Chimera (from Carnegie Mellon University),
Harmony (from National Research Council of Canada)
and Maruti (from University of Maryland).

EMERALDS is designed for small to medium sized
embedded systems [24]. It maps the kernel into every
user space. Therefore a system call does not need any
context switch. User level communication protocol
stacks and device drivers may be added without
modifying the kernel. It uses preemptive fixed priority
and dynamic scheduling. A user can choose the priority
of a thread based on rate-monotonic, deadline-monotonic
or other fixed priority scheme. It supports 32-bit non-
unique thread priorities—by setting a thread’s priority to
its deadline, EDF scheduling can be accomplished. The
priority can be dynamically modified via a system call to
support dynamic EDF scheduling. The IPC mechanisms
are shared memory and message passing via mailboxes.
A 32-bit priority is assigned to each message that can be
used to sort them to retrieve the highest-priority message
first.

Arx [16] employs user level threads for scheduling,
communication and multithreading. It consists of virtual
threads and a scheduling event upcall mechanism.
Virtual threads provide a kernel-level execution
environment for user threads. They are passive entities
that are temporarily bound to user-level threads when
necessary. The scheduling event upcall mechanism
enables the kernel to notify user processes of kernel
events such as thread blocking and timer expiration.
User-level I/O allows programmers to write flexible and
efficient device drivers for proprietary devices.

The Spring kernel [18] provides real-time support for
distributed systems. It can schedule tasks dynamically
based upon execution time and resource constraints.
Thus the need to a priori compute the worst case
blocking time for tasks is avoided. It schedules safety-
critical tasks using a static table. The kernel helps retain
enough application semantics to improve fault-tolerance
and performance on overloads. It supports both
application and system level predictability. Spring
supports abstraction for process groups [19], which
provides a high level of granularity and a real-time group
communication mechanism. Processes within a “process
group” in Spring work towards a common goal. Spring
supports a system description language, which allows

programmers to predefine groups and impose timing and
precedence constraints on them. It supports both
synchronous and asynchronous multicasting groups. It
achieves predictable low-level distributed
communication via globally replicated memory. It
provides abstractions for reservation, planning and end-
to-end timing support.

A comparison of the features of Arx, EMERALDS and
Spring show that all of them incorporate most of the
basic recommendations of POSIX 1003.1 b. However,
the feature of real-time files has not been incorporated in
any of the above research kernels.

5 Conclusion
This paper reviewed the basic requirements of an RTOS
including the POSIX 1003.1b features. The POSIX
1003.1b standard does not address support for fixed-size
buffers and heterogeneous multiprocessing. Designing
an embedded system using an RTOS may help lower cost
and the time to market. If an application has real-time
requirements, an RTOS provides a deterministic
framework for code development and portability. To
meet the needs of commercial multimedia applications,
low code size and high peripheral integration is needed.
Reliability in complex real-time systems could be
achieved using multilevel specifications that check the
correctness of systems at compile-time and run-time.

6 References
[1] S.R. Ball, Embedded Microprocessor Systems: Real

World Design, Third edition, Newnes, 2002.
[2] G. D. Carlow, “Architecture of the Space Shuttle

Primary Avionics Software System,” CACM, v 27,
no. 9, 1984.

[3] H.Gomaa, Software Design Methods for Concurrent
and Real-time Systems, First edition, Addison-
Wesley, 1993.

[4] S.Heath, Embedded Systems Design, Second
edition, Newnes, 2002.

[5] IEEE Information Technology—Portable Operating
System Interface (POSIX)—Part1:

[6] System Application Program Interface, ANSI/IEEE
Std 1003.1, 1996 Edition. Jbed RTOS,
http://www.esmertec.com, Accessed Nov 15, 2004.

[7] P.A. Laplante, Real-Time Systems Design and
Analysis: An Engineer’s Handbook, Second edition,
IEEE Press, 1997.

[8] C.L. Liu and J.W. Layland, “Scheduling Algorithms
for Multiprogramming in a Hard Real-time
Environment,” Journal of the ACM, v. 20, no. 1, pp.
46-61, 1973.

[9] J.W.S. Liu, Real-time Systems, First edition,
Prentice Hall, 2000.

[10] LynxOS, http://www.lynuxworks.com,
Accessed Nov 15, 2004

[11] Microsoft Windows NT,
http://www.microsoft.com, Accessed Nov 10, 2004

A SURVEY OF CONTEMPORARY... Informatica 29 (2005) 233–240 239

RTOS, Vendor Thread
priorit
y levels

Synchronization
mechanisms

Priority inversion
prevention provided

Development hosts, kernel
characteristics

AMX, KADAK
Products Ltd. N/A Mailboxes; wait-

wake requests Yes Windows, predictable memory block
availability

C Executive, JMI
Software
Systems, Inc.

32 Messages, dynamic
data queues Yes Windows, Solaris

CORTEX,
Australian Real-
time Embedded
Systems.

62 Recursive locks,
mutexes

Yes, uses priority
ceiling

Windows/Unix, CPU-independent
software interrupt manager; statically
and dynamically segmented memory
models

Delta OS,
CoreTek Systems,
Inc.

256
Semaphores,
timers, message
queues

Yes Windows, Linux.

Ecos
RedHat, Inc.

1-32 Semaphores, timers
and counters

Yes, uses priority
ceiling

Windows, Linux
For soft real-time embedded
applications in small devices

Emboss
SEGGER
Microcontroller
Systems.

255
Mailbox, binary
and counting
semaphore

No

Windows, Linux, profiling to collect
timing information for every task; task
activation time independent of number
of tasks.

ERTOS
JK Microsystems,
Inc.

256
Inter-thread
messaging, queues,
semaphores

No
Windows, DOS, OS/2.
High-speed interrupt driven serial port
routines

INTEGRITY
GreenHills
Software, Inc.

255

Semaphores,
breakpoints can be
placed any where
in the system
including ISRs.

Yes, mutex,
semaphore

Used in critical embedded applications;
object-oriented; supports distributed
processing; task execution profiling.

IRIX
1.1.1.1.1 SGI

255 Message queues Yes SGI, Double-precision matrix support;
Multi-pipe scalability

Nuclear Plus
Accelerated
Technology, Inc.

N/A Mailboxes, pipes
and queues Yes Windows.

OS-9
Microware
Systems
Corporation.

65535 Semaphore and
queues Yes Windows.

OSE
OSE Systems.

32 Message passing Yes

Windows, Solaris, Linux.
User-defined system clock resolution;
fault-tolerant; suited for wireless
applications.

RT-Linux
Finite State
Machine Labs.

1024 Shared memory or
via files

Yes, lock free data
structures and
priority ceiling

Linux; supports hard real-time
applications

ThreadX
Express Logic,
Inc.

32
Mutexes, counting
semaphores and
messaging

Yes, by disabling
preemption over
ranges of priorities
and by priority
inheritance

Windows.

QNX Neutrino
QNX Software
Systems Ltd.

64 Message passing Yes, using priority
inheritance

Windows, Solaris, Linux, Symmetrical
multiprocessor systems. Every OS
component runs in its own MMU-
protected address space

Table 2. Features of commercial RTOSs

240 Informatica 29 (2005) 233–240 S. Beskiyar et al.

[12] L. Molesky, C. Shen, G. Zlokapa, “Predictable
Synchronization Mechanisms For Multiprocessor
Real-Time Systems,” COINS, University of
Massachusetts, Technical Report 90-30, 1990.

[13] C. Muench, The Windows CE Technology
Tutorial: Windows Powered Solutions for the
Developer, First edition, Addison Wesley, 2000.

[14] R. Ortega, “Timing Predictability in Real-Time
Systems,” Technical Report, Dept. of Computer
Science, University of Washington, 1994.

[15] K. Ramamritham and J. A. Stancovic,
“Scheduling Algorithms and Operating Systems
Support for Real-time Systems,” Proceedings of the
IEEE, pp. 55-67, Jan 1994.

[16] H.Y. Seo, and J.Park. “ARX/ULTRA: A New
Real-Time Kernel Architecture for Supporting User-
Level Threads,” Technical Report SNU-EE-TR1997-
3, School of Electrical Engineering, Seoul National
University, 1997.

[17] A. Silberschatz, P.B. Galvin and G. Gagne,
Operating Systems Concepts, Sixth edition, John
Wiley, 2001.

[18] J.A. Stankovic and K. Ramamritham, “The
Spring Kernel: A New Paradigm for Hard Real-time
Operating Systems,” ACM Operating Systems
Review, vol. 23, no. 3, pp. 54-71, 1989.

[19] M. Teo, “A Preliminary Look at Spring and
POSIX 4,” Spring Internal Document, 1995,
available at http://www-
cs.umass.edu/spring/internal/spring-kernel-docs.html

[20] The Open Group, http://www.opengroup.org/,
Accessed Nov 10, 2004

[21] VxWorks, http://www.windriver.com, Accessed
Nov 10, 2004

[22] C. Walls, “RTOS for Microcontroller
Applications,” Electronic Engineering, vol. 68, no.
831, pp. 57-61, 1996.

[23] Y. Zhang, Non-blocking Synchronization:
Algorithms and Performance Evaluation, Ph.D.
Thesis, Chalmers University of Technology,
Sweden, 2003.

[24] K. M. Zuberi and K. G. Shin, “EMERALDS: A
Small-Memory Real-Time Micro-kernel,” IEEE
Trans. on Software Engineering, vol. 27, no. 10, pp.
909-928, October 2001.

7 Acknowledgements
This paper has been developed while the first author was
teaching classes in Real-time and Embedded Computing
over the last several years. As such several students
within these classes helped generously in this work to
whom the first author is very grateful. The first author
also thanks Dr. James H. Cross, Dept. of Computer
Science and Software Engineering, Auburn University,
Auburn, AL for reviewing this paper. This work was
supported in part by an Auburn University internal grant
and National Science Foundation Grant numbers
0408136 and 0411540.

8 Biography
S. Baskiyar is Assistant Professor in the Department of
Computer Science and Software Engineering at Auburn
University, Auburn, AL. His research interests are in the
areas of Task Scheduling on Clusters, Computer
Architecture and Embedded Systems. He has published
extensively in the area of Task Scheduling on Clusters.
He received the PhD and MSEE degrees from the
University of Minnesota, Minneapolis and the BE
(Electronics and Communications) degree from the
Indian Institute of Science, Bangalore. He received the
BS degree in Physics with honors and distinction in
Mathematics. He received the competitive State-merit
and the Indian Institute of Science scholarships. He has
taught courses in Real-time and Embedded Computing,
Computer Architecture, Operating Systems,
Microprocessor Programming and Interfacing and VLSI
Design. His experience includes working as an
Assistant Professor at the Western Michigan University,
as a Senior Software Engineer in the UNISYS
Corporation and as an Assistant Computer Engineer in
Tata Engineering and Locomotive Company Ltd., India.

N. Meghanathan received the Master’s degree in
Computer Science from Auburn University, Auburn, AL
in 2002. He received the Bachelor’s degree in Chemical
Engineering from Anna University, Chennai, India. He
was a research assistant in the Department of Computer
Science and Software Engineering at Auburn University.

