
Informatica 35 (2011) 289–321 289

Regression Test Selection Techniques: A Survey

Swarnendu Biswas and Rajib Mall
Dept. of Computer Science and Engineering
IIT Kharagpur, India - 721302
E-mail: {swarnendu, rajib}@cse.iitkgp.ernet.in

Manoranjan Satpathy and Srihari Sukumaran
GM India Science Lab, Bangalore, India
E-mail: {manoranjan.satpathy, srihari.sukumaran}@gm.com

Overview paper

Keywords: software maintenance, regression testing, regression test selection, model-based testing, UML, software com-
ponents, embedded programs

Received: April 12, 2010

Regression testing is an important and expensive activity that is undertaken every time a program is mod-
ified to ensure that the modifications do not introduce new bugs into previously validated code. An im-
portant research problem, in this context, is the selection of a relevant subset of test cases from the initial
test suite that would minimize both the regression testing time and effort without sacrificing the thorough-
ness of regression testing. Researchers have proposed a number of regression test selection techniques for
different programming paradigms such as procedural, object-oriented, component-based, database, aspect,
and web applications. In this paper, we review the important regression test selection techniques proposed
for various categories of programs and identify the emerging trends.

Povzetek: Podan je pregled tehnik izbora testov za regresijsko testiranje programov.

1 Introduction

Software maintenance activities, on an average, account
for as much as two-thirds of the overall software life cycle
costs [75]. Maintenance of a software product is frequently
necessitated to fix defects, to add, enhance or adapt exist-
ing functionalities, or to port it to different environments.
Whenever an application program is modified for carrying
out any maintenance activity, resolution test cases are de-
signed and executed to check that the modified parts of the
code work properly. Regression testing (also referred to as
program revalidation) is carried out to ensure that no new
errors (called regression errors) have been introduced into
previously validated code (i.e., the unmodified parts of the
program) [55]. Although regression testing is usually asso-
ciated with system testing after a code change, regression
testing can be carried out at either unit, integration or sys-
tem testing levels. The sequence of activities that take place
during the maintenance phase after the release of a software
is shown in Figure 1. The figure shows that after a software
is released, the failure reports and the change requests for
the software are compiled, and the software is modified to
make necessary changes. Resolution tests are carried out to
verify the directly modified parts of the code, while regres-
sion test cases are carried out to test the unchanged parts
of the code that may be affected by the code change. After

the testing is complete, the new version of the software is
released, which then undergoes a similar cycle.

Regression testing is acknowledged to be an expensive
activity. It consumes large amounts of time as well as
effort, and often accounts for almost half of the software
maintenance costs [55, 49]. The extents to which time and
effort are being spent on regression testing are exemplified
by a study [22] that reports that it took 1000 machine-hours
to execute approximately 30,000 functional test cases for a
software product. It is also important to note that hundreds
of man-hours are spent by test engineers to oversee the re-
gression testing process; that is to set up test runs, moni-
tor test execution, analyze results, and maintain testing re-
sources, etc [22]. Minimization of regression test effort
is, therefore, an issue of considerable practical importance,
and has the potential to substantially reduce software main-
tenance costs.

Regression test selection (RTS) techniques select a sub-
set of valid test cases from an initial test suite (T) to test
that the affected but unmodified parts of a program con-
tinue to work correctly. Use of an effective regression test
selection technique can help to reduce the testing costs in
environments in which a program undergoes frequent mod-
ifications. Regression test selection essentially consists of
two major activities:

– Identification of the affected parts - This involves

290 Informatica 35 (2011) 289–321 S. Biswas et al.

Software
release

Change
requirements

User
feedback

Resolution
testing

Regression
testing

New software
version release

Code
modifications

Unresolved
issues

Regression
errors

Figure 1: Activities that take place during software maintenance and regression testing.

identification of the unmodified parts of the program
that are affected by the modifications.

– Test case selection - This involves identification of a
subset of test cases from the initial test suite T which
can effectively test the unmodified parts of the pro-
gram. The aim is to be able to select the subset of test
cases from the initial test suite that has the potential to
detect errors induced on account of the changes.

Rothermel and Harrold [78] have formally defined the
regression test selection problem as follows: Let P be an
application program and P ′ be a modified version of P .
Let T be the test suite developed initially for testing P . An
RTS technique aims to select a subset of test cases T ′ ⊆ T
to be executed on P ′, such that every error detected when
P ′ is executed with T is also detected when P ′ is executed
with T ′.

Leung and White [57] have observed that the use of an
RTS technique can reduce the cost of regression testing
compared to the retest-all approach, which involves run-
ning the entire test suite T to revalidate a modified pro-
gram P ′, only if the cost of selecting a reduced subset of
test cases to be run on P ′ is less than the cost of running the
tests that the RTS technique omits. The retest-all approach
is considered impractical on account of cost, resource and
delivery schedule constraints that projects are frequently
subjected to. Another approach is to randomly select test
cases from T to carry out regression testing. However, ran-
dom selection of test cases may fail to expose many regres-
sion errors. RTS techniques aim to overcome the draw-
backs associated with the retest-all approach and in random
selection of test cases by precisely selecting only those test
cases that test the unmodified but affected parts of the pro-
gram.

Though substantial research results on RTS have been
reported in the literature, several studies [35, 36] show that
very few software industries deploy systematic test selec-
tion strategies or automation support during regression test-
ing. The approaches that are most often used in the indus-
try for identification of relevant regression test cases are
either based on expert judgment, or based on some form of
manual program analysis. However, selection of test cases
based on expert judgment tends to become ineffective and
unreliable for large software products. Even for moderately

complex systems, it is usually extremely difficult to man-
ually identify test cases that are relevant to a change. This
approach often leads to a large number of test cases being
selected and rerun even for small changes to the original
program, leading to unnecessarily high regression testing
costs. What is probably more disconcerting is the fact that
many test cases which could have potentially detected re-
gression errors could be overlooked during manual selec-
tion. Another problem that surfaces during regression test-
ing stems from the fact that testers (either from the same or-
ganization or from third-party companies) are usually sup-
plied with only the functional description of the software,
and therefore lack adequate knowledge about the code to
precisely select only those test cases that are relevant to a
modification [74].

A large number of RTS techniques have been reported
for procedural [5, 7, 10, 37, 43, 44, 54, 56, 58, 80] and
object-oriented programs [4, 14, 41, 73, 82], each aimed at
leveraging certain optimization options. These techniques
trade-off differently with regards to the cost of selection
and execution of test cases and fault-detection effective-
ness. In the recent past, the problem of RTS has actively
been investigated and new approaches have emerged to
keep pace with the newer programming paradigms. Dur-
ing the last decade, there has been a proliferation in the use
of different programming paradigms such as component-
based development, aspect-oriented programming, embed-
ded and web applications, etc. It is, therefore, not surpris-
ing that a number of RTS techniques have been proposed
for component-based [31, 66, 67, 72, 115, 116, 117], aspect
programs [114, 109], web applications [86, 93, 61, 110,
85], etc.

RTS techniques have been reviewed by several authors
[79, 6, 8, 34, 25, 24, 112]. In [79], Rothermel and Har-
rold have proposed a set of metrics to evaluate the effec-
tiveness of different RTS techniques. Baradhi and Man-
sour [6], Bible et al. [8], and Graves et al. [34] have per-
formed experimental studies on the performance and effec-
tiveness of different RTS techniques proposed for proce-
dural programs. Based on these studies, it is difficult to
choose any technique as the best because these empirical
studies have been performed on different categories of pro-
grams and also under different conditions [25]. This lead
Engström et al. to perform a qualitative study [25, 24] of

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 291

the nature of the empirical data considered. The studies
reported in [25, 24] are based on the similarities of the dif-
ferent RTS techniques and the quality of the empirical data
used. Engström et al. [25] observe that it is very diffi-
cult to come up with an RTS technique which is generic
enough (i.e., can be applied to different classes of applica-
tions) and is superior to all other techniques. The survey
carried out by Engström et al. considers techniques which
have been published before 2006. Therefore, their survey
does not include many RTS techniques proposed after 2006
[114, 109, 18, 61, 86, 93, 85, 65, 31], and also does not in-
clude a few RTS techniques which were proposed before
2006 [10, 110, 107]. Moreover, their study does not in-
clude a detailed discussion about the merits and demerits
of each technique.

In this paper, we present a detailed review of the RTS
techniques proposed for different programming paradigms
such as procedural, object-oriented, component-based,
database, aspect and web software. Since a large number
of RTS techniques have been proposed in the literature, we
have limited our study to only the more prominent classes
of RTS techniques. The techniques we have reviewed have
been chosen based on their prominence determined by the
number of citations and their frequency of referrals in other
related studies. Our sources of information are existing re-
views on RTS techniques [79, 6, 8, 25, 24, 34, 112], the
citation index of the papers that we studied, and the on-
line digital libraries, such as IEEE Xplore, ACM Digital
Library, ScienceDirect, etc. The keywords that we used for
our search on the online digital libraries include regression
testing, regression test selection, test selection, etc. As an
aid to understanding, and to keep the size of the review
manageable, we have classified different RTS techniques
together into relevant classes based on the motivation and
similarity of the proposed approaches. We present a brief
discussion on the working of each class of techniques, and
discuss the merits and demerits of each. We also discuss
issues that arise while designing RTS techniques for em-
bedded programs, and identify the emerging trends in re-
gression testing.

This paper is organized as follows: Section 2 presents
basic concepts related to regression testing and which have
been used in the rest of this paper. In Section 3, we discuss
and compare various RTS approaches proposed for proce-
dural programs. Subsequently, we discuss RTS techniques
for object-oriented, component-based, database, web and
AspectJ programs in Sections 4, 5, 6, 7, and 8 respectively.
We discuss techniques for RTS of embedded software in
Section 9. We discuss RTS techniques proposed for .Net
and BPEL programs in Section 10. We discuss future re-
search directions in regression testing and finally conclude
the paper in Section 11.

2 Basic Concepts
In this section, we first discuss a few basic concepts that
are extensively used in the context of regression testing.
We then discuss some popular intermediate representations
which are used for program model-based RTS.

For notational convenience, in the rest of the paper we
denote the original and the modified programs by P and
P ′ respectively. The initial regression test suite is denoted
by T , and a test case in T is denoted by t.

2.1 Concepts Related to Regression Testing
In this section, we discuss a few important notations and
concepts relevant to regression testing.

Obsolete, Retestable and Redundant Test Cases: Ac-
cording to Leung and White [55], test cases in the initial
test suite can be classified as obsolete, retestable and re-
dundant (or reusable) test cases. Obsolete test cases are
no more valid for the modified program. Retestable test
cases are those test cases that execute the modified and the
affected parts of the program and need to be rerun during
regression testing. Redundant test cases execute only the
unaffected parts of the program. Hence, although these are
valid test cases (i.e., not obsolete), they can be omitted from
the regression test suite without compromising the quality
of testing.

Execution Trace of a Test Case The execution trace of
a test case t on a program P (denoted by ET (P (t))) is
defined as the sequence of statements in P that are exe-
cuted when P is executed with t [80]. The execution trace
information for P can be generated by appropriately instru-
menting the source code.

Fault-revealing Test Cases: A test case t ∈ T is said
to be fault-revealing for a program P , iff it can potentially
cause P to fail by producing incorrect outputs for P [79].

Modification-revealing Test Cases: A test case t ∈ T is
considered to be modification-revealing for P and P ′, iff it
produces different outputs for P and P ′ [79].

Modification-traversing Test Cases: A test case t ∈ T
is modification-traversing for P and P ′, iff the execu-
tion traces of t on P and P ′ are different [79]. In other
words, a test case t is said to be modification-traversing
if it executes the modified regions of code in P ′. For a
given original program and its modified version, the set of
modification-traversing test cases is a super-set of the set of
the modification-revealing test cases.

Inclusive, Precise and Safe Regression Test Cases: In-
clusiveness measures the extent to which an RTS technique

292 Informatica 35 (2011) 289–321 S. Biswas et al.

selects modification-revealing tests from the initial regres-
sion test suite T [79]. Let us consider an initial test suite T
containing n modification-revealing test cases. If an RTS
technique M selects m of these test case, the inclusiveness
of the RTS technique M with respect to P , P ′ and T is
expressed as (m/n) ∗ 100 [79].

A safe RTS technique selects all those test cases from the
initial test suite that are modification-revealing [79]. There-
fore, an RTS technique is said to be safe, iff it is 100% in-
clusive. Regression test cases that are relevant to a change
but are not selected by an RTS technique are instances of
false negatives. Therefore, an RTS technique is safe if the
test suite selected by it has no false negatives [18].

Precision measures the extent to which an RTS algorithm
ignores test cases that are non-modification-revealing [79].
Test cases that are selected by a technique but are not rel-
evant are false positives. An RTS technique is, therefore,
precise iff it there are no false positives among the selected
test cases [18].

2.2 Regression Test Suite Minimization and
Prioritization

Regression test suite minimization (TSM) techniques [40,
62, 64] aim to reduce the size of the regression test suite
by eliminating redundant test cases such that the cover-
age achieved by the minimized test suite is same as the
initial test suite. Different studies published in the litera-
ture [83, 106, 62] report conflicting results on the impact
of TSM techniques on the fault-detection capabilities of
the reduced test suites. Lin et al. have observed [62] that
the TSM problem is NP-complete, since the minimum set-
covering problem [20] can be reduced to the TSM problem
in polynomial time.

Regression test case prioritization (TCP) techniques [23,
99, 84] order test cases such that test cases that have a
higher fault-detection capability are assigned a higher pri-
ority and can gainfully be taken up for execution earlier.
TCP approaches usually aim to improve the rate of fault de-
tection by the ordered test suite [23, 84]. The main advan-
tage of ordering test cases is that bugs are detected and can
be reported to the development team early so that they can
get started with fixing the bugs [84]. Also TCP techniques
provide testers with the choice of executing only a certain
number of higher priority test cases to meet the given time
or cost considerations. This is advantageous especially in
case of unpredicted interruptions to testing activities on ac-
count of delivery, resource or budget constraints.

Several TSM and TCP approaches have been proposed
in recent years, and have emerged as active areas of re-
search by themselves. However, our current work focuses
only on RTS techniques. More detailed information about
TSM and TCP approaches can be found in [22, 23, 112].

Service
Provider

Service Broker
(UDDI)

Service
Requester

P
ub

lis
h

(W
S
D

L)

Bind
(SOAP)

F
ind

(W
S

D
L)

Figure 2: Web service architecture.

2.3 Few Other Relevant Concepts
In the following, we briefly discuss few other concepts that
are relevant to this survey.

Program Slicing: Program slicing is a program analysis
technique which was first introduced by Weiser [103] to aid
in program debugging. A program slice is usually defined
with respect to a slicing criterion. A slicing criterion SC
is a pair < p, V >, where p is a program point of interest
and V is a subset of the program’s variables. A slice of a
program P with respect to a slicing criterion SC is the set
of all the statements of the program P that might affect the
slicing criterion for every possible input to the program.

Since the publication of Weiser’s seminal work, the con-
cept of slicing has been extended and many slicing algo-
rithms have been proposed in the literature for other ar-
eas of program analysis such as program understanding,
compiler optimization, reverse engineering, etc. More de-
tailed information regarding program slicing can be found
in [108, 95].

Web Services: Web services are now being extensively
used in application development across distributed and re-
mote platforms, and are examples of service-oriented ar-
chitecture (SOA) based development. SOA-based develop-
ment has received a big boost with the advent of standard-
ized web services. A web service can be defined as a soft-
ware component which implements a logic and is designed
to be inter-operable over a network providing platform-
independence.

Figure 2 shows the typical architecture and the specifi-
cations of a web service [93, 13]. A service provider pub-
lishes services to a service broker. Service requesters find
required services using a service broker and then bind to
them. Platform independence is achieved through use of
the following web specifications:

– Simple Object Access Protocol (SOAP) - SOAP is an
XML-based protocol for information exchange over
the network between web service and the users. The
XML messages can be transferred using any applica-
tion layer protocol such as Hypertext Transfer Proto-
col (HTTP). An advantage of SOAP messages is that

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 293

int a, b, sum;

1. read(a);

8. sum = b;

3. sum = 0;
4. while (a < 8) {
5. sum = sum + b;
6. a = a + 1; }
7. write(sum);

9. write(sum);

2. read(b);

Figure 3: A sample program.

they can be exchanged between applications regard-
less of the development platform and the program-
ming language being used.

– Web Service Description Language (WSDL) - WSDL
is an XML-based language that is designed to provide
an interface between a web service and its users.

– Universal Description Discovery and Integration
(UDDI) - UDDI is an XML-based information reg-
istry where servers can publish their services. It al-
lows users to locate any specific web services they
might be interested in.

2.4 Graph Models for Procedural Programs

Graph models of programs have extensively been used
in many applications such as program slicing [60, 89],
impact analysis [52], reverse engineering [19], computa-
tion of program metrics [100], regression test selection
[80, 73, 41, 7], etc. Analysis of graph models of programs
is more efficient compared to textual analysis, and various
types of relationships among program elements are also not
explicit in the code. This has led to several representations
such as Control Flow Graph (CFG) [3], Program Depen-
dence Graph (PDG) [29] and System Dependence Graphs
(SDG) [46] being proposed for procedural programs. In the
following, we briefly discuss the important graph models
proposed for procedural programs.

2.4.1 Flow Graph

A flow graph for a program P is a directed graph (N, E)
where the program statements correspond to the set of
nodes N in the flow graph, and the set of edges E repre-
sent the relationships among the program statements. How-
ever, the nodes in a flow graph can also correspond to basic
blocks in a program. Typically it is assumed that there are
two distinguished nodes called start with in-degree zero
and stop with out-degree zero. There exists a path from
start to every other node in a flow graph, and similarly,
there exists a path from every other node in the graph to
stop.

2.4.2 Control Flow Graph

A control flow graph (CFG) [3] is a flow graph that rep-
resents the sequence in which the different statements in a
program get executed. That is, it represents the flow of ex-
ecution of control in the program. In fact, a CFG captures
all the possible flows of execution of a program.

The CFG of the program P is the flow graph G =
(N, E) where an edge (m, n) ∈ E indicates possible flow
of control from node m to node n. Figure 4 represents the
CFG of the program shown in Figure 3. Note that the exis-
tence of an edge (x, y) in a CFG does not necessarily mean
that control must transfer from x to y during a program run.

Start 1 2 3 4

5

True

False

True True True

6 7

True

True

True

89Stop

True

TrueTrue

Figure 4: CFG for the example program shown in Figure
3.

2.4.3 Data Dependence Graph

Dependence graphs are used to represent potential depen-
dencies between the elements of a program. In the fol-
lowing, we discuss data and control dependencies between
program elements and their graph representations.

Data Dependence: LetG be the CFG of a program P . A
node n ∈ G is said to be data dependent on a node m ∈ G,
if there exists a variable var of the program P such that the
following hold:

1. The node m defines var,
2. The node n uses var,
3. There exists a directed path from m to n along which

there is no intervening definition of var.

Consider the sample program shown in Figure 3 and its
CFG shown in Figure 4. From the use of the variables sum
and b in line 5, it is evident that node 5 is data dependent
on nodes 2, 3 and 5. Similarly, node 8 is data dependent
on only node 2. However, node 8 is not data dependent on
either of the nodes 3 and 5.

Data Dependence Graph: The data dependence graph
(DDG) of a program P is the graph GDDG = (N, E),
where each node n ∈ N represents a statement in the pro-
gram P and if x and y are two nodes ofG, then (x, y) ∈ E
iff y is data dependent on x.

294 Informatica 35 (2011) 289–321 S. Biswas et al.

2.4.4 Control Dependence Graph

The concept of control dependence [3] captures the depen-
dency existing between two program elements when the
execution of the second element is dependent on the out-
come of the first.

Dominance: If x and y are two nodes in a flow graph,
then x dominates y iff every path from start to y passes
through x. Similarly, y post-dominates x iff every path
from x to stop passes through y.

Let x and y be two nodes in a flow graph G. Node
x is said to be the immediate post-dominator of node y
iff x is a post-dominator of y, x ̸= y and every other
post-dominator z ̸= x of y post-dominates x. The post-
dominator tree of a flow graph G is the tree that consists of
the nodes of G, has stop as the root node, and has an edge
(x, y) iff x is the immediate post-dominator of y.

Control Dependence: Let G be the CFG of a program
P . Let x and y be two arbitrary nodes in G. A node y
is said to be control dependent on another node x if the
following hold:

1. There exists a directed path Q from x to y,
2. y post-dominates every z in Q (excluding x and y),
3. y does not post-dominate x.

The concept of control dependence implies that if y is
control dependent on x, then x must have multiple succes-
sors in G. Conversely, if x has multiple successors, then at
least one of its successors must be control dependent on it.
Consider the program of Figure 3 and its CFG in Figure 4.
Each of the nodes 5 and 6 is control dependent on node 4.
Note that although node 4 has two successor nodes 5 and
7, only node 5 is control dependent on node 4.

Control Dependence Graph: The control dependence
graph (CDG) of a program P is the graph GCDG =
(N, E), where each node n ∈ N represents a statement
of the program P , and (x, y) ∈ E, iff y is control depen-
dent on x.

1

6

4

8

9 2

5

3

7

data dependence edge

control dependence edge

Figure 5: PDG of the program in Figure 3.

2.4.5 Program Dependence Graph

The program dependence graph (PDG) [29] for a program
P explicitly represents both control and data dependencies
in a single intermediate representation of P . The PDG of
a program P is a directed graph GPDG = (N, E), where
each node n ∈ N represents a statement of the program P .
A PDG contains both control dependence and data depen-
dence edges. A control (or data) dependence edge (m, n)
indicates that n is control (or data) dependent onm. There-
fore, the PDG of a program P is the union of a pair of
graphs: the data dependence graph of P and the control
dependence graph of P . The PDG for the program in Fig-
ure 3 is shown in Figure 5.

2.4.6 System Dependence Graph

A major limitation of a PDG is that it can model only a
single procedure and cannot handle inter-procedural calls.
Horwitz et al. [46] enhanced the PDG representation to
handle procedure calls and introduced the system depen-
dence graph (SDG) representation which models the main
program together with all the non-nested procedures.

}

int x = 0;

CE1 class A {

S4 B *bptr = new B();

S6 try {

E2 void mA() {
S3 int a = 0;

CE13 class B {

S16 if (y < 0)
S17 throw new E2();

S19 catch(E2 &e2) {

S11 cout<<"Error"<<endl; }
S10 catch(...) {

S5 cin>>a;

C7 bptr−>mB(a); }

S9 cout<<"Error E1"<<endl; }
S8 catch(E1 &e1) {

S15 try {

S18 x = sqrt(y); }

S20 cout<<"Error E2"<<endl;

E14 float mB(int y) {

S12 cout<<x<<endl; }
};

};

S21 throw; }
S22 cout<<x<<endl; }

E23 main(int argc, char *argv[]) {
S24 A *aptr = new A();
C25 aptr−>mA();

Figure 6: An example program.

An SDG is very similar to a PDG. In fact, the PDG of the
main program is a subgraph of the SDG. In other words, for
a program without procedure calls, the PDG and the SDG
are identical. The technique for constructing an SDG con-
sists of first constructing a PDG for every procedure, in-
cluding the main procedure, and then adding auxiliary de-
pendence edges which link together the various subgraphs
while maintaining call-return discipline.

2.5 Graph Models for Object-Oriented
Programs

The object-oriented paradigm is based on several impor-
tant concepts such as encapsulation, inheritance, polymor-
phism, dynamic binding, etc. These concepts usually lead
to complex relationships among program elements, and
render the graph models proposed for procedural programs

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 295

inadequate for representing object-oriented programs [60].
Therefore, various models for object-oriented programs
such as the Class Call Graph (CCG) [42], Inter-procedural
Program Dependence Graph (IPDG) [77], Class Depen-
dence Graph (ClDG) [77, 78], and Java Interclass Graph
(JIG) [41] have been proposed. In the following, we briefly
discuss the ClDG and JIG models.

CE1

S3 S4 S5 S6 S8 S12

C7
S9

S10

S11

y_in = a x_in = x
x = x_out

control dependence edge

data dependence edge

E14

y = y_in x = x_in x_out =x

S15 S16 S18 S19 S22

S17 S20 S21

class member edge

E2
call edge

Figure 7: ClDG for class A of the program shown in Figure
6.

2.5.1 Class Dependence Graph

A ClDG [77, 78] is an extensively used model for inter-
mediate representation of object-oriented programs. Each
method in a ClDG is represented by its corresponding
PDG. A class in a ClDG is denoted by a class entry node
and the entry point for each method is represented by a
method entry node. The class entry node is connected to
each method entry node by a class member edge. A repre-
sentative driver node (RDN) is added to the ClDG which
summarizes the set of test driver routines used for class
testing [77]. This RDN acts as the root of the ClDG for
the whole program. Each entry node of a public method
of the class is directly connected to the RDN by means of
driver edges, thus implying that the driver routines can in-
voke the public methods of the class under test. For ex-
ample, Figure 7 shows the ClDG constructed for class A
of the program shown in Figure 6. The node labels in the
ClDG correspond to the statement numbers in the program
of Figure 6. The rectangular node labeled CE1 in Figure 7
represents the class entry vertex for class A. Node E2 rep-
resents a method entry node corresponding to the method
void A::mA(). The edge CE1 → E2 in Figure 7 is a
class member edge. Figure 8 shows the ClDG for class B
defined in Figure 6.

CE13

y = y_in x = x_in x_out = x

S15 S16 S18 S19 S22

S17 S20 S21

control dependence edge

data dependence edges

 class member edge

E14

Figure 8: ClDG for class B of the program in Figure 6.

2.5.2 Java Interclass Graph

Intermediate representations such as IPDG and ClDG have
been proposed in the context of C++ programs and do not
satisfactorily model Java programs. Harrold et al. pro-
posed an extended control flow model for Java programs
called Java Interclass Graph (JIG) [41] that extends a CFG
to capture the following features of a Java program:

– Variable and object type information - The variable
or object type information is stored in a JIG node.
The names of classes are represented using the full
inheritance hierarchy which helps to easily detect any
change to the inheritance tree for the class in the mod-
ified program.

– Internal and external methods of a class - Internal
methods are represented in a JIG with an extended
CFG. The extensions are: each call site is broken into
a call and a return node. The call and return nodes
are inter-connected with a path edge that represents
the execution path through the called method.
Since the source code is usually not available for
externally-defined methods, these are represented in
a JIG using collapsed CFGs.

– Calls to internal or external methods from internal
methods - In a JIG, the call node is connected to
the entry node of the called method with a call edge.
There can only be one call edge if the method call
is not polymorphic. For a polymorphic method call,
the call node is connected to the entry node of each
method that can be bound to the call. The class hier-
archy analysis technique [21] can be used to identify
all possible virtual call bindings.
We illustrate the representation of method calls from
internal methods in a JIG with the help of an exam-
ple reported in [41]. Figure 9 shows a code snippet
with calls to methods foo() and m(). In the pro-
gram, class B extends class A (external to the pro-
gram) and overrides the method m(). ClassC extends
class B and also overrides method m(). For poly-
morphic calls in a JIG, there exists an edge to all the
methods for possible bindings. In the program, call to
A.foo() from within function bar() represents a

296 Informatica 35 (2011) 289–321 S. Biswas et al.

bar()

return

8 p.m()

return

7 A.foo()

exit

A.foo()

exit

A.m()

exit

B.m()

...

exit

B

C

C.m()

...

exit
A

CFG edge

Call edge

Path edge

JIG for the program

// A is externally defined
// and has a public static
// method foo()
// and a public method m()

1 class B extends A {
1a public void m(){...};
2 };
3 class C extends B {
4 public void m(){...};
5 };
6 void bar(A p) {
7 A.foo();
8 p.m();
9 }

Figure 9: An example of method calls from internal methods in a JIG.

static binding. Therefore, in Figure 9, there exists only
a single call edge between the nodes 7 A.foo() and
A.foo(). The method call p.m() is polymorphic,
and there can be three possible bindings, one each for
class A, B, and C. This is represented in the JIG by
the three out edges from the node 8 p.m(). Each
outgoing edge connects to a possible method call to
which it can bind during run-time.

– Calls to internal methods from external methods -
There can be calls from externally-defined methods to
internally-defined methods in Java due to inheritance
and polymorphism. The external code is represented
in a JIG as a node labeled ECN where ECN stands
for external code node. For each internal class that is
accessed from an external class, there is an outgoing
edge from the ECN node to the class entry node of
that internal class.

– Exception handling - A JIG represents a try state-
ment with a try node. The code within the try block
is represented as a CFG, and is connected with a con-
trol flow edge with the try node. Each catch state-
ment is represented using a catch node, and the corre-
sponding catch block is modeled using a CFG. The
catch node is connected with the CFG using a con-
trol flow edge. The try node is connected to the catch
node of the first catch block using a path edge la-
beled exception. A finally node and a CFG are used to
represent the finally block of the try statement.
Uncaught exceptions are modeled as exceptional exit
nodes.

3 RTS Techniques for Procedural
Programs

RTS techniques were first studied in the context of proce-
dural programs [55, 56]. RTS for procedural programs is,
therefore, an extensively researched topic, and many tech-
niques have been proposed over the years [17, 56, 58, 37,
43, 92, 54, 76, 5, 80, 97, 98, 7, 10]. These techniques se-
lect relevant regression test cases using either control flow,
data or control dependence analysis, or by textual analy-
sis of the original and the modified programs. Depending
on the type of the program analysis technique used and to
aid in understanding, we have grouped the different RTS
techniques into the following major classes:

1. Dataflow analysis-based techniques [43, 92, 44, 37]
2. Slicing-based techniques [7, 10, 2]
3. Firewall-based techniques [56, 58]
4. Differencing-based approaches [97, 98, 17]
5. Control flow analysis-based techniques [54, 80, 5]

In the following, we briefly discuss these different cate-
gories of RTS techniques and compare their effectiveness.
We base our comparisons on the set of metrics introduced
by Rothermel and Harrold [79]: safety, precision, effi-
ciency, and generality. Rothermel and Harrold have pre-
sented a comprehensive survey of procedural RTS tech-
niques in [79]. For the sake of completeness and continuity
of the paper, we have included brief discussions on these
techniques. We also discuss a few techniques [97, 98, 5]
which were published after their work.

3.1 Dataflow Analysis-Based Techniques
In this subsection, we review RTS techniques [43, 92, 44,
37] based on dataflow analysis.

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 297

Dataflow analysis-based RTS techniques explicitly de-
tect definition-use pairs for variables that are affected by
program modifications, and select test cases that exercise
the paths from the definition of modified variables to their
uses. The use of a variable is further distinguished into
computation uses (c-uses) and predicate uses (p-uses). A
c-use occurs for a variable if it is used in computations, and
a p-use occurs when it is used in a conditional statement. A
c-use may have an indirect effect on the control flow of the
program, while a p-use may either directly affect the flow
of control or may also indirectly affect some other program
statements.

Harrold and Soffa [43] have proposed a dataflow
coverage-based RTS technique that can be applied to ana-
lyze changes across multiple procedures. Their approach
involves processing the dataflow information incremen-
tally, i.e., process a single change, select test cases for that
change, and update the dataflow information and test cov-
erage information. The same process is repeated for all the
changes one by one. In their approach, P is represented by
a CFG, in which the nodes represent basic blocks. This re-
duces the size of the flow graph and makes graph analysis
more efficient as compared to representing the individual
program statements as nodes. Additional nodes are intro-
duced in the flow graph to model global variables, function
parameters, and return values of functions. Modifications
to P usually result in changes to the basic blocks or the
control flow structure of the program. The information in
each node of the flow graph is extended to include the as-
sociated dataflow information for variables present in the
node. For each variable definition in a node n, the node
numbers of all the c-uses of the variable in the flow graph
are stored in node n. The block numbers for all the p-uses
of the variable are also stored in n. The information about
the paths traversed when P is executed on each t ∈ T is
used to select test cases which exercise the modified def-
use pairs for any variable, and are selected for retesting P ′.

Dataflow-based RTS techniques reported in [43, 92, 44]
usually carry out analysis either by processing the changes
one by one and then incrementally updating the dataflow
information for P ′, or compute the full dataflow informa-
tion for P and P ′ and compare the differences between
def-use pairs. Both these approaches require saving the
dataflow information across testing sessions, or recompute
them at the beginning of each testing session. The program
slicing-based RTS technique proposed by Gupta et al. [37]
is based on inter-procedural slicing which does not require
saving or recomputing the dataflow information across test-
ing sessions. The technique uses the concepts of backward
and forward slices to determine the affected def-use pairs
that must be retested. The program to be regression tested
is sliced to select test cases that execute the affected def-use
pairs.

3.1.1 Critical Evaluation

The techniques reported in [37, 43, 44] are based on com-
puting dataflows in a program and are not able to deter-
mine the effect of program modifications that do not cause
changes to the dataflow information [112]. The techniques
also do not consider control dependencies among program
elements for selecting regression test cases. As a result,
these techniques are unsafe. Dataflow techniques are also
imprecise because the presence of an affected definition
or use in a new block of code does not guarantee that all
test cases which execute the block will execute the affected
code [79]. Examples illustrating the unsafe and imprecise
nature of dataflow-based techniques are available in [79].

3.1.2 Slicing-Based Techniques

Agrawal et al. [2] have proposed a set of program slicing-
based RTS techniques. The aim of these techniques is to
select those test cases which can produce different outputs
when executed with the modified program version P ′. The
authors define a slice with respect to a test case t as the set
of program statements which are executed when P is exe-
cuted with t. The authors have proposed four slicing tech-
niques [2]: execution slice, dynamic slice, relevant slice,
and approximate relevant slice. The RTS techniques pro-
posed in [2] select a test case t for regression testing only
if the slice of t computed using any one of the four ap-
proaches contains a statement modified in P ′.

A PDG-based slicing approach for procedural programs
was proposed by Bates and Horwitz [7]. However,
the PDG-based slicing technique did not support inter-
procedural regression testing. In [10], Binkley proposed an
inter-procedural RTS technique based on slicing SDG mod-
els of P and P ′. Two components are said to have equiv-
alent execution patterns, iff they are executed the same
number of times on any given input [10]. The concept of
common execution patterns [10] has been introduced as an
inter-procedural extension of the equivalent execution pat-
terns proposed in [7]. Code elements are said to have a
common execution pattern if they have the same equivalent
execution pattern during some call to procedures. Common
execution patterns capture the semantic differences among
code elements [10]. The semantic differences between P
and P ′ are determined by comparing the expanded version
(i.e., with every function call expanded in place) of the two
programs. The expanded versions of the two programs are
analyzed to find out affected program elements which need
to be regression tested.

3.1.3 Critical Evaluation

The program slicing-based RTS techniques proposed by
Agrawal et al. [2] are unsafe [112]. The techniques are
however precise [6] because they omit test cases that do not
produce a different output. This eliminates the possibility
of selecting non-modification-revealing test cases.

298 Informatica 35 (2011) 289–321 S. Biswas et al.

According to the studies reported by Rothermel and Har-
rold [79], the PDG [7] and SDG-based [10] slicing tech-
niques are not safe when the changes to the modified pro-
gram involve deletion of statements. The techniques are
also imprecise. However, the SDG slicing-based RTS tech-
nique can be applied to select test cases for both intra- and
inter-procedural modifications.

3.2 Module Level Firewall-Based
Techniques

The firewall-based approach, first proposed by Leung and
White [56, 58], is based on analysis of data and control
dependencies among modules in a procedural program. A
firewall is defined as the set of all the modified modules in
a program along with those modules which interact with
the modified modules. A firewall is a conceptual bound-
ary that helps in limiting the amount of retesting required
by identifying and limiting testing to only those modules
which are affected by a change. The firewall techniques
use a call graph to represent the control flow structure of a
program [56]. ModuleA is called an ancestor of moduleB,
if there exists a path (a sequence of calls) in the call graph
from module A to B, and module B is then called a de-
scendant of module A. The direct ancestors and the direct
descendants of the modified modules are also included dur-
ing the construction of a firewall to account for all possible
interactions with the modified modules. The test coverage
information for P is used to select the subset of test cases
from T which exercise the affected modules included in the
firewall.

3.2.1 Critical Evaluation

The firewall technique is not safe as it does not select
those test cases from outside the firewall that may exe-
cute the affected modules within the firewall [79]. The
firewall techniques are imprecise because all test cases
which execute the modules within the firewall do not nec-
essarily execute the modified code within modules. How-
ever, the firewall techniques are efficient because the ap-
proaches consider only the modified modules and their re-
lationships with other modules in the firewall, and hence
limit the total amount of the source code that need to be
analyzed. The firewall techniques handle RTS for inter-
procedural program modifications but are not applicable for
intra-procedural modifications [79].

3.3 Differencing-Based Techniques
In this subsection, we discuss RTS techniques [17, 97] that
are based on analysis of the differences between the origi-
nal and the modified programs.

3.3.1 Modified Code Entity-Based Technique

A modified code entity-based RTS technique was proposed
by Chen et al. [17] for C programs. They have decomposed

program elements into functional and non-functional code
entities. A code entity is defined as either a directly exe-
cutable unit of code such as a function or a statement, or a
non-executable unit such as a global variable or a macro.
The original program P is executed with each test case
t ∈ T . The test coverage information is analyzed to deter-
mine the set of executable code entities that are exercised
by each test case t ∈ T . For each function that is executed
by a test case t, the transitive closure of the global vari-
ables, macros, etc. referenced by the function is computed.
When the original program P is modified, all the code enti-
ties which were modified to create the revised program P ′

are identified. Test cases that exercise any of the modified
entities are selected for regression testing P ′.

3.3.2 Technique Based on Textual Differencing

Vokolos and Frankl [97, 98, 30] have proposed an RTS
technique which is based on a textual differencing of the
original and the modified programs (i.e., P and P ′), rather
than using any intermediate representation of the programs.
A naive textual differencing of the programs will include
trivial differences between the two versions, such as inser-
tion of blank lines, comments etc. Therefore, their tech-
nique first converts a program to its canonical form [96, 97]
before comparison. This conversion ensures that the orig-
inal and the modified programs follow the same syntactic
and formatting guidelines. The canonical version of P is
instrumented and then executed to generate the test cover-
age information. The test coverage information identifies
the basic blocks that are executed by each test case instead
of the program statements. The canonical versions of P
and P ′ are syntactically compared to find out modifications
to the code. The test coverage information is then used to
identify test cases which execute the affected parts of the
code.

3.3.3 Critical Evaluation

The modified code entity technique is safe because it iden-
tifies all possible affected code entities, and selects regres-
sion test cases based on test coverage [8, 79]. The tech-
nique proposed in [97] is also safe because it identifies
all the basic blocks that are affected due to modifications
and selects regression test cases that execute those basic
blocks. However, both the techniques are imprecise. For
example, if a function f is modified, the modified code en-
tity technique selects all those test cases which execute f .
But there might be tests which execute f without executing
the modified code in f . The textual differencing technique
can be highly imprecise when code changes are arbitrary
since differentiation is based on only syntax and the test
cases are selected based on coverage of basic blocks. The
code entity technique is considered to be the most efficient
and safe RTS technique for procedural programs [79], and
its time complexity is bounded by the size of T and P .
The time complexity of the textual differencing technique

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 299

isO(|P |∗|P ′|∗log|P |) which may not be scalable for large
programs.

3.4 Control Flow Analysis-Based
Techniques

A few RTS techniques [54, 80, 5] have been proposed
which analyze control flow models of the input programs
for selecting regression test cases. We briefly discuss these
RTS techniques in the following.

3.4.1 Cluster Identification Technique

The main concept used in the cluster identification tech-
nique proposed by Laski and Szermer [54] is localization
of program modifications into one or more areas of the code
referred to as clusters. Clusters are defined as single-entry,
single-exit parts of code that have been modified from one
version of a program to the next. The cluster identification
technique models programs P and P ′ as CFGs (denoted
by G and G′). The nodes in G and G′ which correspond to
the modifications in the code are identified, and the set of
all such identified nodes in G and G′ are marked as clus-
ters. A cluster identification-based technique uses control
dependence information of the original and the modified
procedures to compute the clusters in the two graphs.

Once the clusters have been identified in the CFGs, each
cluster is then represented by a single node to form a re-
duced CFG. Analysis of the reduced flow graphs is based
on the assumption that any complex program modifica-
tion can be achieved by one of the following three opera-
tions: inserting a cluster into the code, deleting a cluster, or
changing the functionality of a cluster. Test cases are clas-
sified into two categories: local to the clusters and global in
the entire program. The former includes test cases which
execute modified clusters, and the latter includes test cases
which execute other areas of the program affected due to
the modified clusters based on control dependencies. The
test coverage information is then used to select regression
test cases.

3.4.2 Graph Walk-Based Technique

Rothermel and Harrold have proposed an RTS technique
based on traversal of CFGs of the original and the mod-
ified programs [80]. This technique [80] is more effi-
cient as compared to the graph walk-based RTS approaches
based on dependence graph models [76, 78] proposed by
the same authors. The approach proposed in [80] involves
constructing CFGs G and G′ for programs P and P ′ re-
spectively. The execution trace information for each test
case t, ET (P (t)), is recorded. This is achieved by instru-
menting P . In [80], a simultaneous depth-first traversal
of the two CFGs G and G′ is performed corresponding to
each modified procedure in P and P ′. The traversal is per-
formed according to the execution trace for each test case
in T . For each pair of nodes n and n′ belonging to G and

G′ respectively, the technique finds out whether the pro-
gram statements associated with the successors of n and
n′ along identically-labeled edges of G and G′ are equiv-
alent or not. If a pair of nodes n1 and n′1 is found such
that the statements associated with n1 and n′1 are not iden-
tical, then the edges that lead to the non-identical nodes
are identified as dangerous edges. Test cases which exe-
cute the set of identified dangerous edges are assumed to
be modification-revealing. Therefore, a test case t ∈ T is
selected for retesting P ′ if ET (P (t)) contains node n1.

3.4.3 DFA Model-Based Approach

Ball [5] has proposed a more precise RTS technique com-
pared to [80] by modeling CFG G for a program P as a
deterministic finite state automaton (DFA). A DFA M for
a CFG G can be constructed such that the following condi-
tions hold:

1. Each node v in G corresponds to two states v1 and
v2 of M . The two states are connected by a transi-
tion v1 →BB(v) v2, where BB(v) is the basic block
associated with node v in G.

2. The set of edges in G are modeled as state transitions.
Therefore, an edge m → n in G represents a state
transition m2 → n1 in M .

These two conditions ensure that the DFAM accepts the
set of all possible complete paths in G.

Ball introduced an intersection graph model for a pair of
CFGsG andG′ corresponding to the original and modified
programs. The intersection graph also has an interpretation
in terms of a DFA. Ball’s RTS technique is based on reach-
ability of edges in the intersection graphs. The technique
uses edge coverage criterion as the basis for RTS analysis.

3.4.4 Critical Evaluation

The RTS techniques proposed in [80, 5, 54] are safe.
Among the three techniques, the cluster identification tech-
nique is comparatively more imprecise because the test
cases are selected based on whether they execute a clus-
ter rather than the actually affected statements. The time
complexity of the cluster identification technique [54] is
bounded by the time required to compute the control scope
of decision statements and is dependent on the input pro-
gram size [79]. The techniques proposed in [80, 5] are
the two most precise procedural RTS techniques. How-
ever, Ball’s DFA-based approach is computationally more
expensive than [80].

Ball has proposed another RTS technique [5] which uses
path coverage criterion and is still more precise than the
edge-coverage criterion proposed in [5]. The higher preci-
sion is attributable to the fact that path coverage is stronger
than an edge coverage criterion. This increase in precision
is however accompanied by an increase in the computation
effort. Additionally, it cannot analyze control flows across

300 Informatica 35 (2011) 289–321 S. Biswas et al.

Class of RTS Tech-
niques

References Key Features Merits Demerits

Dataflow analysis-based
techniques

[37, 43, 44, 92] Based on dataflow and structural
coverage criteria

Can analyze both intra- and inter-
procedural modifications provided the
modifications alter some def-use rela-
tions

Low on safety, imprecise

Slicing-based techniques [7, 10, 2] Based on slicing of programs or
dependence graph models

Can analyze both intra- and inter-
procedural modifications

Low on safety, imprecise, com-
putationally more expensive
than dataflow techniques

Module level firewall-
based techniques

[56, 58] Based on analyzing dependen-
cies among modules

Comparatively more efficient as anal-
ysis of source code is limited to only
modified modules

Low on safety, and highly im-
precise

Modified code entity-
based technique

[17] Level of granularity can be
adapted

Safe, and most efficient procedural
RTS technique

Highly imprecise

Textual differencing-
based technique

[97, 98, 30] Based on textual differencing of
C programs

Safe, and comparatively easy to imple-
ment a prototype

Imprecise, and difficult to adapt
to other languages, maybe inef-
ficient for large programs

Graph walk-based tech-
nique

[80] Based on analysis of control
flow models

Safe and most precise procedural RTS
technique

Less efficient than [17, 56, 58]

Table 1: A comparison of RTS techniques for procedural programs.

procedures and hence cannot be applied for RTS of inter-
procedural code modifications.

An important difference between graph walk and slicing-
based techniques is that the latter uses dependence relation-
ships to analyze the source code and identify the affected
regions in the source code. Regression test selection is per-
formed by monitoring the execution of the sliced region of
code on T . On the other hand, the graph walk techniques
use comparison of graph models of the program to identify
the modifications [76, 80].

Table 1 summarizes the merits and demerits of the pro-
cedural RTS techniques discussed in Section 3. In column
3, we highlight the key features of each class of techniques,
and summarize the merits and demerits in columns 4 and
5.

4 RTS Techniques for
Object-Oriented Programs

The object-oriented paradigm is founded on several impor-
tant concepts such as encapsulation, inheritance, polymor-
phism, dynamic binding, etc. These concepts lead to com-
plex relationships among various program elements, and
make dependency analysis more difficult [104]. Moreover,
in object-oriented development, reuse of existing libraries,
class definitions, program executables (blackbox compo-
nents), etc. are emphasized to facilitate faster development
of applications. These libraries and components frequently
undergo independent modifications to fix bugs and enhance
functionalities. This creates a new dimension in regression
testing of object-oriented programs that use these third-
party components or libraries, since the source code for
such libraries are often not available. These features, there-
fore, raise challenging questions on how to effectively se-
lect regression test cases that are safe for such programs
[9, 68].

The reported RTS techniques for object-oriented pro-
grams can broadly be classified into the following three
major categories:

1. Firewall-based techniques [53, 47, 1, 48]

(a) Class firewall technique [53]
(b) Method level firewall technique [48]

2. Program model-based techniques [77, 82, 41, 73]
3. Design model-based techniques [4, 27, 69, 33, 14]

In the following, we briefly review the different classes
of RTS techniques that have been proposed for object-
oriented programs.

4.1 Firewall-Based Techniques
Firewall-based RTS techniques for object-oriented pro-
grams have been proposed by Kung et al. [53], Hsia et al.
[47], Abdullah and White [1] and Jang et al. [48]. These
techniques are based on the concept of a firewall defined
originally by Leung and White [58] for procedural pro-
grams. The firewall techniques aim to identify the affected
classes for the modified version of the software. A firewall
can be defined as the set of all the affected classes that need
to be retested. These techniques select all test cases which
exercise at least one class from within the firewall.

4.1.1 Kung’s Class Firewall Technique

Kung et al. [53] have proposed a firewall-based RTS tech-
nique for C++ programs. They have proposed the follow-
ing three models to represent dependencies between vari-
ous elements of a C++ program: Object Relation Diagram
(ORD), Block Branch Diagram (BBD), and Object State
Diagram (OSD). An ORD is a digraph that represents in-
heritance, aggregation and association relations, and cap-
tures the static dependencies between classes. An edge in

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 301

an ORD is annotated with the type of relationship (inheri-
tance, association, aggregation) that exists between the end
nodes associated with that edge. A BBD represents the in-
terface and the control structure of a method of a class, and
the relationship of a class with the other classes in the pro-
gram. An OSD is designed to capture the dynamic behavior
of a class.

Changes to data items, methods and class definitions of
the original program (if any) are identified by analyzing the
three models corresponding to P and P ′. The technique
of Kung et al. [53] instruments P to collect information
about which classes are exercised by which test cases. A
class is potentially affected by a change to another class
if it is either directly or indirectly related to the changed
class through inheritance, aggregation or association rela-
tionships. The firewall for a class C is computed as the
set of classes that are directly or transitively dependent on
C (by virtue of relations such as inheritance, aggregation
or association) as described in an ORD. When a class C is
modified, the technique selects all the test cases that exer-
cise one or more classes within the firewall for C.

Figure 10 shows an example ORD (along with test cases)
adapted from [90]. In the figure, a solid arrow from one
class to another indicates that the two classes are related by
inheritance, aggregation or association relationships. The
boundary (denoted by the dashed line) around the classes
A, B, C and D depicts the firewall computed for class D.
Whenever the classD is modified, classes A, B and C also
need to be regression tested for they belong to the set of
classes which constitute the firewall for class D. In Figure
10, a solid line from a test case to a class indicates that
the test case is used to test the class (e.g., test case TC1 is
used to validate classes D and F). Thus according to the
firewall technique, only test cases TC1 and TC2 should be
executed again after classD is modified since they exercise
those classes within the firewall for D.

B

A��D

C

G

H

F

E

TC2

TC3

TC1

TC4

Figure 10: An example ORD and the firewall for class D.

4.1.2 Method-level Firewall Technique

Jang et al. [48] have proposed a change impact analysis
approach to select regression test cases for C++ programs.
While a class and a statement are considered as the units of
testing in [53] and [77], the technique reported in [48] con-

siders a method as the unit of retesting and aims to iden-
tify all affected methods. The authors have identified cer-
tain common types of modifications that are possible for
a C++ program, and a method-level firewall is constructed
for each modification to identify the impact of the changes.

4.1.3 Critical Evaluation

Firewall techniques are not safe because these techniques
do not select test cases which may execute the affected
modules from outside the firewall. These techniques are
also imprecise since all test cases that execute a class in
the firewall do not necessarily execute the affected parts of
the code. For example, suppose that a class C is modi-
fied. Let another class D contain two methods D::foo()
and D::bar(), of which the method D::foo() invokes
the services provided by class C. Then, by the approach
described in [53], class D is included in the firewall com-
puted for C. Therefore, any test case which exercises D is
included in the regression test suite. However, there might
be test cases which exercise only the method D::bar()
and hence could have been omitted from the regression test
suite. The firewall-based approaches are however computa-
tionally more efficient and are preferred for RTS analysis of
large programs. Moreover, the technique proposed in [48]
is more efficient than [53] since this method aims to achieve
a balance between the efficiency of class firewall-based
technique [53], and the precision of more fine-grained ap-
proaches like [77].

4.2 Program Model-Based Techniques
In the following, we discuss different RTS techniques [77,
73, 82, 41, 65] that have been proposed for object-oriented
programs and are based on an analysis of program models
for selecting regression test cases.

4.2.1 Technique Based on Class Dependence Graphs

Rothermel and Harrold were one of the earliest to propose
an RTS technique for object-oriented programs [77]. They
have divided the problem of RTS for object-oriented pro-
grams into two parts: RTS of the application program, and
RTS of the modified or derived classes. For RTS of the ap-
plication program, the technique models the original pro-
gram P and the modified program P ′ using IPDG models.
However, it is difficult to use an IPDG for RTS of modi-
fied and derived classes because an IPDG models programs
having a single entry point whereas a class can have multi-
ple entry points. This problem can be overcome by treating
the test routines as application programs and then applying
the approach for RTS of application programs. However,
this approach incurs a large overhead because it may be
necessary to construct and traverse a PDG for each method
of a class several times. Therefore, the original and the
modified programs are modeled as ClDGs for RTS of mod-
ified and derived classes. The test coverage information is
used to associate the predicate and statement nodes of the

302 Informatica 35 (2011) 289–321 S. Biswas et al.

ClDG models with each test case. Then, a technique simi-
lar to [80] is used to select regression test cases.

4.2.2 Technique Based on Extended Control Flow for
C++

Rothermel et al. [82] have proposed an approach for RTS
of C++ programs based on an analysis of the control flow
representations of the original and the modified programs
by extending the technique proposed in [80]. Since a
CFG represents the control flow information of only a sin-
gle method, the concepts of Inter-procedural Control Flow
Graph (ICFG) and Class Control Flow Graph (CCFG) have
been introduced to represent control flow of multi-function
programs and object-oriented programs respectively. An
ICFG for program P is composed of CFGs for each
method in P . Each call site in P is represented by a pair of
nodes called call and return nodes [82]. Each call node is
connected to the entry node of the called method by a call
edge, and each exit node is connected to the return node
of the calling method by a return edge. An ICFG is used
to model programs having a single entry point, whereas a
class can have multiple entry points [82]. A CCFG is used
to model classes, and consists of individual CFGs for all
methods of a class. Given the graph models for the original
and the modified programs, the RTS algorithm [82] extends
the graph walk-based approach [80] to traverse the models
and select relevant regression test cases.

4.2.3 Technique Based on Extended Control Flow for
Java

Harrold et al. were the first to develop a safe RTS tech-
nique [41] for Java programs based on control flow analy-
sis. Their technique is an adaptation of the graph walk tech-
niques proposed in [80, 82], and can handle various object-
oriented features such as inheritance, polymorphism, dy-
namic binding and exception handling. Their method con-
sists of three steps: constructing intermediate representa-
tions for the source programs, analyzing the graphs and de-
termining the set of dangerous edges, and test case selec-
tion. Harrold et al. use a JIG representation for modeling
Java programs.

The two JIGs constructed for the original and the modi-
fied programs are simultaneously traversed (depth-first) to
identify dangerous edges. Finally, based on the test cov-
erage information obtained through code instrumentation,
the technique selects test cases that exercise the dangerous
edges identified during graph traversal.

4.2.4 Partition-Based Techniques

Partition-based techniques are motivated by the need to
combine the effectiveness of precise but expensive RTS
techniques with techniques that work at a higher-level of
abstraction and are relatively imprecise.

Partition-Based RTS Technique for Java Programs:
Orso et al. have presented a novel two-phase partitioning
approach for RTS of large Java programs [73]. Their tech-
nique works in two phases, called partitioning and selec-
tion. In the partitioning phase, the original and the modified
programs are modeled as Interclass Relation Graphs (IRG)
[73]. The two IRGs are analyzed to identify hierarchical,
aggregation, and use relationships among classes and inter-
faces. Then, the set of classes and interfaces that have been
changed are identified. The partition phase analyzes syn-
tactical changes at the statement level and the declaration
level. A change at the statement level consists of addition,
deletion or modification of program statements. A decla-
ration level change means modifications in the declaration
of the type of a variable, addition or deletion of a method,
change in the modifier list of an existing method, etc. The
class dependency information along with the changes is
used to identify at an abstract level the affected parts of the
code. The set of affected classes and interfaces identified
from the first phase constitutes a partition of the program.

In the selection phase, a more detailed analysis of the
partitions are carried out. The selection phase builds JIG
models representing the modified regions of code from the
partitions. The JIG models are then analyzed using the RTS
technique proposed by Harrold and Rothermel in [80]. An
edge-level test selection criterion is used to select test cases
which execute the affected parts of code.

Partition-Based RTS Technique for C# Programs:
Mansour and Statieh [65] have proposed a two phase RTS
technique targeted for the C# programs. Their RTS tech-
nique first constructs an Affected Class Diagram (ACD)
based on the changes made to the modified program. An
ACD represents modifications made at the level of a class,
an interface, web or window services, and COM+ compo-
nents. Their technique then uses a test coverage criterion
based on the ACD to select a subset of test cases. An ACD
models a program at a high level of abstraction. A more de-
tailed analysis is then carried out by modeling the programs
using C# Interclass Graphs (CIG). A C# Interclass Graph
(CIG) is a control flow graph that captures all the affected
methods in an ACD. The technique constructs CIG models
for the original and the modified programs, and regression
test cases are selected based on the graph walk techniques
[41, 82].

4.2.5 Critical Evaluation

The program model-based object-oriented RTS techniques
[77, 82] are safe and are more precise as compared to the
firewall-based techniques [53, 47, 1, 48], but are less ef-
ficient. This is because of the high overhead incurred in
inter-procedural dependence analysis for large software.
The ClDG model-based technique is also less efficient than
the technique proposed in [82] since it is based on an analy-
sis of dependence graphs while the analysis in [82] is based
on control flow relationships. Both the techniques reported

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 303

in [82, 77] do not consider several other common features
of object-oriented programs such as exception handling.
These techniques [82, 77] can also be imprecise when test-
ing affected polymorphic calls [41].

The techniques proposed in [41, 73] are safe RTS tech-
niques for Java software, and are able to handle important
object-oriented features of Java such as polymorphism, dy-
namic binding and exceptions. These techniques use a dif-
ferent method for capturing polymorphism than [82] which
leads to a more precise selection of regression test cases.
The two phase partition-based RTS technique proposed for
Java programs [73] is comparatively more efficient than
[41] because the analysis of the affected parts of the pro-
gram is divided across two phases - a coarse-grained first
phase and a more fine-grained second phase. This two-
phased approach helps to limit the extent of code for which
a minute low-level analysis is required.

Although the class firewall based technique [53] does
not consider certain object-oriented features such as ex-
ceptions, the technique can still be extended for selecting
regression test cases for a subset of the Java program fea-
tures. The advantages of the firewall techniques are that
they are comparatively more efficient than the program
model-based techniques [41, 73], and can be applied for
RTS of large programs. However as already discussed, the
firewall techniques are unsafe and are relatively less precise
than the techniques reported in [41, 73].

Mansour and Statieh’s RTS technique [65] is a safe RTS
technique tailored for C# programs. But the technique can
be computationally expensive for large programs since the
complexity of the algorithm is quadratic in the number of
the CIG nodes.

4.3 Design Model-Based Techniques

Model-based testing of software has become very pop-
ular with the advent of the model-driven development
paradigm. In the model-driven development (MDD)
paradigm, a design model is usually refined to obtain the
code. The widespread use of CASE tools for object-
oriented system development ensures a close correspon-
dence between a design model and its code. Hence, design
models can effectively be used for RTS analysis of object-
oriented programs [15].

Unified Modeling Language (UML) [12] is an ISO stan-
dard for representing analysis and design models of object-
oriented programs. The following are some important ad-
vantages of UML-based regression testing [26]:

– Traceability - It is easier to maintain traceability be-
tween the design artifacts and the test cases than main-
taining traceability between code and the test cases. It
is also easier to identify changes between across dif-
ferent versions of design artifacts as compared to ana-
lyzing changes across code versions [15, 14].

– Scalability - Code-based regression testing becomes
very expensive when applied to large programs. A

model being a simplified representation of a code,
model-based testing is comparatively more efficient.

– Language independence - Different parts of a software
may be developed using different programming lan-
guages. It, therefore, is difficult to design and im-
plement an RTS technique which can take into ac-
count parts developed using different programming
languages during test case selection. A UML model-
based RTS technique helps to overcome this short-
coming since it is independent of the implementation
[14].

We now briefly discuss few UML model-based RTS
techniques [4, 27, 33, 14, 69] that have been proposed in
the literature.

4.3.1 RTS Based on Class and Sequence Models

Ali et al. have proposed an RTS technique based on anal-
ysis of UML class and sequence diagrams [4]. Their tech-
nique analyzes class and sequence diagrams at the level of
class attributes and operations. Concurrency in sequence
diagrams is captured by the use of asynchronous messages
and parallel instructions which cannot be adequately repre-
sented by traditional CFG models [32]. Therefore, an ex-
tended control flow model called Concurrent Control Flow
Graph (CCFG) has been introduced in [32]. Ali et al. ex-
tends the model-based control flow analysis proposed by
Garousi et al. in [32] for regression testing based on UML
design models by also including information available from
class diagrams. A CCFG model is constructed for each se-
quence diagram. To model a sequence diagram invoking
other sequence diagrams, the corresponding CCFGs are
connected using control flow edges. The sequence and the
corresponding class diagrams are analyzed and an extended
concurrent control flow graph (ECCFG) is constructed to
model the program. The information about which attributes
of a class receive messages in a sequence diagram are de-
rived from the corresponding class diagrams, and are rep-
resented in the ECCFG. The pre- and post-conditions of
a method are also represented in an ECCFG by introduc-
ing new nodes. The ECCFG models for the original and
the modified version of the application are then analyzed
to find out the changes between program versions. This
information is used to select regression test cases.

4.3.2 RTS Based on Class and State Machine
Diagrams

Farooq et al. [27, 28] have presented a model-based RTS
technique that uses information from UML 2.1 behavioral
state machine and the structural class diagrams for test
selection analysis. During software development, UML
documents such as state machine and class diagrams de-
scribing the design and working of the software often un-
dergo several modifications. The modifications made to
one document may also affect other parts of the software.

304 Informatica 35 (2011) 289–321 S. Biswas et al.

Their proposed approach uses information from the mod-
ified class and state diagrams to find out the directly and
indirectly affected elements of the model. For example, a
state transition is considered to be affected if it uses any
changed attribute or method of the corresponding class in
its events, guard conditions, or actions. Those test cases
that cover the modified transitions during execution are
classified as retestable test cases.

4.3.3 RTS Based on Control Flow Analysis of
Sequence Diagrams

Naslavsky and Richardson have proposed an RTS approach
[69] based on control flow analysis of UML sequence dia-
grams for a MDD environment. The technique involves a
model-based transformation from a sequence diagram to a
CFG. The traceability between test cases and the sequence
diagrams is used to determine which CFG elements are ex-
ecuted by each test case. The two CFGs corresponding to
P and P ′ are then analyzed to find out the affected model
elements, and the traceability information is used to select
relevant regression test cases.

4.3.4 RTS Based on Use Case Diagrams

Gorthi et al. have proposed an RTS technique [33] based on
UML use case diagrams. Their approach uses the concept
of behavioral slicing which decomposes use cases into user
actions followed by some computations and the output. Be-
havioral slicing helps in identifying changes made to the
activity diagrams. Each node in an activity diagram is also
assigned a criticality value to help increase the effective-
ness of the selected test cases. Whenever the requirements
are modified, the activity diagrams are also modified to re-
flect the changes to the system. The models for the original
and the modified specifications are then analyzed to find
out the affected paths in the diagram. The paths in the dia-
gram that have one or more modified nodes are considered
to be affected and the test cases which execute the affected
paths are selected for regression testing.

4.3.5 RTS Based on UML Architectural and Design
Models

Briand et al. have proposed an RTS approach based on
analysis of UML design models [14]. Their approach as-
sumes full traceability between the design model(s), the
code and the test cases. The traceability between the design
and test cases helps in associating the changes in the design
models to the test cases which need to be executed to ex-
ercise the affected parts in design. Their approach involves
analysis of use case, class and sequence diagrams. Their
technique also assumes that there is a unique sequence di-
agram specifying possible object interactions along with
each use case. The approach assumes that any pre- or post-
conditions among classes are specified using the Object
Constraint Language (OCL). Their analysis classifies test
cases as obsolete, retestable and reusable test cases.

4.3.6 Critical Evaluation

In the following, we present a comparative evaluation of
the UML-based RTS techniques that we discussed in sub-
section 4.3. The RTS evaluation framework proposed by
Rothermel and Harrold [79] were originally for code-based
techniques, and hence cannot be used in a straightforward
manner to evaluate UML-based RTS techniques. For ex-
ample, in the context of a UML-based RTS technique, a
test case is modification-traversing iff it triggers a changed
UML model element (e.g., messages for UML sequence
diagrams).

The techniques proposed in [27, 28, 14] are safe with
respect to the changes possible to the UML artifacts. An
advantage of RTS based on analysis at a higher level of ab-
straction is improved efficiency as compared to code-based
techniques. However, RTS based on UML design models
are not as precise when compared to detailed code analysis-
based techniques [26].

UML model-based RTS techniques require a close corre-
spondence between the requirement artifacts, design mod-
els, code and the test cases, which may not always be pos-
sible in practice. Therefore, the applicability of these tech-
niques is limited to a MDD environment.

4.4 Specification-Based RTS Techniques
In the industry, a practical difficulty in RTS is that the
testers may not have access to the design models or the ac-
tual source code. In such scenarios, model-based or code-
based analysis is not possible. This is especially true for
COTS applications. Also, it is difficult to apply program
analysis techniques and tools for many legacy software
which have been developed using older programming lan-
guages (e.g., COBOL) for which there is a dearth of effec-
tive program analysis techniques [18]. Code-based tech-
niques may also suffer from problems of scalability [16].
These limitations have motivated researchers to develop
RTS techniques [18, 16] based on specifications which are
usually available to the testers. In this context, it should
be noted that although we have classified these techniques
as a subtype of object-oriented RTS techniques, these tech-
niques can be extended to a wider variety of programming
paradigms such as component-based software.

4.4.1 Activity Diagram-Based Selection

Chen et al. have proposed a specification-based RTS tech-
nique [16] which uses UML activity diagrams for model-
ing the potentially affected requirements and system behav-
ior. They have also classified the regression test cases that
are to be selected into target and safety test cases. Target
test cases are those that exercise the affected requirements,
while safety test cases help achieve a pre-defined coverage
target. The steps involved in selecting target test cases are
as follows: A traceability matrix is created to capture the
association between requirements and the test cases, i.e.,
which test cases exercise a particular requirement. The

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 305

Class of RTS Tech-
niques

References Key Features Merits Demerits

Firewall-based techniques [53, 1, 48, 47] Analyzes dependencies among mod-
ules

Computationally efficient Unsafe and imprecise, need to be
extended to handle certain object-
oriented features such as excep-
tions

Program model-based
techniques

[77] Analysis is based on dependencies
among class elements

Safe, and more precise than
firewall-based techniques, is appli-
cable for RTS of both modified
classes, and classes derived from
the modified classes, and applica-
tion programs

Computationally more expensive
than the firewall techniques

[82] Based on analysis of control flow
models

Safe RTS technique for C++ pro-
grams, more efficient than [77]

Does not consider some common
object-oriented constructs like ex-
ception handling, can be imprecise

[41, 73] Based on analysis of control flow
models, two-phased technique [73]

Safe and precise RTS techniques
for Java programs, two-phased
technique is more computationally
more efficient than [41]

Expensive for large programs with
small changes because of fine-
grained analysis

Design model-based tech-
niques

[69, 4, 14, 27,
33]

Based on analysis of different UML
design models (e.g, sequence, activ-
ity, use case diagrams), assumes that
a traceability exists between the de-
sign models, the source code, and the
test cases, suited to model-driven de-
velopment environments

More efficient than program
model-based approaches, suited
for RTS of large programs,
analysis is at a higher level of
abstraction, and is independent of
the implementation

Not safe, comparatively less pre-
cise than program model-based
RTS techniques

Specification-based tech-
niques

[18, 16] Based on analysis of requirement
models, assumes complete traceabil-
ity from the specifications to test
cases

More efficient than program
model-based approaches, can
be applied to systems with
large test suites, techniques are
platform-independent can be
easily extended to a wide class of
programs

Not safe, comparatively less pre-
cise than program model-based
RTS techniques

Table 2: A comparison of RTS techniques for object-oriented programs.

modifications that are made to the original program P can
result in a change of specification, or can be changes which
are limited only to the code. In case when the changes are
limited only to the code, the elements (nodes and edges)
which are affected in the relevant activity diagrams are
identified. Chen et al. have extended the RTS technique
proposed in [82] to handle those modifications which lead
to changes in the specifications also. Safety test cases are
selected with an aim to mitigate risks. The idea is to more
thoroughly test those parts of the code for which the proba-
bility of a fault being present and its cost (i.e., consequence
of impact) is high [16].

4.4.2 Requirement Coverage Matrix-based Approach

Chittimalli and Harrold [18] have proposed a specification-
based RTS approach. Their technique is essentially based
on tracking which specifications are being tested by which
test case from T . This information is represented as a re-
quirement coverage matrix between the set of requirements
and the test cases. The technique proposed in [73] has been
used to identify the affected parts of the code, and sub-
sequently the set of requirements that are affected due to
changes are also identified. These are termed as affected
requirements. The information from the requirement cov-
erage matrix is used to select the test cases which exercise
the affected requirements.

4.4.3 Critical Evaluation

The specification-based approaches are efficient as they do
not depend on any static analysis of the source code. For
the technique proposed in [18], the safety and precision of
the approach is largely dependent on the quality and ac-
curacy of the requirement coverage matrix. However, the
safety of the approach is compromised by fact that depen-
dence relationships existing among program elements can-
not be completely and accurately captured by the require-
ment coverage matrix. Moreover, often in practical situa-
tions, code changes may be too trivial to affect the require-
ments, and the requirement coverage matrix may also be
out of date.

We summarize the merits and demerits of the different
RTS techniques applicable for object-oriented programs in
Table 2. In column 3, we highlight the key features of each
class of techniques, and summarize the merits and demerits
in columns 4 and 5.

5 RTS Techniques for
Component-Based Software

In the component-based software development model, a
software product is developed by integrating different com-
ponents developed either in-house or by third-party ven-
dors. The reliability of a component-based software ap-

306 Informatica 35 (2011) 289–321 S. Biswas et al.

plication, to a large extent, depends on the reliability of
the individual components. These blackbox components
are often modified by the concerned vendor to fix bugs
and incorporate enhancements. Hence, regression testing
of component-based software needs to address how the
changes made to a component might affect the execution
of application programs which use those modified compo-
nents. Techniques which perform RTS of traditional pro-
grams cannot meaningfully be used for RTS of software
using COTS (Commercial Off-The-Self) components be-
cause the code for the components are usually not avail-
able. RTS for component-based software is a challenging
research problem due to the following reasons [31, 72]:

– In a component-based development environment, of-
ten there is a lack of adequate information about the
changes made to each release of a component. Rel-
evant information such as control and data flow rela-
tionships among the modules are usually not supplied
to the application programmer. Moreover, there is also
a lack of adequate documentation for third-party com-
ponents.

– A change made to a component may be reflected both
at the component level and at the system level func-
tioning of the software. Even trivial changes made
to a component in a system may at times affect the
proper working of the software as a whole.

– There is a lack of test tools which can be used to iden-
tify changes in a component and its impact on the soft-
ware.

Depending on the type of program analysis, we classify
the RTS techniques [72, 66, 67, 87, 31, 74, 115, 117, 116,
107] proposed for component-based software into the fol-
lowing classes:

1. Metacontent-based RTS approaches

(a) Code coverage-based approach [72]
(b) Enhanced change information-based approaches

[66, 67]

2. Model-based techniques

(a) UML model-based techniques [87, 107]
(b) Component model-based technique [31]
(c) Dynamic behavior and impact analysis using

models [74]

3. Analysis of executable code [115, 116, 117]

In the following, we review a few prominent RTS tech-
niques reported for component-based software.

5.1 Metacontent-Based RTS Approaches
The difficulty of inadequate information exchange between
the component user (c-user) and the component developer
(c-developer) during component-based software develop-
ment can be overcome by sharing relevant component in-
formation required for RTS analysis. Orso et al. [71] have

proposed the concept of content change information, called
component metacontent, as a means of sharing information
about the changes that a component undergoes across dif-
ferent versions. Different RTS techniques may define their
own sets of required metacontents that need to be shared by
the c-developers. Some examples of the type of informa-
tion that are shared as metacontents range from the compo-
nent version to more detailed like the coverage information
of a particular test suite on the concerned component.

In the following, we discuss the different metacontent-
based RTS techniques [72, 66, 67] reported in the literature.

5.1.1 Code Coverage-Based Approach

The code coverage-based RTS technique for component-
based software was proposed by Orso et al. [72] and is
based on existing procedural RTS techniques [17, 80, 81].

In case the c-users are unaware of the components that
have undergone a change, then during RTS for the applica-
tion code, any test case in which a method of the modified
components is called is selected for regression testing. This
can lead to selection of test cases unrelated to the specific
change. A more precise selection of test cases can be made
with information about the modifications made to the com-
ponents. To enable a more precise selection of regression
test cases, the technique [72] assumes the availability of the
following metacontent information:

– Coverage information of the initial test suite on the
component.

– Component version.
– Set of control flow edges affected due to the modifica-

tions to the component.

The c-developer supplies this information in the form of
metadata and metamethods during the release of the modi-
fied component. The coverage information is based on the
CFG edges traversed during execution of a test case. Based
on the coverage information, test cases which execute the
affected edges of the CFG are selected for regression test-
ing according to the graph walk technique proposed by
Rothermel and Harrold [80] .

5.1.2 Enhanced Change Information-Based
Approaches

Mao et al. have observed [66] that the applicability of the
technique suggested by Orso et al. [71, 72] is restricted due
the fact that it requires a very detailed metacontent informa-
tion to be provided by the c-developer. They have proposed
RTS approaches [66, 67] which emphasize the availability
of specific data from the c-developers to the c-users.

Change Information-Based Approach: A component
provides services when invoked through its published
APIs. Information is exchanged between components and
the application program by means of the parameters of the
published APIs, and the component variables which can
directly be accessed from the application program (called

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 307

published variables or PVs). Keeping this in view, the
approach suggested by Mao and Lu [66] aims to identify
changes at the method level for the modified components
(to be performed by the c-developers). Invocation of meth-
ods within each component is modeled by constructing a
Labeled Method Call Graph (LMCG) for each component.
An LMCG for a component C is defined as LMCG(C) =
(V, E), where V represents the set of methods in the com-
ponent (both published APIs and internal methods), and
E represents the call relations among different methods of
the component along with the pre-conditions required for
a successful invocation. The enhanced change information
(ECI) consists of the set of published APIs and the pre-
conditions for invoking each published API. The ECI for
the modified program statements in a component can be
computed as follows: Suppose a certain method A invokes
a methodB in some componentC. Then, the pre-condition
for the method A invoking method B can be found out by
analyzing LMCG(C).

The ECI for the modified components are supplied to the
c-users as files in a standard format (such as XML) along
with the executable of the updated component. The c-users
need to instrument the application source code to find out
the values of the PVs and the parameters that are passed
to each published API that is present in the ECI. For each
test case, if the recorded values of the input parameters and
the PVs satisfy the pre-condition for that published API,
then the test case is selected for retesting the application
integrated with the modified component.

Built-in Test Script-Based Approach: An RTS technique
for component-based software using another level of in-
formation interchange between c-users and c-developers
has been reported in [67]. This approach is motivated by
the fact that it is only the c-developers who have detailed
knowledge of the working of a component and the mod-
ifications effected to each of its versions. This technique
proposes that the c-developers place test scripts in the com-
ponent source code during modifications. The purpose of
these test scripts is to gather information about the exe-
cution pattern of the component during execution of the
test cases. This information helps to identify the test cases
which cover the modified statements of the component.

A Method Call Graph (MCG) for a component C is de-
fined as MCG(C) = (V,E), where V represents the set
of methods in the component (both published APIs and in-
ternal methods), and E represents call relations among the
different methods in the component. The component APIs
affected due to modifications to a component C are identi-
fied by the c-developers by analyzing the relationships be-
tween component methods using MCG(C). Test functions
for the affected methods are designed by the c-developers
and are also published so as to facilitate selection of test
cases by the c-users. The execution information gathered
on invoking the test methods are used by the c-users to se-
lect test cases which execute the affected component meth-
ods.

5.1.3 Critical Evaluation

The metacontents-based approach [72] selects regression
test cases by performing control flow analysis at the
statement-level, and hence can be expensive for large pro-
grams. This problem can be overcome by using a coarser
granularity during RTS analysis (method or class level)
[66, 67]. The metacontent information in this case should
be provided at the method or class levels.

5.2 Model-Based RTS Techniques
Model-based RTS techniques proposed for component-
based software products are essentially refinements to
model-based RTS techniques proposed for procedural and
object-oriented programs. In the following, we briefly dis-
cuss a few model-based RTS techniques [87, 107, 31, 74]
proposed for component-based software.

5.2.1 UML Model-Based RTS Techniques

Sajeev and Wibowo have proposed an RTS technique [87]
for component-based software using UML and OCL mod-
els. Their technique assumes that the functionalities pro-
vided by the modified component is a superset of the func-
tionalities provided by the original component, i.e., the new
component version may include bug fixes and optimiza-
tions of the existing functionalities along with new func-
tionalities that have been introduced. While UML is used to
model the function call relations across components, OCL
is used to represent the change information across compo-
nent versions. The sequence of methods that are invoked by
each test case is also tracked. All those test cases which ei-
ther execute a directly modified method or a method which
in turn invokes a directly or indirectly modified method are
selected for regression testing.

Wu and Offutt have proposed another UML model-based
RTS technique [107] for component-based software. In this
technique, collaboration and sequence diagrams are used to
analyze the control flow behavior of a component and how
objects interact with each other through message descrip-
tion. The changes made to a modified component version
will be reflected in a collaboration diagram as a change to
a class method, or a change in the interaction sequences.
The statechart diagrams are used to analyze the internal
behavior of objects of a component. The class diagrams
are used to identify the affected classes when the defini-
tion of one class is modified. For each modification in the
collaboration diagram, the affected parts of the component
are identified using control and data dependency analysis
on the collaboration and the corresponding statechart dia-
grams. The test cases executing the affected parts are se-
lected for regression testing.

5.2.2 Component Model-Based Technique

Gao et al. [31] have introduced several new models such as
the Component Function Access Graph (CFAG), the Dy-

308 Informatica 35 (2011) 289–321 S. Biswas et al.

Class of RTS Tech-
niques

References Key Features Merits Demerits

Metacontent-based ap-
proaches

[72, 66, 67] Assumes availability of metacontent
information for RTS analysis

Metacontent information can
be easily prepared, exchange of
change information is simpler in
[66, 67] than [72]

Emphasizes mutual collaboration
between c-users and c-developers,
control flow-based analysis in [72]
may be expensive for large pro-
grams

Model-based [87, 31, 74, 107] Based on analysis of component mod-
els, models are passed as metadata

Computationally more efficient
than the metacontent-based ap-
proaches

Proposed techniques are not
safe and are less precise than
metacontent-based approaches

Executable analysis-based [115, 117, 116] Novel approach based on reverse en-
gineering the component binaries

Minimum dependence on the c-
developers

Can be imprecise as selection anal-
ysis is at the function level, diffi-
cult to precisely identify changes
among binaries

Table 3: A comparison of RTS techniques for component-based software.

namic CFAG (DCFAG), the Function Dependency Graph
(FDG) and the Data-and-Function Dependency Graph
(DFDG) to represent component API-based information at
the system level. A CFAG models the static function call re-
lationship of the component APIs, i.e., function calls from
the application code to the component APIs. Each node in a
CFAG represents a component API. An edge ei = (fi, fj)
between two nodes (i.e., methods) fi and fj denotes that
the second method is invoked after the first method. A
DCFAG model provides a dynamic view of the function
call sequences during the execution of a particular test case.
Therefore, there can be many DCFAGs possible for a com-
ponentC and a component APIAi. An FDG model is used
to represent invocation dependencies between two func-
tions in a component. A DFDG model is used to represent
the define and use relationships among functions and vari-
ables. The technique [31] assumes that these models are
supplied as metadata with new component releases.

For RTS analysis, the c-users require information about
the modifications made to the component APIs. Changes to
a component API are possible due to many reasons, such
as modification to a function prototype, addition/deletion
of parameters to a function, etc. These changes can be
identified by comparing the revised component API spec-
ifications with the older version. However, there may be
other dependency relations (control and data) which may
indirectly affect APIs which are not themselves modified.
These indirectly affected APIs are identified by analyzing
the FDGs (for functions) and the DFDGs (for data vari-
ables).

Gao et al. have extended the firewall approach [53, 58]
to identify the impact of component modifications on the
other elements of the component (functions and variables).
New types of firewalls are introduced to compute the set
of affected functions due to changes in other APIs, func-
tions or data variables of the component. For each mod-
ified element of a component, the firewall approach helps
to identify the set of directly or indirectly affected compo-
nent APIs. Regression test cases are then selected based on
whether a test case executes the affected component APIs
or not.

5.2.3 Dynamic Behavior and Impact Analysis Using
Models

In [74], Pasala et al. have proposed an RTS technique for
component-based software that analyzes the dynamic be-
havior (e.g., interaction of methods at runtime) of compo-
nents to select test cases. This technique [74] is able to
select regression test cases for components developed in
.NET and Java. The information about the dynamic behav-
ior is captured by executing the initial test suite and track-
ing the sequence of method invocations. These interactions
are modeled as Functional Interaction Graphs (FIG). This
step needs to be run once for every software application that
is to be regression tested. To identify the affected methods
in the newer component versions, the component binaries
are reverse engineered to generate an intermediate code.
The syntactical changes between different components are
identified to track the directly affected methods, and the
changes are then semantically analyzed to determine the
set of indirectly affected methods. Once the complete set
of affected methods are determined, the FIGs are then ana-
lyzed to select test cases relevant for regression testing.

5.2.4 Critical Evaluation

The RTS techniques proposed by Sajeev and Wibowo [87]
and Wu and Offutt [107] are imprecise because these tech-
niques perform RTS analysis at a high level of abstraction
such as classes and methods. These techniques are also
less safe than [31, 74] because they do not involve detailed
dependency analysis at the statement level. However, the
technique proposed by Gao et al. [31] is also not safe as it
does not consider the effect of component modifications on
the software as a whole and limits impact analysis to only
the component level.

5.3 Analysis of Executable Code
Zheng et al. have proposed a family of RTS techniques
[115, 116, 117] based on analysis of the executable code
(binaries such as .dll, .lib) of the modified components.
Their techniques are known as Integrated - Black-box Ap-
proach for Component Change Identification (I-BACCI),

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 309

along with a version number to specify the exact approach.
The I-BACCI technique uses the firewall approach for anal-
ysis of the glue code (application code which integrates the
COTS components [116]). This technique utilizes the fol-
lowing information for RTS analysis:

– Binary files for the original and the modified versions
of all the changed components.

– Glue code.
– Initial test suite developed for the glue code.

This technique involves reverse engineering the executa-
bles to identify the function definitions, code sections, etc.
The extracted source code of the two versions of a com-
ponent are then analyzed to find out the functions which
have been modified between the two versions. Then, func-
tion call graphs (FCG) are constructed based on the iden-
tified function call relationships for the modified compo-
nents. The FCGs are analyzed to find out the functions in
the glue code which call published component functions.
The glue code functions which directly or indirectly invoke
the modified component functions are considered to be af-
fected. The test cases that execute the affected functions in
the glue code are selected for regression testing.

5.3.1 Critical Evaluation

The I-BACCI technique has the minimum dependency on
information required from c-developers. However, an im-
portant limitation of the approaches proposed in [115, 117,
116] is precise identification of the changes between the
component versions by reverse engineering the executa-
bles. For example, during RTS analysis, the technique may
fail to identify and ignore all trivial differences that are in-
troduced in the component executables due to build config-
urations, build and target platforms, etc. These techniques
are also not precise since they do not perform a statement-
level analysis, and affected code elements are identified
at the level of functions. Therefore, there might be glue
code functions which invoke modified published functions
of the component but do not actually execute the modi-
fied program statements in the published function. Test
cases which exercise such glue code functions can in fact
be safely ignored during regression testing.

We summarize the important characteristics of RTS tech-
niques proposed for component-based software in Table
3. The key features, merits and demerits of each RTS
technique as compared to similar techniques proposed for
component-based software have been presented in columns
3, 4 and 5 respectively.

6 RTS Techniques for Database
Applications

A large number of database applications are currently in
use. These applications are usually composed of several

components contributing to an increase in their sophistica-
tion [38]. Database applications also need to be frequently
modified due to different requirements, e.g., change in
components, growing number of users and data, etc. In
this context, regression testing of database applications is
an important activity.

The requirements and challenges in regression test selec-
tion of database applications are different from the classes
of programs that we have discussed so far. Regression test
selection of database applications need to take into account
the following features:

– RTS techniques for other classes of programs implic-
itly assume that the test cases are independent of each
other and can be executed in any order. This assump-
tion is not valid for database applications as the out-
put of a test case may change the database state, in
the process affecting the execution of other test cases.
Therefore, in addition to the global program state, the
states of the database need to considered during RTS
for database applications.

– The state of the database may have to be reset, i.e.,
restore the initial database configuration, many times
during regression testing. Resetting of a database
is acknowledged to be an expensive activity both in
terms of cost and time [38].

– Database languages support features such as struc-
tured queries, integrity constraints, exception han-
dling and table triggers, which complicate impact
analysis of the modified parts of the program. For
example, firing of triggers can create implicit inter-
modular control dependencies [39].

The traditional notions of safety and dependencies can-
not be applied in regression testing of database applications
because those techniques were developed for stateless ap-
plications. In this context, a few RTS techniques have been
proposed for database applications [105, 39]. We briefly
review these techniques in this section.

6.1 Two Phase RTS Technique for
SQL-Based Systems

Haraty et al. [39] have proposed a two-phase technique for
RTS of structured query language (SQL) based database
applications. Apart from traditional control and data de-
pendencies among elements in a database application,
Haraty et al. have identified the following aspects that need
to be considered:

– Dataflow dependencies - Dataflow dependencies can
arise among database modules due to usage of tables
across modules.

– Component dependencies - These arise among differ-
ent database modules due to firing of table triggers,
modifications to tables or views, or due to modifica-
tions to SQL statements. Component dependencies
are transitive in nature.

310 Informatica 35 (2011) 289–321 S. Biswas et al.

– Exception handling - Raising of exceptions can affect
control flow relationships, which need to be taken into
account during RTS analysis.

Haraty et al. have proposed a control flow model of SQL
statements where a node in the CFG represents an SQL
statement. Their modeling technique also represents pos-
sible changes in control flow that arise due to exceptions.
They have identified two types of changes that are possible
in a database application:

1. Code changes - These are possible additions, dele-
tions, and modifications to SQL statements within a
database module.

2. Database component changes - These include changes
to the database component definition itself, e.g.,
changes in the interface.

Their technique determines modifications between the
two versions of the program and identifies potential areas
of the code where the changes can impact. To identify the
set of affected components due to modifications, Haraty
et al. have used the concept of a component firewall. A
database module is considered to be affected and is, there-
fore, included in the component firewall if any one of the
following conditions holds:

– The definition of the module is modified.
– The module is deleted.
– The module is data or control dependent on another

modified or deleted module.
– The module becomes dependent on some other mod-

ule due to modifications.

The first step in constructing the component firewall is
to identify the directly changed modules. Then, the tran-
sitive closure of the directly changed modules is computed
to find the set of all potentially affected database modules.
In the second phase, relevant test cases are selected based
on any one of the two algorithms: one is based on traversal
of CFGs and the other is based on firewalls. The firewall-
based algorithm is based on analyzing the module-level de-
pendencies among database components.

6.1.1 Critical Evaluation

Experimental studies show that the firewall-based RTS may
ignore omitting potential modification-revealing test cases,
and is therefore unsafe [105]. The firewall-based tech-
nique is also imprecise for reasons similar to the firewall
approaches proposed for traditional programs.

6.2 CFG-Based Safe RTS Technique
Willmor and Embury [105] have extended the safe control
flow analysis-based RTS algorithm proposed by Rother-
mel and Harrold [80] for procedural programs to database
applications. RTS based on only definition-use relation-
ships is not safe for database applications. This is because

it is possible for an instruction to write some data to the
database that will later be read by a program statement
that precedes the earlier instruction in some execution path
[105]. Therefore, the authors have introduced the concept
of database dependencies to capture the additional depen-
dencies that arise among elements in a database program.
A statement is called database dependent if the statement
can update the database, and has been modified in P ′ such
it can affect the database state. Statements which are de-
pendent on database dependent statements are considered
affected, and the test cases that execute these statements
are called database-dependent test cases. Based on these
additional dependencies, Willmor and Embury’s technique
selects modification-revealing test cases with respect to the
program state, and database-dependent test cases with re-
spect to the database state.

6.2.1 Critical Evaluation

The technique proposed in [105] is the first safe RTS tech-
nique for database applications. However, the approach can
be imprecise. Consider the case in which a statement that
adds new tuples to a table is modified so that it is capable of
adding only a subset of the tuples that could be added by the
original statement. In such circumstances, no new faults
can be introduced in the modified code due to the change
which cannot already be detected in the original program.
Therefore, those test cases which test code that can poten-
tially be affected by this change need not be selected.

7 RTS Techniques for Web
Applications and Services

Web applications and services are dynamic in nature and
constantly evolve. They are frequently updated and, there-
fore, need to be regression tested to verify the correctness
of the unmodified functionalities. In the following, we dis-
cuss the main features of web applications and services that
need to be taken into account during RTS:

– Web applications are composed of server side ser-
vices, user applications, and middleware. A safe RTS
technique for web applications should consider all
types of dependencies that can arise in the different
layers of the web application under test.

– Web applications and services are inherently dis-
tributed in nature and are loosely-coupled.

– Web services are usually composed of and make use
of other services. Therefore, the dependencies arising
due to a modification to another service also need to
be considered during RTS.

A difference in the nature of composition of component-
based and web applications is that a component-based soft-
ware physically integrates a component. Therefore, it is
up to the component user to upgrade to newer releases

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 311

of the component. However, a web service can be up-
dated as deemed fit by the concerned developer and is not
owned and neither controlled by the application develop-
ers, thereby further complicating RTS of web applications.

Recently, many RTS techniques have been proposed for
web applications [86, 93, 61, 110, 85]. We briefly review
these techniques in this section.

7.1 RTS for Web Applications Based on
Slicing

Xu et al. have proposed an RTS technique for web appli-
cations based on slicing [110]. They assume that web ap-
plications consist of multiple static HTML pages and pro-
grams running on the server side. The types of changes that
an HTML page can undergo can be divided into the follow-
ing basic classes: insertion of a page element (e.g., anchor,
hyperlink, etc.), deletion of a page element, insertion of a
page and deletion of a page. More complex changes are de-
composed into a combination of these basic modifications.
In this context, it needs to be noted that certain kinds of
changes, such as formatting related changes, cannot affect
other web pages. The different HTML pages in an web ap-
plication can be data or hyperlink dependent on each other.
The dependencies that can arise are further divided into di-
rect and indirect dependencies. For example, if a hyper-
link is inserted, then it needs to be checked that the link is
working if the target page is part of the website. Indirect de-
pendencies arising due to definition-usage relationships of
variables are analyzed using traditional techniques. Then,
the slice is computed on the indirect data dependencies on
an extended SDG model of the web application which is to
be regression tested. Test cases that execute the potentially
affected web elements are selected for regression testing.

7.1.1 Critical Evaluation

The details of the slicing technique used for identifying po-
tentially affected web elements have not been provided in
[110]. However, it can be inferred that the technique will
suffer from drawbacks similar to slicing SDGs for proce-
dural programs. The technique is, however, precise in se-
lecting relevant test cases for the types of changes that have
been considered.

7.2 RTS Based on System Models
Tarhini et al. have proposed a safe RTS technique for web
services-based applications [93]. The technique defines
web services as self-contained component-based applica-
tions residing at separate locations and communicating us-
ing XML-encoded messages using SOAP interfaces. The
communication using message exchange may also be time-
constrained. The services provided by a web service are
shared using WSDL specifications.

The authors have modeled a web application in two hier-
archical levels to avoid state explosion. In the first level, the

interaction of the components with the main application is
modeled using a Timed Labeled Transition System (TLTS).
Each node in a TLTS represents a component, and an edge
joining two nodes represents a transition between the two
components. The internal behavior of each component is
modeled in the second level. Each node in the second-level
TLTS represents a state of the component that is being mod-
eled. The authors have proposed an RTS technique which
selects all relevant test cases that test the side-effects of
adding, removing or fixing an operation or a timing con-
straint in an existing component based on an analysis of
the constructed two-level TLTS models. The approach for
selecting relevant regression test cases is as follows: Con-
struct the TLTS for the modified web service; generate test
cases for testing the TLTS model corresponding to the mod-
ified web service; find the difference between the initial test
suite and the generated test suite. The differential set of test
cases are selected for regression testing.

7.2.1 Critical Evaluation

The technique in [93] is safe because it selects every test
case that produces a different behavior in the modified sys-
tem. However, this technique cannot strictly be considered
as a pure RTS technique because the analysis involves gen-
eration of test cases as an intermediate step.

7.3 Control Flow-Based RTS Techniques

Ruth et al. [86, 85] and Lin et al. [61] have proposed safe
RTS techniques for web services based on analysis of con-
trol flow models. We discuss these techniques in the fol-
lowing.

The RTS technique proposed by Ruth et al. [86, 85] is
a gray-box technique since it is difficult to carry out white-
box regression testing for web services because often the
source code for the components may not be available with
the web service developer. It is a gray-box technique be-
cause it does not require the source code of the web ser-
vices. Instead, their approach assumes that the component
web service providers would provide the following infor-
mation as metadata along with a service release: WSDL
specification, a set of test cases, CFGs for the web services,
and test coverage information.

Their technique requires that each procedure in a web
service is modeled as a CFG at the service developer side.
Their technique also assumes that the method calls to other
services are decided statically. The CFGs for all the in-
dividual procedures are then combined to form a global
CFG. When a web service is modified, then a global CFG
is also constructed for the modified web service. Each
node in a CFG stores a hash code of the corresponding
statement. The authors have extended the graph traversal
algorithm proposed in [80] to simultaneously traverse the
global CFGs for the original and the modified programs
and identify the nodes of the graph which are changed. All
control flow edges which can be reached from the modified

312 Informatica 35 (2011) 289–321 S. Biswas et al.

nodes are marked as dangerous. The changes made to the
modified web service can be identified from a difference
in the hash values without requiring analysis of the source
code. The test cases which execute the dangerous edges are
selected for regression testing.

Lin et al. have proposed a safe RTS technique [61] for
Java web services based on code transformation. Their
technique models Java code at the client side and the ser-
vice side as a single combined program. The services and
the interfaces provided by the web service are available
from the WSDL specifications. The technique simulates
message passing between the client application and the web
service through local proxy objects. The merged program
is then modeled as a JIG which has the same structure as
the original application. Once modeling of the original and
the modified web service is complete, the algorithm pro-
posed in [41] is used to select relevant regression test cases.

7.3.1 Critical Evaluation

The control flow-based techniques proposed in [61, 85, 86]
have advantages and disadvantages that are comparable to
the control flow-based RTS techniques proposed for proce-
dural programs. These techniques are safe, and compara-
tively more precise and at the same time less efficient than
the technique proposed in [93]. The technique proposed by
Ruth et al. [86, 85] is also similar to component-based RTS
techniques [72, 66, 67] because it relies on metacontent in-
formation supplied by the web services developers.

8 RTS Techniques for
Aspect-Oriented Programs

Aspect-oriented software development paradigm is an
emerging methodology that aims to modularize software
development by isolating low priority and auxiliary func-
tionalities from the application’s main business logic. In
the traditional programming model, it is up to the pro-
grammer to manage and interleave other auxiliary issues
(called as concerns) into the main application code. Con-
cerns which are spread across multiple modules are called
crosscutting concerns. For example, for a programmer who
is developing a module for a banking software, related is-
sues such as logging, performance, security, authentica-
tion, exception handling, etc. are examples of crosscut-
ting concerns. Aspect-oriented programming (AOP) allows
programmers to relegate these secondary crosscutting con-
cerns to stand-alone modules called aspects. AOP has also
introduced new terminologies such as advice, pointcut, in-
troduction, join points, shadow.

AOP has been adopted for many object-oriented pro-
gramming languages and AOP languages such as AspectJ
has gained considerable popularity among the Java devel-
oper community. Introduction of aspects usually change
the behavior of the original Java program. Therefore, As-
pectJ programs also need to be thoroughly regression tested

after some modifications. In this section we discuss the
proposed RTS techniques for AspectJ programs [114, 109]
since AspectJ is the most widely used aspect-oriented lan-
guage [50].

8.1 RTS of AspectJ Programs using Control
Flow Models

Zhao et al. [114] proposed an RTS technique for AspectJ
programs by extending the work of Harrold et al. [41].
They have proposed a System Control Flow Graph (SCFG)
and an Aspect Control Flow Graph (ACFG) to model an
AspectJ program. The authors have introduced additional
nodes and edges, such as join point vertex, in an SCFG
to model AspectJ constructs. Each individual aspect in a
program is represented using an ACFG. An ACFG is com-
posed of individual CFGs which represent static control
flow relationships that exist among advice, inter-type mem-
bers, and methods of an aspect. An aspect entry vertex is
used to represent entry to the aspect. An aspect member-
ship edge is used to connect the aspect entry vertex to dif-
ferent possible aspect members such as advice, inter-type
members, pointcuts, or methods. Their model is also able
to represent interactions between aspects and classes.

Once the SCFG graphs have been constructed for the
original and modified pair of AspectJ programs, the depth-
first search technique proposed in [41] is used to identify
the dangerous edges in the graph. The test cases that exe-
cute the dangerous edges are selected for regression testing.

8.2 RTS for AspectJ Programs Based on
Extended JIG

Xu and Rountev [109] have proposed a safe intermedi-
ate graph representation-based RTS technique for AspectJ
programs. They have first proposed a control flow-based
graph model for AspectJ programs named AspectJ Inter-
module Graph (AJIG) which is an extension of a JIG. An
AJIG consists of CFGs that model control flow relation-
ships within Java classes similar to JIGs, within aspects,
and across boundaries between aspects and classes through
non-advice method calls. An AJIG also consists of interac-
tion graphs that model interactions between methods and
advices at certain join points. The following types of inter-
actions are modeled by an AJIG:

– A method call from a Java class method to another
class method or an aspect method.

– A method call from an advice to a class method or an
aspect method.

– A method call from an aspect method to a class or an
aspect method.

Relevant regression test cases are selected by comparing
the AJIG graphs for P and P ′. The authors have extended
the graph traversal algorithm proposed in [41]. Their two-
phase algorithm also handles situations where the destina-

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 313

tion nodes for a pair of edges that are compared are state-
ment shadows. In the first phase, the invocation order of
the advices are compared using the two interaction graphs
corresponding to P and P ′. The output of the first phase is
a set of dangerous edges in P that are changed in P ′ and
a set of advices whose invocation order remains the same
and whose bodies need to be further inspected in the sec-
ond phase. In the second phase, the CFGs for each advice
identified in the first phase are traversed to identify danger-
ous edges. The test cases executing the set of dangerous
edges are selected for regression testing.

8.3 Critical Evaluation
The technique proposed by Zhao et al. [114] ignores situ-
ations where multiple advices apply at a shadow, or where
there can be dynamic advices. Their proposed graph model
cannot represent these suitably, and hence, may miss out
on selecting potentially fault-revealing test cases.

The RTS technique proposed by Xu and Rountev is a
safe RTS technique for AspectJ programs and overcomes
the drawbacks inherent in the RTS technique proposed in
[114].

9 RTS Techniques for Embedded
Programs

During the last decade, there has been a rapid surge in the
usage and reach of embedded applications. A variety of
embedded applications have infiltrated almost every facet
of our daily lives. Over the years, embedded applications
are becoming more and more sophisticated and are being
extensively used in real-time and safety critical applica-
tions. The domains where embedded applications are be-
ing heavily used at present include entertainment, automo-
biles, life-saving medical instruments, nuclear power sta-
tions, and defense warfare. As a result, extremely reliable
operation of these applications has become an essential ne-
cessity.

Regression testing is a challenging task in the life cycle
of an embedded software [88, 70, 91]. Embedded applica-
tions are often composed of concurrent, co-operating tasks,
many of which may be real-time in nature. Issues such as
concurrent execution and deadlines of tasks add new di-
mensions to the complexity of testing embedded programs.
For example, concurrent tasks in an embedded program
may get scheduled differently even when the same set of
events occur with minor alterations to their timing of oc-
currence. This can cause unrepeatable test results. Further-
more, an error which is not manifested in one test case may
be exposed by another test case having the same inputs,
same start state and executing the same functions but hav-
ing a different timing behavior. Embedded systems usually
accept inputs (in the form of events) from the environment
concurrently and asynchronously. Since it is not always
possible to predict the exact input pattern, therefore, the

behavior of an embedded system needs to be tested for all
possible input combinations. This may necessitate testing
of embedded software using a large number of test cases.
Moreover, the high cost of execution of test cases for em-
bedded programs makes minimization of the costs incurred
in regression testing highly desirable [36]. Selection of a
set of safe test cases for embedded applications has, there-
fore, been acknowledged as an important research problem
[118].

The RTS techniques for traditional programs cannot sat-
isfactorily be used to select regression test cases for embed-
ded programs, since embedded programs have many fea-
tures that are radically different from traditional programs.
A few examples of these features are the following:

– A real-time task is usually associated with a dead-
line by which it needs to produce the required re-
sults. Thus, test cases validating the timing aspects
of a modified feature need to included. Therefore,
an RTS approach based solely on analysis of data and
control dependency aspects alone would be unsafe. In
this context, analysis of control flow information for
checking the timing properties has been advocated by
many researchers [102, 45].

– Embedded programs are concurrent and event-driven.
The dependencies arising due to these features can re-
sult in subtle bugs in the programs, and need to be
specifically regression tested.

– Embedded programs often use explicit exception han-
dling mechanisms. This is especially true for safety-
critical applications where error situations need to be
properly handled. Throwing an exception alters the
normal flow of control in a program. Hence, all af-
fected control flow paths in the program need to be
regression tested.

In the literature, we could find only one study by Biswas
et al. [11] related to RTS of embedded applications. In
[11], the authors have proposed an EClDG model for rep-
resenting embedded programs. An EClDG model is an ex-
tension of a ClDG and represents both control and data de-
pendencies that exist among program elements. An EClDG
also contains control flow edges to represent tasks in an
embedded program which are essentially a sequential exe-
cution of program statements. An entry node in an EClDG
model associated with each task in the corresponding em-
bedded program also stores the priority and the criticality
information related to the task. Some of the additional fea-
tures that are represented in an EClDG are exception han-
dling, and information available from UML design models,
such as, object states and state transitions. Regression test
cases are selected by slicing the EClDG model. Each point
of change between the original (P) and the modified (P ′)
program acts as a slicing criterion. Identification of which
model element is executed by each test case is determined
by instrumenting the source code. The test cases that ex-
ecute the potentially affected model elements are selected
for regression testing.

314 Informatica 35 (2011) 289–321 S. Biswas et al.

Class of RTS Tech-
niques

References Key Features Merits Demerits

Database [105, 39] RTS techniques need to consider
database states

Willmor and Embury’s technique
[105] is safe

Proposed techniques are imprecise

Web applications [86, 93, 61, 110,
85]

Analysis cannot rely on the availabil-
ity of the source code of web services

Techniques proposed in [93, 86,
85, 61] are safe, system model-
based approach [93] is more effi-
cient than [86, 85, 61]

Techniques can be imprecise, and
depend on metacontent informa-
tion

AspectJ [114, 109] Needs to take into account the depen-
dencies that arise due to pointcut, join
points, etc.

Technique reported in [109] is safe Control flow-based techniques
may be computationally expen-
sive, cannot be directly adapted
for higher-level analysis

Table 4: A comparison of RTS techniques proposed for database, web, and aspectj programs.

void foo() {
 try {

body1
 } catch (A) {

body2;
 } finally {

body4;
 }

body5;
}

foo()

try

body1

finally

body4

exception

finally

body4

body5

exit

catch A exception

body2

CFG edge

Path edge

Figure 11: Modeling exceptions in the RTS technique pro-
posed in [51].

10 Other RTS Techniques

In this section, we discuss a few RTS techniques proposed
for BPEL programs [59, 63, 101] and programs developed
in .Net framework [51]

10.1 RTS Technique for .Net Programs

In recent times, many virtual machine environments have
been proposed such as Java and Microsoft .Net framework.
In a virtual machine (VM) environment, the program is
compiled into a platform-independent intermediate code.
The advantage of such virtual machine environment is that
it introduces a layer of abstraction and hides the low-level
intricacies of the target architecture. The VM environment
can also introduce check points to enhance performance,
security, etc. of the application code. In the following, we
discuss a safe RTS technique proposed for programs devel-
oped in Microsoft .Net framework.

Koju [51] have presented a safe RTS technique for pro-
grams developed in .Net framework. Since Microsoft .Net
framework supports many programming languages such as
Visual Basic, C++, C#, an RTS technique based on source-
code analysis would require to take into account the fea-

tures of all the .Net framework supported programming
languages. The authors have avoided this problem by se-
lecting regression test cases based on an analysis of the in-
termediate code, which is in Microsoft Intermediate Lan-
guage (MSIL). Their technique is based on the graph walk-
based RTS technique proposed by Harrold [41] for Java
programs. However, the JIG model proposed in [41] can-
not model .Net specific features such as delegates. The au-
thors have also proposed a more efficient and precise way
of analyzing the dependencies introduced due to class hi-
erarchies and exceptions compared to [41]. The improved
analysis of class hierarchies is applied to model method
calls from code internal and external to the application un-
der test. The modeling of exceptions is improved by rep-
resenting the catch and finally block on the opposite
sides of a try block. An example of the exception mod-
eling technique proposed by Koju et al. [51] is shown in
Figure 11. The figure shows a partial JIG modeling the
exception handling code shown in Figure 11.

The important steps in the RTS technique proposed in
[51] are as follows:

– Construct the extended JIG models corresponding to
the MSIL code for the original and the modified pro-
grams.

– Instrument the original source program and execute
the instrumented program with the initial test suite to
generate the test coverage information.

– Traverse the two extended JIG models to identify dan-
gerous edges. The test cases executing the dangerous
edges are selected for regression testing.

This technique is safe for RTS based on MSIL lan-
guages, and is more precise than [41] because of the im-
proved representation for exception handling and the de-
pendencies arising due to class hierarchies. In spite of our
best efforts, this is the only technique that we could find in
the literature for RTS in a virtual machine framework.

10.2 RTS Techniques for BPEL Programs
We have pointed out in subsection 2.3 that SOA-based de-
velopment is increasingly being adopted in different ser-
vices industries. Business process execution language

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 315

(BPEL) is a part of the SOA standards, and is popularly
being used to develop business process and composite ser-
vices. Composite services in BPEL are composed of a pro-
cess, an interface described in WSDL, and component ser-
vices that interact with the process. The component ser-
vices can be elementary services or composed of other ele-
mentary services. Modifications to a BPEL composite ser-
vice can take place due to different reasons such as mod-
ifications to the process or the interface, replacement of a
service with another service, etc. Whenever a BPEL com-
posite service is modified, it becomes necessary to select
regression test cases to test the unmodified parts of the
program. In the following, we briefly discuss the control
flow analysis-based RTS techniques proposed by Li et al.
[59, 63, 101].

A BPEL flow graph [113] can only capture the control
flow relations in a BPEL process. Therefore, it cannot be
used to model BPEL composite services. In view of this,
Li et al. [59] have proposed an Xtended BPEL Flow Graph
(XBFG) to model BPEL composite services. Along with
the business process, an XBFG is also able to model com-
posite services and the message interactions between the
process and the composite services. The technique con-
structs XBFG models for both the original and the modi-
fied BPEL composite services. The types of changes pos-
sible between two BPEL composite services are assumed
to be: process change, binding change, change in the path
conditions, and interface change. The technique then com-
pares the test paths between the two XBFGs to find out the
model elements influenced by the process and the binding
changes. The paths in the XBFG models which are affected
due to the changes are identified, and relevant regression
test cases are selected to test the affected paths.

11 Conclusion and Future Research
Directions

It is acknowledged that RTS techniques which analyze
modifications at a finer level of granularity (e.g., program
statements) are more precise than techniques which per-
form analysis at a comparatively higher level of abstraction
(e.g., design models). Rothermel and Harrold have shown
that the problem of designing precise RTS techniques is
PSPACE-hard [80]. Moreover, the extensive computa-
tions for a fine-grained analysis (e.g., graph walk-based
techniques for procedural/object-oriented programs) make
these techniques more expensive, less efficient, and less
scalable compared to the coarse-grained approaches. This
is an important trade-off that needs to be considered while
selecting a suitable RTS technique. After all, selection of
an RTS technique makes sense only if the cost of test se-
lection is less than the difference in cost between running
the entire test suite and the selected test suite [57].

Modern commercial software products are becoming in-
creasingly large and complex, and are usually tested using
thousands of test cases. Therefore, to obtain further savings

in regression testing effort, researchers need to consider the
following issues:

– With the trend of increasing application size, an RTS
technique should scale to very large programs having
code sizes of the order of millions of KLOC. For mod-
ern large software systems, scalability is an important
issue. Therefore, an interesting direction of research
would be to investigate compositional and summary-
based approaches to RTS.

– The RTS technique should take into account all pos-
sible relationships depending on the targeted class of
programs while selecting test cases, i.e., it should be a
safe technique for that class of programs.

Model-based regression testing: In view of the fact that
static analysis of large software systems is computation-
ally expensive, model-based RTS techniques appear to be
a promising approach that not only scales well, but is more
efficient [112]. Furthermore, of late MDD has been re-
ceiving a lot of attention. In MDD, there exists a close
relationship between the design model(s) and code in the
sense that any change to the model gets reflected in the
code and vice versa. Therefore, instead of performing RTS
on code, test selection could be automatically performed
based on design models. Model-based RTS can also help to
take into consideration several aspects of program behavior
(like state transitions, message paths, task criticality, etc.)
that are not easily identified from static code analysis.

Improved RTS tool support: In future, the reported
work on RTS should gradually shift from theoretical re-
search to tool implementations. It has been pointed out in
several studies [35, 36, 112] that the current tool support
for automated RTS is rather poor. Therefore, concerted ef-
fort should be directed towards developing integrated RTS
tools using capture-and-replay mechanisms.

Synthesized regression testing techniques: Most of the
RTS techniques reported in the literature are either code-
based or model-based. Since both these approaches have
their own unique advantages, these approaches can pos-
sibly be meaningfully synthesized and this issue deserves
further investigation. For example, the analysis performed
in a code-based RTS technique can be made more effective
by using the information available from the UML design
models, SRS documents, etc.

Yoo and Harman [112] have pointed out that real-world
regression testing needs to select test cases keeping in mind
multiple objectives such as, the number of test cases ex-
ecuted, cost involved in testing, code coverage achieved,
time available for testing, etc. However, most of the re-
ported work on multi-objective regression testing is in the
fields of test suite minimization and prioritization [111, 99].
An interesting avenue of research could be to merge regres-
sion test selection techniques with either minimization or
prioritization approaches. In such a synthesized approach,

316 Informatica 35 (2011) 289–321 S. Biswas et al.

the regression test suite first selected by a structural RTS
technique can then be further minimized/prioritized. Re-
gression testing using such a synthesized approach can help
take into account multiple objectives during testing, and
can potentially help achieve further savings in regression
test effort without compromising the thoroughness of test-
ing.

RTS techniques for other domains: Increased usage of
real-time embedded products in safety-critical applications
has resulted in greater emphasis being placed on the quality
of the code. The high costs and complexities involved in
carrying out regression testing of these products act as an
added incentive for developing improved RTS techniques
for these programs. However, not much research work has
so far been reported on investigations into effective RTS for
embedded, real-time and safety-critical software, though it
appears to be a promising avenue for research.

For discrete control applications, industry practitioner’s
usually use UML models whereas for hybrid control ap-
plications, MATLAB Simulink/Stateflow models [94] are
popular. In this context, suitable RTS techniques are
needed for hybrid control applications and reactive soft-
ware.

Moreover, as pointed out by Yoo and Harman [112],
more detailed investigation is required to study the effec-
tiveness of RTS techniques for testing non-functional re-
quirements.

References

[1] K. Abdullah and L.White. A firewall approach for
the regression testing of object-oriented software. In
Proceedings of 10th Annual Software Quality Week,
page 27, May 1997.

[2] H. Agrawal, J. Horgan, E. Krauser, and S. London.
Incremental regression testing. In IEEE Interna-
tional Conference on Software Maintenance, pages
348–357, 1993.

[3] A. Aho, R. Sethi, and J. Ullman. Compilers: Prin-
ciples, Techniques and Tools. Dorling Kindersley
(India) Pvt Ltd, 2nd edition, 2008.

[4] A. Ali, A. Nadeem, Z. Iqbal, and M. Usman. Re-
gression testing based on UML design models. In
Proceedings of the 13th Pacific Rim International
Symposium on Dependable Computing, pages 85–
88, 2007.

[5] T. Ball. On the limit of control flow analysis for
regression test selection. In ISSTA ’98: Proceed-
ings of the 1998 ACM SIGSOFT international sym-
posium on Software testing and analysis, pages 134–
142, 1998.

[6] G. Baradhi and N. Mansour. A comparative study of
five regression testing algorithms. In Proceedings of
Australian Software Engineering Conference, Syd-
ney, pages 174–182, 1997.

[7] S. Bates and S. Horwitz. Incremental program test-
ing using program dependence graphs. In Confer-
ence Record of 20th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages,
pages 384–396, January 1993.

[8] J. Bible, G. Rothermel, and D. Rosenblum. A com-
parative study of coarse- and fine-grained safe re-
gression test-selection techniques. ACM Transac-
tions on Software Engineering and Methodology,
10(2):149–183, April 2001.

[9] R. Binder. Testing Object-Oriented Systems:Models,
Patterns, and Tools. Addison-Wesley, 1999.

[10] D. Binkley. Semantics guided regression test cost re-
duction. IEEE Transactions on Software Engineer-
ing, 23(8):498–516, August 1997.

[11] S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran.
A model-based regression test selection approach
for embedded applications. ACM SIGSOFT Soft-
ware Engineering Notes, 34(4):1–9, July 2009.

[12] G. Booch, J. Rumbaugh, and I. Jacobson. The Uni-
fied Modeling Language User Guide. Addison Wes-
ley, 2nd edition, 2005.

[13] Mustafa Bozkurt, Mark Harman, and Youssef Has-
soun. Testing web services: A survey. Technical
Report TR-10-01, Kings College London, 2010.

[14] L. Briand, Y. Labiche, and S. He. Automating re-
gression test selection based on UML designs. Infor-
mation and Software Technology, 51(1):16–30, Jan-
uary 2009.

[15] L. Briand, Y. Labiche, and G. Soccar. Automat-
ing impact analysis and regression test selection
based on UML designs. In Proceedings of the
International Conference on Software Maintenance
(ICSM’02), pages 252–261, 2002.

[16] Y. Chen, R. Probert, and D. Sims. Specification-
based regression test selection with risk analysis. In
CASCON ’02: Proceedings of the 2002 conference
of the Centre for Advanced Studies on Collaborative
research, page 1, 2002.

[17] Y. Chen, D. Rosenblum, and K. Vo. TestTube: A
system for selective regression testing. In Proceed-
ings of the 16th International Conference on Soft-
ware Engineering, pages 211–222, May 1994.

[18] P. Chittimalli and M. Harrold. Regression test se-
lection on system requirements. In ISEC ’08: Pro-
ceedings of the 1st conference on India software en-
gineering conference, pages 87–96, 2008.

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 317

[19] A. Cleve, J. Henrard, and J. Hainaut. Data reverse
engineering using system dependency graphs. In
Proceedings of the 13th Working Conference on Re-
verse Engineering, pages 157–166, 2006.

[20] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press, Cambridge,
MA, 2001.

[21] J. Dean, D. Grove, and C. Chambers. Optimization
of object-oriented programs using static class hierar-
chy analysis. In Lecture Notes in Computer Science,
volume 952, pages 77–101. Springer-Verlag, 1995.

[22] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel.
The effects of time constraints on test case priori-
tization: A series of controlled experiments. IEEE
Transactions on Software Engineering, 36(5):593–
617, September 2010.

[23] S. Elbaum, A.Malishevsky, and G. Rothermel. Test
case prioritization: A family of empirical stud-
ies. IEEE Transactions of Software Engineering,
28(2):159–182, February 2002.

[24] E. Engström, P. Runeson, and M. Skoglund. A
systematic review on regression test selection tech-
niques. Information and Software Technology,
52(1):14–30, January 2010.

[25] E. Engström, M. Skoglund, and P. Runeson. Em-
pirical evaluations of regression test selection tech-
niques: a systematic review. In Proceedings of
the Second ACM-IEEE international symposium on
Empirical software engineering and measurement,
pages 22–31, 2008.

[26] M. Fahad and A. Nadeem. A survey of uml based
regression testing. In Zhongzhi Shi, E. Mercier-
Laurent, and D. Leake, editors, Intelligent Informa-
tion Processing IV, volume 288 of IFIP Advances in
Information and Communication Technology, pages
200–210. Springer Boston, 2008.

[27] Q. Farooq, M. Iqbal, Z. Malik, and A. Nadeem. An
approach for selective state machine based regres-
sion testing. In Proceedings of the 3rd international
workshop on Advances in model-based testing, A-
MOST ’07, pages 44–52. ACM, 2007.

[28] Q. Farooq, M. Iqbal, Z. Malik, and M. Riebisch. A
model-based regression testing approach for evolv-
ing software systems with flexible tool support. In
17th IEEE International Conference on Engineering
of Computer-Based Systems (ECBS), pages 41–49.
IEEE Computer Society, March 2010.

[29] J. Ferrante, K. Ottenstein, and J. Warren. The pro-
gram dependence graph and its use in optimization.
ACM Transactions on Programming Languages and
Systems, 9(3):319–349, July 1987.

[30] P. Frankl, G. Rothermel, K. Sayre, and F. Voko-
los. An empirical comparison of two safe regression
test selection techniques. In ISESE ’03 Proceedings
of the 2003 International Symposium on Empirical
Software Engineering, pages 195–204. IEEE Com-
puter Society, 2003.

[31] J. Gao, D. Gopinathan, Q. Mai, and J. He. A sys-
tematic regression testing method and tool for soft-
ware components. In Proceedings of the 30th An-
nual International Computer Software and Applica-
tions Conference (COMPSAC’06), pages 455–466,
2006.

[32] V. Garousi, L. Briand, and Y. Labiche. Model Driven
Architecture - Foundations and Applications, vol-
ume 3748 of Lecture Notes in Computer Science,
chapter Control Flow Analysis of UML 2.0 Se-
quence Diagrams, pages 160–174. Springer Berlin /
Heidelberg, October 2005.

[33] R. Gorthi, A. Pasala, K. Chanduka, and B. Leong.
Specification-based approach to select regression
test suite to validate changed software. In Proceed-
ings of the 2008 15th Asia-Pacific Software Engi-
neering Conference, pages 153–160, 2008.

[34] T. Graves, M. Harrold, J. Kim, A. Porter, and
G. Rothermel. An empirical study of regression
test selection techniques. ACM Transactions on
Software Engineering and Methodology, 10(2):184–
208, April 2001.

[35] M. Grindal, J. Offutt, and J. Mellin. On the test-
ing maturity of software producing organizations. In
TAIC-PART ’06: Proceedings of the Testing: Aca-
demic & Industrial Conference on Practice And Re-
search Techniques, pages 171–180, 2006.

[36] J. Guan, J. Offutt, and P. Ammann. An industrial
case study of structural testing applied to safety-
critical embedded software. In Proceedings of the
2006 ACM/IEEE international symposium on Em-
pirical software engineering, pages 272–277, 2006.

[37] R. Gupta, M. Harrold, and M. Soffa. Program
slicing-based regression testing techniques. Jour-
nal of Software Testing, Verification, and Reliability,
6(2):83–112, June 1996.

[38] F. Haftman, D. Kossmann, and E. Lo. A frame-
work for efficient regression tests on database appli-
cations. The VLDB Journal, 16(1):145–164, January
2007.

[39] R. Haraty, N. Mansour, and B. Daou. Advanced Top-
ics in Database Research, volume 3, chapter Regres-
sion test selection for database applications, pages
141–165. Idea Group, 2004.

318 Informatica 35 (2011) 289–321 S. Biswas et al.

[40] M. Harrold, R. Gupta, and M. Soffa. A methodology
for controlling the size of a test suite. ACM Trans-
actions on Software Engineering and Methodology,
2(3):270–285, July 1993.

[41] M. Harrold, J. Jones, T. Li, D. Liang, A. Orso,
M. Pennings, S. Sinha, S. A. Spoon, and A. Gu-
jarathi. Regression test selection for Java software.
In Proceedings of the 16th ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems,
Languages and Applications, pages 312–326, Jan-
uary 2001.

[42] M. Harrold and G. Rothermel. Performing data flow
testing on classes. In Proceedings of the 2nd ACM
SIGSOFT symposium on Foundations of software
engineering, pages 154–163, 1994.

[43] M. Harrold and M. Soffa. An incremental approach
to unit testing during maintenance. In Proceedings
of the International Conference on Software Main-
tenance, pages 362–367, October 1988.

[44] M. Harrold and M. Soffa. Interprocedural data flow
testing. In Proceedings of the ACM SIGSOFT ’89
third symposium on Software testing, analysis, and
verification, pages 158–167, December 1989.

[45] D. Hatley and I. Pirbhai. Strategies for Real-
Time System Specification. Dorset House Publishing
Company, 1987.

[46] S. Horwitz, T. Reps, and D. Binkley. Interprocedural
slicing using dependence graphs. ACM Transactions
on Programming Languages and Systems, 12(1):26–
61, January 1990.

[47] P. Hsia, X. Li, D. Kung, C. Hsu, L. Li, Y. Toyoshima,
and C. Chen. A technique for the selective revalida-
tion of object-oriented software. Journal of Software
Maintenance: Research and Practice, 9(4):217–
233, 1997.

[48] Y. Jang, M. Munro, and Y. Kwon. An improved
method of selecting regression tests for C++ pro-
grams. Journal of Software Maintenance: Research
and Practice, 13(5):331–350, September 2001.

[49] G. Kapfhammer. The Computer Science Handbook,
chapter on Software testing. CRC Press, Boca Ra-
ton, FL, 2nd edition, 2004.

[50] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of AspectJ.
In Proceedings of the 15th European Conference on
Object-Oriented Programming, ECOOP ’01, pages
327–353. Springer-Verlag, 2001.

[51] T. Koju, S. Takada, and N. Doi. Regression test se-
lection based on intermediate code for virtual ma-
chines. In Proceedings of the International Con-
ference on Software Maintenance, ICSM ’03, page
420. IEEE Computer Society, September 2003.

[52] J. Korpi and J. Koskinen. Advances and Innovations
in Systems, Computing Sciences and Software En-
gineering, chapter Supporting Impact Analysis by
Program Dependence Graph Based Forward Slicing,
pages 197–202. Springer Netherlands, 2007.

[53] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima,
and C. Chen. On regression testing of object-
oriented programs. Journal of Systems and Software,
32(1):21–40, January 1996.

[54] J. Laski and W. Szermer. Identification of pro-
gram modifications and its applications in software
maintenance. In Proceedings of the Conference on
Software Maintenance, pages 282–290, November
1992.

[55] H. Leung and L. White. Insights into regression test-
ing. In Proceedings of the Conference on Software
Maintenance, pages 60–69, 1989.

[56] H. Leung and L. White. A study of integration test-
ing and software regression at the integration level.
In Proceedings of the Conference on Software Main-
tenance, pages 290–300, November 1990.

[57] H. Leung and L. White. A cost model to compare re-
gression test strategies. In Proceedings of the Con-
ference on Software Maintenance, pages 201–208,
1991.

[58] H. Leung and L. White. A firewall concept for both
control-flow and data-flow in regression integration
testing. In Proceedings of the Conference on Soft-
ware Maintenance, pages 262–270, 1992.

[59] B. Li, D. Qiu, S. Ji, and D. Wang. Automatic test
case selection and generation for regression test-
ing of composite service based on extensible BPEL
flow graph. In 26th IEEE International Conference
on Software Maintenance, ICSM 2010, pages 1–10.
IEEE Computer Society, 2010.

[60] D. Liang and M. Harrold. Slicing objects using
system dependence graphs. In Proceedings of the
International Conference on Software Maintenance,
pages 358–367, November 1998.

[61] Feng Lin, Michael Ruth, and Shengru Tu. Applying
safe regression test selection techniques to Java web
services. In International Conference on Next Gen-
eration Web Services Practices, 2006. NWeSP 2006.,
pages 133–142, Los Alamitos, CA, USA, September
2006. IEEE Computer Society.

[62] J. Lin, C. Huang, and C. Lin. Test suite reduction
analysis with enhanced tie-breaking techniques. In
4th IEEE International Conference on Management
of Innovation and Technology, 2008. ICMIT 2008.,
pages 1228–1233, September 2008.

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 319

[63] H. Liu, Z. Li, J. Zhu, and H. Tan. Business process
regression testing. In Proceedings of the 5th interna-
tional conference on Service-Oriented Computing,
ICSOC ’07, pages 157–168. Springer-Verlag, 2007.

[64] N. Mansour and K. El-Fakih. Simulated annealing
and genetic algorithms for optimal regression test-
ing. Journal of Software Maintenance: Research
and Practice, 11(1):19–34, 1999.

[65] N. Mansour and W. Statieh. Regression test selec-
tion for C# programs. Advances in Software Engi-
neering, 2009:1:1–1:16, January 2009.

[66] C. Mao and Y. Lu. Regression testing for
component-based software systems by enhancing
change information. In APSEC ’05: Proceedings of
the 12th Asia-Pacific Software Engineering Confer-
ence, pages 611–618. IEEE Computer Society, De-
cember 2005.

[67] C. Mao, Y. Lu, and J. Zhang. Regression testing for
component-based software via built-in test design.
In Proceedings of the 2007 ACM symposium on Ap-
plied computing, pages 1416–1421, 2007.

[68] J. McGregor and D. Sykes. A Practical Guide to
Testing Object-Oriented Software. Addison-Wesley,
March 2001.

[69] L. Naslavsky and D. Richardson. Using traceabil-
ity to support model-based regression testing. In
Proceedings of the twenty-second IEEE/ACM inter-
national conference on Automated software engi-
neering, ASE ’07, pages 567–570. ACM, November
2007.

[70] M. Netkow and D. Brylow. Xest: an automated
framework for regression testing of embedded soft-
ware. In Proceedings of the 2010 Workshop on Em-
bedded Systems Education, WESE ’10, pages 7:1–
7:8. ACM, October 2010.

[71] A. Orso, M. Harrold, and D. Rosenblum. Compo-
nent metadata for software engineering tasks. In Re-
vised Papers from the Second International Work-
shop on Engineering Distributed Objects, EDO ’00,
pages 129–144. Springer-Verlag, November 2000.

[72] A. Orso, M. Harrold, D. Rosenblum, G. Rothermel,
M. Soffa, and H. Do. Using component metacontent
to support the regression testing of component-based
software. In Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’01),
pages 716–725, 2001.

[73] A. Orso, N. Shi, and M. Harrold. Scaling regres-
sion testing to large software systems. In Proceed-
ings of the 12th ACM SIGSOFT Twelfth Interna-
tional Symposium on Foundations of Software En-
gineering, pages 241–251, November 2004.

[74] A. Pasala, Y Fung, F. Akladios, A. Raju, and R. Gor-
thi. Selection of regression test suite to validate soft-
ware applications upon deployment of upgrades. In
19th Australian Conference on Software Engineer-
ing, pages 130–138, March 2008.

[75] R. Pressman. Software Engineering: A Practi-
tioner’s Approach. McGraw-Hill, New York, 2002.

[76] G. Rothermel and M. Harrold. A safe, efficient al-
gorithm for regression test selection. In Proceedings
of the Conference on Software Maintenance, pages
358–367, 1993.

[77] G. Rothermel and M. Harrold. Selecting regression
tests for object-oriented software. In International
Conference on Software Maintenance, pages 14–25,
March 1994.

[78] G. Rothermel and M. Harrold. Selecting tests and
identifying test coverage requirements for modified
software. In Proceedings of the International Sym-
posium on Software Testing and Analysis, pages
169–184, August 1994.

[79] G. Rothermel and M. Harrold. Analyzing regres-
sion test selection techniques. IEEE Transactions
on Software Engineering, 22(8):529–551, August
1996.

[80] G. Rothermel and M. Harrold. A safe, efficient
regression test selection technique. ACM Trans-
actions on Software Engineering and Methodology,
6(2):173–210, April 1997.

[81] G. Rothermel and M. Harrold. Empirical studies
of a safe regression test selection technique. IEEE
Transactions on Software Engineering, 24(6):401–
419, June 1998.

[82] G. Rothermel, M. Harrold, and J. Dedhia. Regres-
sion test selection for C++ software. Software Test-
ing, Verification and Reliability, 10(2):77–109, June
2000.

[83] G. Rothermel, M. Harrold, J. Ostrin, and C. Hong.
An empirical study of the effects of minimization on
the fault detection capabilities of test suites. In Pro-
ceedings of the International Conference on Soft-
ware Maintenance, pages 34–43, November 1998.

[84] G. Rothermel, R. Untch, C. Chu, and M. Harrold.
Prioritizing test cases for regression testing. IEEE
Transactions on Software Engineering, 27(10):929–
948, October 2001.

[85] M. Ruth, S. Oh, A. Loup, B. Horton, O. Gallet,
M. Mata, and S. Tu. Towards automatic regression
test selection for web services. In Proceedings of the
31st Annual International Computer Software and
Applications Conference - Volume 02, COMPSAC
’07, pages 729–736. IEEE Computer Society, 2007.

320 Informatica 35 (2011) 289–321 S. Biswas et al.

[86] M. Ruth and S. Tu. A safe regression test selec-
tion technique for web services. In Proceedings of
the Second International Conference on Internet and
Web Applications and Services, pages 47–. IEEE
Computer Society, 2007.

[87] A. Sajeev and B. Wibowo. Regression test selection
based on version changes of components. In APSEC
’03: Proceedings of the Tenth Asia-Pacific Software
Engineering Conference Software Engineering Con-
ference, APSEC ’03, pages 78–. IEEE Computer So-
ciety, 2003.

[88] A. Sangiovanni-Vincentelli and M. Di Natale. Em-
bedded system design for automotive applications.
Computer, 40(10):42–51, October 2007.

[89] S. Sinha, M. Harrold, and G. Rothermel. System-
dependence-graph-based slicing of programs with
arbitrary interprocedural control flow. In Proceed-
ings of the 21st International Conference on Soft-
ware Engineering, pages 432–441, 1999.

[90] M. Skoglund and P. Runeson. A case study of the
class firewall regression test selection technique on
a large scale distributed software system. In Interna-
tional Symposium on Empirical Software Engineer-
ing, pages 74–83, November 2005.

[91] D. Sundmark, A. Pettersson, and H. Thane. Regres-
sion testing of multi-tasking real-time systems: A
problem statement. ACM SIGBED Review, 2(2):31–
34, April 2005.

[92] A. Taha, S. Thebaut, and S. Liu. An approach to
software fault localization and revalidation based on
incremental data flow analysis. In Proceedings of the
13th Annual International Computer Software and
Applications Conference, pages 527–534, Septem-
ber 1989.

[93] A. Tarhini, H. Fouchal, and N. Mansour. Regression
testing web services-based applications. In AICCSA
’06 Proceedings of the IEEE International Confer-
ence on Computer Systems and Applications, pages
163–170. IEEE Computer Society, 2006.

[94] The Mathworks, Inc. MATLAB. Website, April
2011. http://www.mathworks.com.

[95] F. Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3(3):121–189,
September 1995.

[96] F. Vokolos. A regression test selection technique
based on textual differencing. PhD thesis, Poly-
technic University, 1998. UMI Order No. GAX98-
10583.

[97] F. Vokolos and P. Frankl. Pythia: A regression test
selection tool based on textual differencing. In Pro-
ceedings of the 3rd International Conference on Re-
liability, Quality & Safety of Software-Intensive Sys-
tems (ENCRESS’ 97), pages 3–21, May 1997.

[98] F. Vokolos and P. Frankl. Empirical evaluation of the
textual differencing regression testing technique. In
ICSM ’98: Proceedings of the International Confer-
ence on Software Maintenance, pages 44–53, 1998.

[99] K. Walcott, M. Soffa, G. Kapfhammer, and R. Roos.
Time aware test suite prioritization. In Proceedings
of the 2006 International Symposium on Software
Testing and Analysis, pages 1–12, 2006.

[100] N. Walkinshaw, M. Roper, and M. Wood. The Java
system dependence graph. In Third IEEE Interna-
tional Workshop on Source Code Analysis and Ma-
nipulation, pages 55–64, September 2003.

[101] D. Wang, B. Li, and J. Cai. Regression testing of
composite service: An XBFG-based approach. In
Proceedings of the 2008 IEEE Congress on Services
Part II, pages 112–119. IEEE Computer Society,
2008.

[102] P. Ward and S. Mellor. Structured Development for
Real-Time Systems. Prentice Hall Professional Tech-
nical Reference, 1991.

[103] M. Weiser. Program slicing. In ICSE ’81: Proceed-
ings of the 5th international conference on Software
engineering, pages 439–449, 1981.

[104] N. Wilde and R. Huitt. Maintenance support for
object-oriented programs. IEEE Transactions on
Software Engineering, 18(12):1038–1044, Decem-
ber 1992.

[105] D. Willmor and S. Embury. A safe regression test
selection technique for database-driven applications.
In Proceedings of the 21st IEEE International Con-
ference on Software Maintenance, pages 421–430.
IEEE Computer Society, 2005.

[106] W. Wong, J. Horgan, S. London, and A. Mathur.
A study of effective regression testing in practice.
In Proceedings of the Eighth International Sym-
posium on Software Reliability Engineering, pages
230–238, November 1997.

[107] Y. Wu and J. Offutt. Maintaining evolving
component-based software with UML. In Proceed-
ings of 7th European Conference on Software Main-
tenance and Reengineering (CSMR ’03), pages 133–
142, March 2003.

[108] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A
brief survey of program slicing. ACM SIGSOFT
Software Engineering Notes, 30(2):1–36, March
2005.

REGRESSION TEST SELECTION TECHNIQUES. . . Informatica 35 (2011) 289–321 321

[109] G. Xu and A. Rountev. Regression test selection for
AspectJ software. In ICSE ’07: Proceedings of the
29th international conference on Software Engineer-
ing, pages 65–74, 2007.

[110] Lei Xu, Baowen Xu, Zhenqiang Chen, Jixiang Jiang,
and Huowang Chen. Regression testing for web ap-
plications based on slicing. In Proceedings of the
27th Annual International Computer Software and
Applications Conference, 2003. COMPSAC 2003.,
pages 652–656, Los Alamitos, CA, USA, Novem-
ber 2003. IEEE Computer Society.

[111] S. Yoo and M. Harman. Pareto efficient multi-
objective test case selection. In Proceedings of the
2007 International Symposium on Software Testing
and Analysis, pages 140–150, 2007.

[112] S. Yoo and M. Harman. Regression testing mini-
mization, selection and prioritization: a survey. Soft-
ware Testing, Verification and Reliability, 1(1):121–
141, March 2010.

[113] Y. Yuan, Z. Li, and W. Sun. A graph-search based
approach to BPEL4WS test generation. In Pro-
ceedings of the International Conference on Soft-
ware Engineering Advances (ICSEA’ 06), pages 14–
. IEEE Computer Society, October 2006.

[114] J. Zhao, T. Xie, and N. Li. Towards regression test
selection for AspectJ programs. In Proceedings of
the 2nd workshop on Testing aspect-oriented pro-
grams, WTAOP ’06, pages 21–26. ACM, 2006.

[115] J. Zheng, B. Robinson, L. Williams, and K. Smi-
ley. An initial study of a lightweight process for
change identification and regression test selection
when source code is not available. In Proceedings of
the 16th IEEE International Symposium on Software
Reliability Engineering, pages 225–234, November
2005.

[116] J. Zheng, B. Robinson, L. Williams, and K. Smi-
ley. Applying regression test selection for COTS-
based applications. In ICSE ’06: Proceedings of the
28th international conference on Software engineer-
ing, pages 512–522, May 2006.

[117] J. Zheng, B. Robinson, L. Williams, and K. Smi-
ley. A lightweight process for change identification
and regression test selection in using COTS compo-
nents. In ICCBSS ’06: Proceedings of the Fifth In-
ternational Conference on Commercial-off-the-Shelf
(COTS)-Based Software Systems, pages 137–143,
February 2006.

[118] F. Zhu, S. Rayadurgam, and W. Tsai. Automating
regression testing for real-time software in a dis-
tributed environment. In ISORC ’98: Proceedings
of the The 1st IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing,
page 373, 1998.

322 Informatica 35 (2011) 289–321 S. Biswas et al.

