
Informatica 35 (2011) 269–282 269

Real-Time Action Scheduling in Pervasive Computing

Wenwei Xue
Nokia Research Center, Beijing, China
E-mail: wayne.xue@nokia.com

Qiong Luo and Lionel M. Ni
Department of Computer Science and Engineering
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong, China
E-mail: {luo, ni}@cse.ust.hk

Keywords: pervasive computing, real-time action scheduling, query processing, device eligibility

Received: November 23, 2010

Pervasive computing applications, such as video surveillance and robot control, involve diversified op-
erations on physical devices. We call a sequence of operations on a device an action and study how to
schedule real-time actions on the devices in pervasive computing. We identify a number of novel charac-
teristics of this pervasive action scheduling problem and develop a dynamic, heuristic algorithm for the
problem. The algorithm performs priority-based action scheduling whenever some device becomes free
and does not reply on any system-defined scheduling interval. We have implemented our proposed ac-
tion scheduling algorithm in a pervasive query processing system named Aorta and evaluated its per-
formance using actions in a pervasive lab monitoring application. Our simulation results demonstrate
the algorithm ensures small dropping rate of actions and has tiny computation cost.

Povzetek: Opisan je izvirni sistem Aorta, kjer je akcija opisana kot povpraševalni operator.

1 Introduction
In pervasive computing [27], many types of devices are
embedded in the physical world and execute real-time
actions for the applications [22][24]. Example devices in
pervasive computing include sensor nodes, network cam-
eras, programmable robots, and handheld devices such as
PDAs and phones. Here we define an action as a pre-
defined sequence of operations to be executed on a de-
vice that is encapsulated in a user-defined function [1][8].
Due to the real-time requirement of action executions,
action scheduling on the devices among multiple applica-
tions is a crucial problem in pervasive computing. For
instance, in a lab surveillance scenario a number of con-
current applications may require the cameras and robots
deployed in the lab to take photos or perform tasks at
different locations from time to time. A photo taken or a
task performed will become obsolete and useless if it
cannot be scheduled and executed timely on some device
of the corresponding type. In this paper, we address this
action scheduling problem in the framework of a perva-
sive query processing system Aorta that we have devel-
oped [29][30].

The problem of job scheduling on parallel machines
[16] and its variants [3][5][11][13][17][18][19][20][23]
[25][26] have been widely investigated in the literature.
The action scheduling problem we study can be regarded
as a new variant of this classic problem in the pervasive
computing scenario. This is because an action execution
for an application is often not fixed to a specific device

but can be performed on any device that satisfies certain
condition. Take the lab surveillance scenario as example
again. Whenever a sensor node installed in the lab de-
tects abnormally high noise readings lasting a period,
which are likely caused by the loud conversation of
people around the node, a robot is automatically con-
trolled to move to the location of the node and issue a
warning to ensure the quiet working environment in the
lab. Every robot in the lab is a candidate device for this
action execution and it is sufficient to operate one but not
all of them to perform the task.

Our action scheduling problem inherits several cha-
racteristics of the classic parallel machine scheduling
problem, including unrelated devices, device eligibility
restrictions and deadlines of non-preemptive action ex-
ecutions [16]. In addition, our problem has a unique cha-
racteristic that is the interaction between actions and de-
vices [29] in pervasive computing. More specifically, the
actions often change the physical status of the devices
that execute them. Such change in turn affects the future
executions of succeeding actions on the devices. The
physical status of a device is represented in Aorta as the
current values of a set of status attributes defined in the
virtual table for the type of device [30]. Example status
attributes in different virtual device tables are voltage,
freeRAM for sensors and phones; pan, tilt, zoom for cam-
eras; loc, angle for robots.

270 Informatica 35 (2011) 269–282 W. Xue et al.

Figure 1: The noise_rejection query for lab surveillance.

Figure 2: Devices in the pervasive lab.

The scheduling model we face in our problem is dy-
namic rather than the static model adopted in the classic
problem. The action executions to be scheduled on the
devices are dynamically arriving at the system over time.
In contrast, the classic problem takes a static set of jobs
as input and assumes all kinds of job information, e.g.,
the start or processing times of the jobs, are known a
priori before the scheduling [16].

We summarize all these characteristics of our action
scheduling problem and propose a dynamic, heuristic
algorithm to solve the problem. Whenever a device be-
comes free, the algorithm selects an action request
queued in the system that has the highest priority to be
serviced on the device. We define an action request as
the request for an action execution from an application
with instantiated values for the input parameters of the
action. The priority of an action request on a device is
computed using the response time of the request on the
device, the deadline and the candidate device number of
the request, as well as the current eligibility and reliabili-
ty of the device. We have implemented the algorithm in
our Aorta prototype and seamlessly integrated it with
other mechanisms in the system [30].

The effectiveness of declarative queries to task net-
works of devices has been illustrated by lots of recent
work in both database [12][31] and networking [10][21]
communities. Following this programming paradigm,
Aorta uses SQL-based continuous queries having actions
embedded [29] to express the processing logics of perva-
sive computing applications. We call these queries action-
embedded queries. With this abstraction for applications,
the process of action scheduling in Aorta is encapsulated
into the adaptive group optimization of multiple concur-
rent queries running in the system. Although in this paper
we present and evaluate our action scheduling algorithm
based on these system implementation details of Aorta,

the algorithm is generic and is indifferent to the particu-
lar application interface.

We have designed the syntax and semantics of action-
embedded queries to accord with the requirements of
action scheduling. An optional DEADLINE clause is
provided in Aorta’s query interface for applications to
tell the system the deadline of an action request from a
query, which is defined as the interval between the time
when the request is issued and the time when the request
is serviced on a device (i.e., the action execution has
been finished). Moreover, when the WHERE clause of
an action-embedded query is evaluated as true and a set
of candidate devices is determined for the action request,
the request will be scheduled and serviced only once on a
selected device among these candidates [29]. As an ex-
ample, Figure 1 shows a noise_rejection query in Aorta
that abstracts the robot patrol application for lab surveil-
lance we have described previously.

We have built a case study application on our Aorta
prototype to monitor the pervasive research lab in our
department. The lab is equipped with desktops having
removable hard disks, notebooks, and various types of
devices including Crossbow motes [4], AXIS 2130 net-
work cameras [2], ER1 personal robots [6], PDAs and
phones (Figure 2). This pervasive lab monitoring appli-
cation is used as an illustrative example throughout the
paper as well as in our performance evaluation of the
proposed action scheduling algorithm.

The remainder of this paper is organized as follows.
We describe the Aorta system model for action schedul-
ing in Section 2. We identify the characteristics of our
action scheduling problem in Section 3 and present a
dynamic, heuristic algorithm for the problem in Section
4. In Section 5, we perform simulation studies to evaluate
the effectiveness of our proposed scheduling algorithm
using actions in the pervasive lab monitoring application.

CREATE AQ noise_rejection AS
 SELECT warn(r.id, s.loc, “messages/warning.txt”)
 FROM sensors s, robots r
 WHERE 600 < (SELECT winavg(ss.noise, 5, 5, minute)
 FROM sensors ss
 WHERE every(10, second) AND ss.id = s.id)
 DEADLINE 30 seconds

REAL-TIME ACTION SCHEDULING IN… Informatica 35 (2011) 269–282 271

We discuss related work in Section 6 and conclude the
paper in Section 7.

2 System model for action scheduling
In this section, we describe the model we implement in
the Aorta system to effectively support the action sched-
uling on devices.

2.1 Actions and action operators
Aorta only supports actions that operate a single device.
We focus our study on single- device actions due to three
main reasons: (i) they are prevalent in real-world applica-
tions [1][8][22][24], (ii) they are more practical and
manageable in implementation, and (iii) in combination
with action or query nesting, they can be used to com-
pose many multi-device actions that have simple com-
munication logics between devices [29].

For every action in Aorta, we require the identity of
the device that the action is executed on to be not fixed in
the function code block. In contrast, the device should be
explicitly or implicitly identified by the instantiated pa-
rameter values for the action at run time. As a typical
example, the first input parameter of the warn action in
Figure 1 determines the robot on which a specific execu-
tion of the action will be executed. The necessity of this
restriction stems from the “black box” nature of actions.
Being a UDF, an action is registered to Aorta as a com-
piled code block and it is impossible for the system to
modify its implementation details. Consequently, if the
identity of the device to execute an action is fixed in the
code block, there is little room for action scheduling on
the parallel devices. In this case, our problem degener-
ates to a single-machine scheduling problem [16] on in-
dividual devices.

Aorta makes an action embedded in a query a first-
class operator in the evaluation plan of the query. An
action operator contains the following information about
an action: (i) the name, (ii) the specifications of input
parameters, (iii) the pointer to the function code block to
be invoked. Furthermore, all queries having an action on
the same type of device share a single action operator
among their query plans. Every query plan is connected
to the shared action operator via a common input queue
of the operator. The action operator maintains corre-
sponding information about the action embedded in each
query so that it can use the correct information to sched-
ule a specific execution of an action for a query.

An action operator is created when the first query
embedded with an action on the type of device is regis-
tered to Aorta. Subsequent queries having actions on the
same type of device are connected to the operator by an
update of the information maintained in the operator.
These shared action operators give the Aorta query opti-
mizer a global view of the current action workload on
individual types of devices in the system. Rather than
being optimized separately without coordination, multi-
ple queries are grouped and the action executions for
them are adaptively scheduled as a whole.

2.2 Scheduling model
Figure 3 depicts the scheduling model for every action
operator in Aorta’s query processing framework. In the
figure, dj (1 j m) denotes all devices of a type in-
volved in the Aorta system that the operator is in charge
of action scheduling on, e.g., the set of programmable
robots. qi (1 i n) denotes the plan of Query i and Ri the
streaming action requests issued from the query over time.
R denotes the whole stream of action requests that arrive
at the input queue of the action operator and

n

i
iRR

1
 .

Being the main component of the operator, the
scheduler implements the dynamic and heuristic action
scheduling algorithm we have developed. ai (1 i n) in
the operator denotes the stored specification information
about the action that is embedded in Query i.

3 Characteristics of action scheduling
The action scheduling problem we study has a unique set
of characteristics that is tightly related to the application
scenario of pervasive computing. We identify all charac-
teristics of the problem one by one as follows.

(1) Action-device interaction. There is a special kind
of interaction between actions and devices in pervasive
computing: an action execution on a device may change
the physical status of the device; in turn, the physical
status of a device may affect the cost of an action execu-
tion on the device. This interaction is generic to several
cost metrics for actions in pervasive computing, such as
the response time, the power consumption and the price
of service. It makes our scheduling of actions more com-
plex than traditional job scheduling, because the costs of
an action execution on candidate devices are different
and dynamically changing.

Action Operator

d1

d2

dm

Input Queue

Scheduler

R1

R2

Rn

R

a1

q1

q2

qn

a2 an

Figure 3: Scheduling model for an action operator in Aorta.

272 Informatica 35 (2011) 269–282 W. Xue et al.

Figure 4: The snapshot query in the pervasive lab monitoring application.

To illustrate the interaction, two actions in the perva-
sive lab monitoring application are listed in Examples 1
and 2. The device physical status related to the action is
the location of a robot or the head position of a camera,
respectively.

Example 1. Consider the warn(id, location, text_file) ac-
tion Figure 1 on programmable robots [6]. The action
operates a robot with id to rotate towards and go straight
to a target location, and play a warning message whose
content is specified in text_file when arriving at the loca-
tion. An execution of the action changes the location of
the robot. The response time of the execution is propor-
tional to the distance between the target location and the
current location of the robot.■

Example 2. Consider the photo(ip, location, directory)
action in Fig on PTZ network cameras [2]. The action op-
erates a camera with ip to move its head to a position
pointing at location and take a photo. The action then
stores the photo that the camera takes to directory. An
execution of the action changes the position of the camera
head (i.e., the pan, tilt, zoom values). The response time of
the action execution depends on the current head position
of the camera.■

(2) Dynamic request arrival in a global queue. Ac-
tion requests from multiple queries continually and dy-
namically arrive at the single input queue of an action
operator over time. There is no local request queue for a
device. The system has no prior knowledge about the
arrival time, deadline or candidate devices of each re-
quest.

(3) Deadlines of requests. Action executions are of
little use for pervasive computing applications if they
cannot be finished in a timely manner. An unscheduled
action request should be dropped when the system de-
tects that the request cannot be serviced within its dead-
line.

(4) Independent and non-preemptive requests. There
is no message communication between any two action
requests as they represent separate executions of actions.
Since the execution flows of actions are encapsulated in
code blocks and are unknown to the system, an action
execution on a device cannot be interrupted and multiple
executions cannot be interleaved on a device. As a result,
no communication is required in the scheduling to trans-
plant a partially-serviced action request from one device
to another.

(5) Unrelated devices. The cost of an action request
on a device is generally not related to those costs of the
request on the other devices. In other words, the devices
in our action scheduling model are unrelated [16]. Each

device services the action requests scheduled on it indi-
vidually.

(6) Device eligibility. The candidate devices for an
action request often include a subset of all devices of the
type in the system. For instance, for the snapshot query
in Figure 4, the set of candidate devices for a request is
determined by the function coverage(loc1, loc2) in the
query condition. The function returns true if and only if
the view range of the camera with location loc1 covers
the location loc2. This example also indicates the fact
that the set of candidate devices for multiple action re-
quests of the same query may be different. We say that a
device is eligible for an action request if it is a candidate
for servicing the request.

The last four characteristics of our problem can be
mapped to the following characteristics of the classic
parallel machine scheduling problem [16] in order: (i)
deadlines of jobs, (ii) non-preemptive jobs, (iii) unrelated
machines, and (iv) machine eligibility restrictions for jobs.
Moreover, the first characteristic of our problem is simi-
lar to the sequence-dependent setup time of jobs in the
classic problem [16]. The major difference is that we are
facing sequence-dependent response time (in general,
cost) of action requests rather than setup time. To the
best of our knowledge, there is no existing scheduling
algorithm for the classic problem or for any variant of it
whose design has taken all the characteristics (i)-(iv) and
the sequence-dependent setup time into consideration.

The second and third characteristics of our problem
require us to adopt a dynamic model [11][17] for action
scheduling rather than the static model in the classic
problem [3][16]. In our previous work, we have devel-
oped two non-real time algorithms for action scheduling
in Aorta without considering the request deadlines [29]
[30]. The algorithms are based on a static scheduling
model that divides the system time into a sequence of
equal-length scheduling intervals and schedules action
requests arriving in each interval individually. However,
in our subsequent real testbed evaluation of Aorta, we
found that these prior algorithms have a major drawback
when applying to the scheduling of actions with dead-
lines, that is, their performance in practice largely de-
pends on the length of the system-defined scheduling
interval. If the interval is long, requests that arrive earlier
in an interval suffers from a large delay and their dead-
lines are more likely to be missed, whereas very few re-
quests can be scheduled together in each interval and the
static group scheduling becomes less effective if the in-
terval is short.

With a dynamic scheduling model, it has been proved
that if we do not assume any prior knowledge about the
arrival times of the continuously-arriving jobs, an opti-

CREATE AQ snapshot AS
 SELECT photo(c.ip, s.loc, “photos/admin”)
 FROM sensors s, cameras c
 WHERE s.accel_x > 500 AND coverage(c.loc, s.loc)

REAL-TIME ACTION SCHEDULING IN… Informatica 35 (2011) 269–282 273

mal algorithm does not theoretically exist for a job
scheduling problem [5]. In comparison, a static model
makes the design of an optimal scheduling possible as all
kinds of information about the jobs in a scheduling inter-
val is available before the scheduling starts. Neverthe-
less, such static scheduling problem is NP-hard and too
computationally expensive to be feasible in our real-time
scenario [30]. Even a sub-optimal, non-heuristic solution
for the problem, such as the Simulated Annealing (SA)
algorithm we have studied before [30], requires large
computation cost given a small input size.

As a summary, the unique set of characteristics of
our action scheduling problem in pervasive computing
makes scheduling algorithms in the literature based on a
static model inapplicable to the problem, due to their
significant running time or unconcern for a few charac-
teristics. These negative observations, as well as the ef-
fectiveness of our prior static heuristic algorithms for
non-real time action scheduling [30], motivate us to pro-
pose a new dynamic, heuristic algorithm for the real-time
action scheduling in Aorta.

4 Heuristic scheduling algorithm
We present the detailed design of our heuristic algorithm
for real-time action scheduling in this section. Algorithm
1 formulates the input and output of the problem and
depicts the flow of our proposed algorithm. The algo-
rithm is called by an action operator immediately after
the operator is generated. We developed the algorithm

based on the List Scheduling (LS) discipline in schedul-
ing theory [16] due to the tiny algorithmic running time
incurred by the discipline. Whenever a device becomes
free, the LS discipline schedules a request in the queue
that the device is eligible for on the device using a heu-
ristic.

Algorithm 1 starts by initializing the status informa-
tion about all devices involved in the scheduling (Lines 1-
3). Such information is dynamically maintained during
the execution flow of the algorithm (Lines 10, 19). The
algorithm then enters an endless scheduling loop (Line 4)
and performs action scheduling on the devices round by
round. The loop stops only when the system is termi-
nated and the action operator is destroyed.

In each round of the scheduling loop, Algorithm 1
first examines all requests in the input queue of the ac-
tion operator and removes those requests whose dead-
lines have been missed at this time (Lines 5-6). Next, for
each device that is currently free, the algorithm computes
the priority (PRI value) of every request in the queue that
the device is eligible for using Function computePriority
(Line 14). Function estimateCost(ri, dj, M) estimates the
current cost of request ri on device dj based on a cost
model M (Line 12). The algorithm then selects the re-
quest-device pair (rs, ds) having the highest priority (Lines
15-16) and schedules request rs on device ds in this round
(Line 18). Note that we regard a request-device pair has a
higher priority if the PRI value of this pair is smaller.

Algorithm 1: Dynamic and Heuristic Action Scheduling
Input: An action operator P on a type of device and the set of all m devices of the type D = (d1, d2,, dm).

 The streaming action requests R = (r1, r2, , rn,) appear in the input queue of P.
 Each riR has a deadline DLi and a set of candidate devices Di D.
Output: A schedule of R on D. Each riR is either assigned to and serviced by a device d Di,
 or is dropped due to the missing of its deadline.

1: for each device dj D (1 j m) do
2: dj.nextFreeTime = $now; /* nextFreeTime indicates the next time when dj will become free */
3: poll and store the current physical status of dj; /* $now denotes the current system time */
4: while true do
5: for each action request ri in R do
6: if ($now >= DLi) then remove ri from R; /* ri is dropped due to the missing of its deadline */
7: rs = null; ds = null; PRIs = + inf; /* request rs is to be scheduled on device ds in this round */
8: for each device dj D do
9: if dj.nextFreeTime > $now then continue; /* dj is currently busy */

10: dj.nextFreeTime = $now; update the new physical status of dj;
11: for each action request ri in R with dj Di do
12: costij = estimateCost(ri, dj, M); /* M is the cost model used to estimate the cost of ri on dj */
13: if ($now + costij > DLi) then continue; /* deadline of ri cannot be caught on dj at this time */
14: PRIij = computePriority(ri, dj, costij);
15: if PRIij < PRIs then
16: rs = ri; ds = dj; PRIs = PRIij;
17: if PRIs != + inf then
18: remove rs from R and service it on ds;
19: ds.nextFreeTime = $now + the cost of servicing rs on ds;
20: if $now < min{dj.nextFreeTime} (1 j m) then sleep until min{dj.nextFreeTime};
21: else sleep until the arrival of a new action request;

274 Informatica 35 (2011) 269–282 W. Xue et al.

If it happens that no free device is eligible for the re-
quests in the queue, Algorithm 1 is paused to avoid the
extensive computation overhead of vain loops. The exe-
cution of the algorithm will be resumed by the query
optimizer later when a new request arrives in the queue
(Line 21). On the other hand, if the algorithm detects that
all devices are currently busy, it pauses the execution of
itself until the nearest time in future when at least one of
these devices become free (Line 20).

In the following of this section, we present in more
detail a number of important issues in our algorithm de-
sign. We describe how the algorithm deals with each
characteristic of the action scheduling problem in Section
4.1. We introduce the model for cost estimation of action
executions in Section 4.2. In Section 4.3, we describe
how the priority of a request on a device is heuristically
computed. The assignment of default deadlines to non-
real time requests is discussed in Section 4.4.

4.1 Dealing with action scheduling
characteristics

We have considered all six characteristics of the action
scheduling problem in the design of our heuristic algo-
rithm. The algorithm incorporates a corresponding ap-
proach to deal with each characteristic. For the action-
device interaction, Algorithm 1 updates real-time physi-
cal status of a free device (Line 10) before computing the
priorities of the requests on the device in each round of
scheduling. The physical status update involves the proc-
ess of sending a request message to the device and pars-
ing real-time values of the status attributes from the re-
sponse message of the device [30].

The LS discipline adopted by Algorithm 1 efficiently
enables the dynamic model that our action scheduling
problem requires. No matter what the arrival pattern and
rate of action requests are, the algorithm performs a
round of scheduling when and only when a device is free
and there are requests in the queue that the free device is
eligible for.

As a real-time scheduling algorithm, Algorithm 1 re-
peatedly examines the deadlines of the action requests in
the queue and drops a request immediately when it de-
tects that the deadline of the request cannot be caught.
Moreover, the deadline of a request is considered as a
parameter in the priority computation of the request in
Function computePriority (see Section 4.3).

Before a device finishes a previous action request,
Algorithm 1 will not schedule a succeeding request on
the device. This ensures that the action requests are ser-
viced on the devices in an independent and non-
preemptive manner. The unrelated environment and eli-
gibility restrictions of devices are handled in the algo-
rithm by examining only the action requests that a free
device is eligible for and re-computing the cost of each
request on a free device in every round of scheduling.

4.2 Cost model for actions
To determine whether an action request can be serviced
timely, Algorithm 1 requires a cost model to estimate the

response time, and probably the cost values under other
metrics, of the request on a device (Line 12). For this
purpose, we have previously developed a cost model for
actions using response time as the cost metric [29].

Given the physical status of a device, the cost model
is able to accurately estimate the response time of any
request on the device. The core component of the model
is a set of action profiles, each of which specifies the
composition of an action in Aorta in terms of the sequen-
tial and/or parallel execution of a number of atomic op-
erations. These atomic operations are specific to the type
of device the action is executed on and are pre-defined in
our Aorta system. Their costs are obtained from empiri-
cal measurements in our study. The cost of an action on a
device is then estimated using the action profile, the es-
timated costs of the atomic operations on the type of de-
vice, and the physical status of the device [29]. We have
implemented the cost model in Aorta and validated its
correctness using actions on real devices including cam-
eras and robots. Unless otherwise specified, when we say
the “cost” of an action request in the following of this
paper, we mean the response time of the request on a
device.

Although we use response time as the single cost
metric in our study, our proposed action scheduling algo-
rithm is general and is indifferent to the specific metrics
used in the cost model. The cost values in Algorithm 1
(Lines 12-14, 19) can be evaluated using other cost met-
rics for actions, e.g. power consumption, or the combina-
tion of multiple metrics. The change of cost metrics will
not affect the applicability of the algorithm at all. The
only requirement of the algorithm is that a cost model
with response time as one of its metrics must be avail-
able. In addition, the model may be flexibly designed to
selectively involve a few other metrics and compute a
more generic request cost value to be used in the algo-
rithm.

Because we focus on action scheduling in this paper,
we omit the computation formulas in our cost model and
refer interested readers to our previous work for the de-
tails [29].

4.3 Priority computation
As a main sub-procedure of the algorithm, Function
computePriority uses Equation (1) to compute the PRIij

value of a request-device pair (ri, dj) as the multiplication
of three values: the basic priority of the pair, the current
eligibility degree and the current reliability degree of
device dj. These three values are denoted as Bij, Ej and Rj

and are computed using Equations (2), (5) and (6), re-
spectively.

jjijij REBPRI (1)

iiijij CDNWDLWCB 21 (2)

jj n

k
k

n

k
kj DLCW

11
1 (3)

REAL-TIME ACTION SCHEDULING IN… Informatica 35 (2011) 269–282 275

jj n

k
k

n

k
kj CDNCW

11
2

 (4)

nnE jj /1 (5)

jj FPR 1 (6)

Equation (2) computes the basic priority Bij of re-
quest ri on device dj as the weighted sum of three pa-
rameters: (i) the current cost Cij of servicing ri on dj, (ii)
the deadline DLi of ri, and (iii) the number of candidate
devices CDNi of ri. The intuition is that the smaller the
cost of a request on a free device, or the more urgent the
request, or the less flexibility to schedule the request on
the other devices, the higher priority should be given to
schedule the request on this device. As a result, our
scheduling heuristic is a weighted combination of three
simple heuristics under LS discipline in existing work on
job scheduling: whenever a machine is free, select the
job with the minimum processing time [3][18], or with
the minimum deadline [18], or with the least number of
candidate machines [16] to be first processed on the ma-
chine.

Among the three parameters in Equation (2), we
choose cost as the base parameter for the weighted-sum
computation. Our consideration is to use the most dy-
namic parameter as the base in order to make the com-
puted Bij value as specific to the request-device pair (ri,
dj) as possible. Unlike the value of Cij, the values of DLi

and CDNi depend on ri only but not dj and do not change
along with the physical status of dj.

Rather than setting system-defined static values, we
use an adaptive mechanism to adjust the two weights W1

and W2 used in Equation (2). When computing Bij in a
particular round of scheduling, the set of all unscheduled
requests that device dj is eligible for are identified. De-
note this set of requests as Rj. The values of W1 and W2 in
this round are then computed using Equations (3)-(4) as
the sum of current costs on dj of all requests in Rj divided
by the sum of deadlines or candidate device numbers of
these requests.

This adaptive setting of weight values roughly maps
the values of DLi and CDNi into the same magnitude of
Cij. It avoids the problem that the large magnitude of one
parameter will dominate those of the other two when they
are added. Moreover, overall information about the three
parameters of all requests in Rj is considered when the
basic priority of each request is computed. We use a sim-
ple summation to model this overall information to keep
the computation cost of Equation (2) negligible, so that
the running time of Algorithm 1 will not be greatly af-
fected by the frequent invocations of such computation.
We have tried and tested a few alternative combinations
of the three parameters in Equation (2), such as multipli-
cation and priority-based ordering in a list. By extensive
trial experiments, we found that they all induce worse
performance on action scheduling than the summation.

The essence of the multiplication of Bij by Ej and Rj

in Equation (1) is to use real-time status of a device to
adjust the priority of request scheduling on the device. In

Equation (5), the current eligibility degree Ej of a device dj

is computed as one plus the size nj of Rj divided by the
number n of all requests in the queue. The purpose is to
give a higher priority to request scheduling on a device
that is eligible for a smaller percent of the total requests.
A larger value of Ej implies that the device dj is currently
eligible for more requests and a lower priority will be
given to request scheduling on the device.

The current reliability degree Rj of a device dj com-
puted by Equation (6) is introduced because action execu-
tions occasionally fail on unreliable physical devices due
to temporary hardware malfunctions [30]. Consequently,
it is more desirable to schedule requests on a device that
induce fewer failures of action executions in history. In
the equation, FPj is the percentage of action executions
on dj that has failed. The value is kept track by the Aorta
query optimizer since the system starts. We assume that
there is a way for the optimizer to know whether an ac-
tion execution on a device is failed or not, either through
a system error returned by the invocation of the function
code block or by a notification message from the applica-
tion. Same as Ej, the larger the value of Rj is the more
unreliable and unfavourable to schedule a request on the
device dj.

4.4 Default deadline assignment for action
requests

Algorithm 1 assumes that every action request has a
deadline. The deadline of a request is specified in the
DEADLINE clause of the query that issues the request. If
this optional clause is not provided for a query, which
suggests all requests from the query are not real-time,
Aorta uses a simple scheme to assign a system-default
deadline to the requests.

In the scheme, we let the evaluation plan of a query
that has no DEADLINE clause dynamically maintain the
average request arrival rate Sa of the query. Suppose T is
the interval between the current system time and the time
when Aorta starts, and there are Na action requests issued
from the query within T. The current value of Sa is esti-
mated as Na / T. If a new request is issued from the query
at this time, its deadline is assigned to be the current sys-
tem time plus 1 / Sa. The motivation of this scheme is a
previous request from a query should have been serviced
before the next request from the same query appears.

5 Performance evaluation
We have evaluated the performance of our real-time ac-
tion scheduling algorithm using two actions in the perva-
sive lab monitoring application: the warn action on ro-
bots and the photo action on cameras, whose operations
have been described in Section 3. We call our algorithm
DPH (Dynamic, Priority-based Heuristic action schedul-
ing) in the experiments.

5.1 Experimental setup

276 Informatica 35 (2011) 269–282 W. Xue et al.

Parameter Description

Nd Number of devices

λ
Mean arrival rate of the requests (unit:
requests/second)

w
Weight parameter indicates the deadline
range of the requests

f
Maximum failure rate of action execu-
tions on the devices

Sd Dropping rate

Ta
Average service time of a scheduled
request

Ts Average scheduling time of a request

Table 1: Symbols for an action scheduling workload.

5.1.1 Simulation platform
The pervasive lab only has a small number of real de-
vices. To enable large-scale and controllable perform-
ance studies of our algorithm, we have developed home-
grown robot and camera simulators to simulate the ER1
robots [6] and the AXIS 2130 cameras [2] in the lab on
which the warn or photo action is executed.

We tuned the simulators through extensive tests us-
ing the real devices, and made an operation executed on a
simulated robot or camera has very similar effects to that
on a real device such as the cost of the operation and the
change of physical status the operation results in. All
experiments we present were conducted using the two
simulators.

5.1.2 Workload generation
We generated synthetic scheduling workloads of warn or
photo action requests and used these workloads as the
input traces for our simulation studies. Each workload
contains totally 1000 requests for an action that arrives
dynamically over time to be scheduled on a number of
simulated devices. The arrival of the requests follows a
Poisson process [11][17] with a mean arrival rate λ. Each
of the devices was assigned with a failure rate to indicate
the probability that a request scheduled on the device will
fail. The failure rate of a device was uniformly picked
from the range [0, f]. f [0, 1) is a parameter we set to
limit the maximum failure rate of action executions on
the devices.

In a scheduling workload we generated, the cost of
an action request on a candidate device was randomly and
uniformly picked from the cost range of the action. In the
pervasive lab monitoring application, the cost range in
seconds of a warn action is [8.32, 43.73], and that of a
photo action is [0.41, 8.87]. The deadline of a request
was uniformly picked from the range [avg_cost, w *
avg_cost]. avg_cost denotes the cost of the action execu-
tion on a device in the average case and its value is 26.03

sec for warn or 4.64 sec for photo. The weight w is a pa-
rameter we set to examine how the tightness of request
deadlines affects the performance of various heuristic
scheduling algorithms we compared in the experiments.

The distribution of candidate device numbers of the
requests in a workload was one of two kinds: (i) the can-
didate device number of each request was uniformly and
independently picked from the range [1, Nd], or (ii) the
candidate device numbers of all requests were picked
from [1, Nd] and follow a Zipfian distribution as a whole.
Nd is the number of devices involved in the scheduling.
For brevity, we call the workloads with these two kinds
of distributions the Uniform and Zipfian workloads in the
experiments. To be more specific, in a Zipfian workload
many requests have only one candidate device, fewer
requests have two, even fewer have three and so on. As a
result, a large portion of the requests in a Zipfian work-
load are skewed on a small subset of the devices.

5.1.3 Performance metrics
The performance metrics we studied for an action

scheduling workload include: (i) the dropping rate Sd, (ii)
the average service time of a scheduled request Ta, and
(iii) the average scheduling time of a request Ts. The
dropping rate is defined as the percentage of action re-
quests in the workload that are dropped in the scheduling
due to deadline missing. The average service time of a
scheduled request is defined as the average response time
of the scheduled requests in the workload. The average
scheduling time of a request is defined as the average
computation cost that the algorithm spends on scheduling
one request in the workload.

A good algorithm for our real-time action scheduling
problem must first achieve a small dropping rate of the
action requests over time. In other words, the dropping
rate should be considered as the primary performance
metric for our problem. Under a stable dropping rate, it is
desirable that on average the scheduled requests are ser-
viced as fast as possible so that applications requiring the
action executions are responded rapidly. Furthermore,
the running time of the algorithm must be negligible to
ensure the scheduling process will not add considerable
delay to the requests waiting in the queue.

Table 1 summarizes the symbols we used in the ex-
periments to denote the parameters and metrics of an ac-
tion scheduling workload.

5.2 Comparison of various scheduling
heuristics

The core of our DPH algorithm is the scheduling heuris-
tic that computes the priority of a request on a device as
the weighted sum of three parameters: the cost on the
device, the deadline and the candidate device number of
the request. In this section, we validate the choice of us-
ing cost as the base parameter in the weighted-sum com-
putation of our heuristic and demonstrate the perform-
ance benefit of our heuristic over existing dynamic
scheduling heuristics in the literature.

REAL-TIME ACTION SCHEDULING IN… Informatica 35 (2011) 269–282 277

0

0.1

0.2

0.3

0.4

0.5

0.5 0.75 1 1.25 1.5
λ

S
d

DPH DPH-DL DPH-CDN SRF EDF LFD-LFR RANDOM

(a) warn + Uniform

0

0.1

0.2

0.3

0.4

0.5

0.5 0.75 1 1.25 1.5
λ

S
d

DPH DPH-DL DPH-CDN SRF EDF LFD-LFR RANDOM

(c) warn + Zipfian

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10
λ

S
d

DPH DPH-DL DPH-CDN SRF EDF LFD-LFR RANDOM

(b) photo + Uniform

0

0.1

0.2

0.3

0.4

0.5

2 4 6 8 10
λ

S
d

DPH DPH-DL DPH-CDN SRF EDF LFD-LFR RANDOM

(d) photo + Zipfian

Figure 5: Dropping rates of seven scheduling heuristics with different request arrival rates.

0.05

0.1

0.15

0.2

1.5 2 2.5 3 3.5
w

S
d

DPH DPH-DL DPH-CDN SRF

(a) warn + Uniform

0.1

0.15

0.2

0.25

1.5 2 2.5 3 3.5
w

S
d

DPH DPH-DL DPH-CDN SRF

(c) warn + Zipfian

0.05

0.1

0.15

0.2

1.5 2 2.5 3 3.5
w

S
d

DPH DPH-DL DPH-CDN SRF

(b) photo + Uniform

0.1

0.15

0.2

0.25

1.5 2 2.5 3 3.5
w

S
d

DPH DPH-DL DPH-CDN SRF

(d) photo + Zipfian

Figure 6: Dropping rates of four scheduling heuristics with different w parameters.

278 Informatica 35 (2011) 269–282 W. Xue et al.

We compared our heuristic with three heuristics
widely used for classic job scheduling: (i) shortest re-
quest first [3][18], (ii) earliest deadline first [18], and (iii)
least flexible device with least flexible request first [16].
In the experiments, we replaced our heuristic with one of
these heuristics in DPH while keeping other sub-modules
of the algorithm unmodified. The consequent algorithms
are denoted as SRF, EDF and LFD-LFR, correspond-
ingly. We picked the three heuristics for performance
comparison with ours because they have been illustrated
to be effective for different variants of the parallel ma-
chine scheduling problem under a number of perform-
ance metrics [16]. Moreover, they can be easily used with
the LS discipline to enable a dynamic scheduling model
as our heuristic.

Whenever a device becomes free in a round of
scheduling, SRF, EDF and LFD-LFR select a request in
the queue to be serviced on the device if and only if the
request has the smallest cost on the device, the earliest
deadline, or the least number of candidate devices. If
multiple devices are free at the same time, SRF first
schedules the request-device pair with the smallest cost,
EDF first schedules the request with the earliest deadline
on any free candidate device, and LFD-LFR first sched-
ules a request on the device that is eligible for the least
number of requests in the queue.

To verify the correct design of our heuristic, two
variants of it using deadline or candidate device number
as the base parameter in the weighted-sum computation
were also included in the performance comparison. We
denote DPH with these two variant heuristics as DPH-
DL and DPH-CDN. As the baseline of performance
analysis, we included a RANDOM algorithm in the com-
parison. Under the LS discipline, the algorithm randomly
schedules each request on one of its candidate devices.

We first examined the dropping rates achieved by
different scheduling heuristics. Figure 5 shows the metric
values of the seven algorithms with varied request arrival
rate. For each action scheduling workload in this experi-
ment, the values of Nd and w were fixed to be 20 and 2.0,
and the failure rate of every device was set to be zero
(i.e., f = 0.0). Each value in the figure is the average of
ten independent runs of the experiment. This is the same
for all figures and tables shown in the following. We
used different λ values for the warn and photo workloads
in the figure due to the different cost ranges of the two
actions. The values in the figure were subtly picked to
demonstrate the performance differences between the
algorithms from the situation that the devices in a work-
load were slightly underloaded to the situation that they
were heavily overloaded by the requests in the workload.

In Figure 5 we see that, all algorithms dropped a lar-
ger percentage of requests when the requests were arriv-
ing at a faster rate. With the same λ value, the algorithms

dropped more requests under Zipfian workloads than
Uniform workloads. This was because the requests in a
Zipfian workload were skewed on few devices and these
skewed requests had a higher probability of being
dropped due to the overloading of their limited candidate
devices. The figure shows that DPH consistently dropped
fewer requests than DPH-DL and DPH-CDN under all
kinds of workloads, although the performance differ-
ences between them were not very large. This result veri-
fies we have chosen the correct base parameter for our
heuristic. In the meanwhile, our heuristic has a nice
property that its performance is indifferent to the base
parameter chosen.

DPH had a significant better performance than EDF,
LFD-LFR and RANDOM in Figure 5. The performance
difference between DPH and these algorithms got large
when the request arrival rate increased. Among the three,
the performance of EDF was as bad as RANDOM and
LFD-LFR always performed better than both of them.
The result indicates that EDF is not suitable for our ac-
tion scheduling problem, because the dynamic costs and
candidate device numbers of action requests have be-
come the dominating factors to the performance of an
algorithm for our problem.

The performance of SRF in the figure was much
closer to DPH compared to LFD-LFR. It was even better
than DPH-DL and DPH-CDN in several cases. This was
because cost is the most dynamic parameter in our prob-
lem and the cost of an action request on a device will
change dynamically in the scheduling process with the
physical status updates of the device. As a result, an un-
scheduled request that currently has a larger cost on a
device has the opportunity to get its cost on the device
decreased after the physical status of the device is
changed. This effect makes the minimization of the cur-
rent request cost on a free device more beneficial in our
problem than in classic job scheduling.

DPH still outperformed SRF noticeably as shown in
Figure 5, especially when the devices had a moderate
load in the middle part of each sub-figure. The perform-
ance benefit of DPH over SRF was larger under Uniform
workloads than Zipfian workloads, and was larger under
warn workloads than photo workloads. This indicates
that when requests are skewed or the cost range of action is
small, the performance of two reasonable scheduling heu-
ristics gets closer and the opportunity for performance
improvement is lowered. More specifically, DPH
dropped 3%-30%, 3%-24%, 8%-14% and 1%-10% fewer
requests than SRF in Figure 5(a)-(b), respectively.

Figure 6 shows the dropping rates of DPH, DPH-DL,
DPH-CDN and SRF when the w parameter for request
deadline generation varied. We still fixed Nd = 20 and f =
0.0 in this experiment, and set λ = 1.0 for the warn work-
loads and λ = 8.0 for the photo workloads. No matter

REAL-TIME ACTION SCHEDULING IN… Informatica 35 (2011) 269–282 279

how w is varied, EDF, LFD-LFR and RANDOM per-
formed much worse than the other four algorithms the
same as in Figure 5. As a result, we do not include the
results for these algorithms in Figure 6 in order to make
the performance differences between the other four algo-
rithms more apparent.

As expected, more requests were dropped by every
algorithm when the deadlines of requests got smaller.
DPH consistently outperformed the other three no matter

how the value of w was changed. Figure 6(a)-(b) indicates
under Uniform workloads the performance difference
between DPH and SRF increased when the request dead-
lines were large. For example, DPH dropped 11%, 30%
and 38% fewer requests than SRF when the value of w
was set to be 1.5, 2.0 and 2.5 under the warn Uniform
workloads. In comparison, the performance difference
between DPH and SRF remained nearly constant under
Zipfian workloads, as shown in Figure 6(c)-(d).

 Algorithm
Workload

DPH DPH-DL DPH-CDN SRF EDF LFD-LFR RANDOM

warn
Uniform 19.77 20.12 20.21 18.17 23.12 23.16 22.94

Zipfian 17.92 21.11 21.47 17.44 22.83 22.54 22.68

photo
Uniform 2.58 2.66 2.58 2.27 4.2 4.07 4.19

Zipfian 2.64 2.95 2.95 2.24 4.05 3.98 4.24

Table 2: Ta achieved by different scheduling heuristics (unit: second)

 Algorithm
Workload

DPH SRF EDF LFD-LFR RANDOM

warn
Uniform 0.291 0.279 0.246 0.268 0.252

Zipfian 0.266 0.257 0.237 0.252 0.241

photo
Uniform 0.113 0.110 0.075 0.080 0.076

Zipfian 0.100 0.101 0.076 0.082 0.077

Table 3: Ts achieved by different scheduling heuristics (unit: second)

We next investigated the average service time and
average scheduling time achieved by different scheduling
heuristics. The results are listed in Tables II and III. The
parameter setting we used in this experiment was Nd =
20, w = 2.0, f = 0.0, λ = 1.0 for the warn workloads and λ
= 8.0 for the photo workloads.

In Table 2, SRF achieved the smallest Ta among the
seven heuristics under all kinds of workloads. This was
because SRF always picked the request currently in the
queue that had the smallest cost on a free device to be
serviced in each round of scheduling. Considering the
unknown arrival pattern of action requests and the dy-
namically changing costs of them on devices, we ex-
pected SRF would have the best possible performance on
Ta in practice. Our DPH achieved the second best Ta

among the heuristics compared. EDF and LFD-LFR per-
formed as bad as RANDOM in this experiment due to
the inconsideration of the request cost in these heuristics.
The result further proved that the performance benefit of
DPH over its variants DPH-DL, DPH-CDN and the exist-
ing EDF, LFD-LFR heuristics for our action scheduling
problem.

The difference between DPH and SRF in Table 2
was consistently smaller than 0.5 seconds indifferent to
what kinds of workloads we used. This difference is in-
significant to the warn action but non-negligible to the
photo action, considering the different cost ranges of the

two actions. The result implies that DPH can perform as
well as SRF in Ta when the average cost of the action to
be scheduled is in the magnitude of tens of seconds or
larger.

Table 3 shows that the average scheduling time of
DPH was about the same as that of SRF under all kinds
of workloads. On average DPH only required 1-12 milli-
seconds more computation cost than SRF in each round
of scheduling. Since SRF is one of the existing schedul-
ing heuristic requiring the simplest processing logic, the
result indicates that the computation cost of DPH is neg-
ligible. The average scheduling time of DPH-DL and
DPH-CDN are not shown in the table because they were
almost the same as that of DPH in the experiment. The
small scheduling time of EDF, LFD-LFR and RANDOM
in the table was due to the fact that these algorithms had
a much larger dropping rate than DPH or SRF as shown
in Figures 4-5, so that fewer requests are remained to be
selected from in each round of scheduling.

We have run a number of additional experiments us-
ing different settings of Nd, w and λ values in the work-
loads. All these experiments came up with results that are
consistent with those revealed by Figures 4-5 and Tables
2-3. We omit the details here.

In summary, our DPH algorithm significantly out-
performed existing EDF and LFD-LFR heuristic algo-
rithms for action scheduling on the dropping rate and the

280 Informatica 35 (2011) 269–282 W. Xue et al.

average service time of a scheduled request. In compari-
son with SRF, DPH performed better in the dropping rate
and performed equally well in the average service time
when the action cost magnitude is not smaller than tens
of seconds. When the cost magnitude is small, DPH per-

formed a little worse than SRF in the average service
time but still dropped noticeably less requests than SRF
in the scheduling process. With a similar dropping rate,
the scheduling time of DPH was as small as those re-
quired by existing heuristic algorithms.

0.05

0.15

0.25

0.35

0.1 0.2 0.3 0.4 0.5
f

S
d

DPH DPH-WRE

(a) warn

0.05

0.15

0.25

0.35

0.1 0.2 0.3 0.4 0.5
f

S
d

DPH DPH-WRE

(b) photo

Figure 7: Dropping rates of DPH with and without reliability estimation on devices.

5.3 Effectiveness of reliability estimation
We validate the effectiveness of involving device reli-
ability estimation in the priority computation of our heu-
ristic in this section. We modify Equation (1) to exclude
Rj from the multiplication and denote the consequent
variant of our algorithm DPH-WRE (Without Reliability
Estimation). For each workload in this experiment, the
parameters other than f were fixed to be Nd = 20, w = 2.0,
λ = 1.0 for the warn workloads and λ = 8.0 for the photo
workloads.

We varied the value of the parameter f from 0.1 to
0.5 in the experiment and the dropping rates of DPH and
DPH-WRE under Uniform workloads are shown in Fig-
ure 7. Because our results showed that the average ser-
vice time and scheduling time were hardly affected by
the existence of reliability estimation, we omit the results
for these two metrics.

In Figure 7 we see that, compared to its counterpart
without reliability estimation, DPH was able to reduce
the number of dropping requests by 6%-19% under both
the warn and photo workloads. We have tried Zipfian
workloads and other parameter settings of the workloads.
The experiments all had very similar results to those in
Figure 7.

6 Related work
There have been a number of publications in pervasive
computing that study using sensor readings to actuate the

operations on different types of devices, such as sensor
nodes [12], cameras [24], phones [22], vehicles [28] and
lights [7]. The EnviroTrack system [1] tracks and in-
vokes pre-defined computations in response to environ-
mental objects like vehicles over networks of sensor
nodes. Flinn et al. proposed a remote execution system in
pervasive computing named Spectra [8]. Their idea of
best execution plan selection for an application has a
similar goal to our scheduling of an action request on the
best candidate device.

User-defined functions have been widely supported
in commercial DBMS products [9][14][15]. These func-
tions run outside the core of the DBMS and their side
effects to data (e.g., updates) are never considered during
execution. In Aorta, we put actions as query operators
and effectively schedule their executions on the devices.
Our action scheduling algorithm considers the effects of
action executions on the devices. The physical status
change of a device incurred by an action execution is
examined before the next execution is scheduled on the
device.

Braun et al. [3] have compared the performance of
eleven static heuristics for parallel machine scheduling
under various kinds of task workloads. Their results
show that in most cases the simple Min-min heuristic
performs better than other complex heuristics such as
Generic Algorithms, Simulated Annealing and A*. Most
heuristics studied in the paper require a complete knowl-
edge about a static task set before the scheduling is per-
formed so they are inapplicable to our dynamic scenario.

REAL-TIME ACTION SCHEDULING IN… Informatica 35 (2011) 269–282 281

Moreover, the Min-min heuristic the authors identified to
have a generally good scheduling performance is essen-
tially the same as the SRF algorithm that we have studied
in the experiments. Our results have illustrated that our
proposed algorithm noticeably outperforms SRF on the
dropping rate of dynamically- arriving action requests.

Previous work on multiprocessor scheduling in real-
time systems [13][18] takes static sets of tasks as the
scheduling input and aims at enhancing the schedulabil-
ity of these task sets. Their proposed scheduling algo-
rithms are based on a branch-and-bound tree search with
backtracks and a weighted-sum heuristic integrating the
deadline and the earliest start time of a task. These algo-
rithms are too running time-intensive to be adaptable to
our scenario and no approach is applied in them to adap-
tively fix the weight value used in the heuristics as our
algorithm. The resource requirements of tasks other than
CPU processing time or the parallelization of a task on
multiple processors have also been considered in this
scheduling work. These issues are not related to our ac-
tion scheduling problem.

Many load balancing approaches have been pro-
posed in distributed systems for the non-real time sched-
uling of jobs on an interconnected network of computers
[11][19][20][25][26]. Each job first arrives at the local
queue of a computer and then transmitted to be processed
by another computer if the original one has been over-
loaded. In comparison, in our action scheduling problem
all devices of a type share a global queue of action re-
quests and there is no communication among devices in
the scheduling process. The scheduling model in this
distributed computing scenario is dynamic as ours. How-
ever, the computers are all regarded as identical rather
than unrelated and there is no job deadline involved in
the problem.

Reliability-driven job scheduling in parallel and dis-
tributed systems has attracted many research efforts in
the literature [17][23]. A reliability model that assumes
the independent failures of jobs on the computers follow-
ing a Poisson probability distribution is proposed to drive
the scheduling process combined with the job costs. In
comparison, in our heuristic action scheduling algorithm
we estimate the reliability of an action request on a de-
vice in a much simpler way based on computing the av-
erage failure rate of requests on the device in history.

7 Conclusion
We have presented the design of the new dynamic and
heuristic algorithm for real-time action scheduling in our
current prototype of Aorta, which is a query processing
system for pervasive computing. We make actions as
query operators in Aorta and share a single action opera-
tor among the plans of multiple concurrent queries hav-
ing actions on the same type of device. Each action op-
erator adaptively performs the process of action schedul-
ing on all devices of the type using the scheduling algo-
rithm we propose.

We identify all characteristics of the action schedul-
ing problem we study and apply corresponding ap-
proaches to handle each characteristic in our algorithm.
The heuristic we develop for action scheduling is based
on the priority computation for each unscheduled action
request that a free device is eligible for and selecting the
request with the highest priority to be serviced by the
device at this time. The priority of a request on a device
incorporates many parameters involved in the schedul-
ing: the cost of the request on the device, the deadline
and the candidate device number of the request, the cur-
rent eligibility and reliability degree of the device.

We have performed simulation studies to compare
our priority-based heuristic with three heuristics for dy-
namic scheduling in the literature. The results demon-
strated the performance benefit of our heuristic over
these existing heuristics. We have also conducted ex-
periments to validate our choice of using cost as the base
parameter in the weighted-sum computation of our heu-
ristic as well as the effectiveness of the reliability estima-
tion on devices in the heuristic.

References
[1] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans,

J. George, S. George, L. Gu, T. He, S. Krishna-
murthy, L. Luo, S. Son, J. Stankovic, R. Stoleru, and
A. Wood. EnviroTrack: Towards an environmental
computing paradigm for distributed sensor networks.
In Proceedings of the 24th Inter-national Confer-
ence on Distributed Computing Systems, 2004, pp.
582-589.

[2] Axis Communications. http://www.axis.com.
[3] T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M.

Maheswaran, A.I. Reuther, J.P. Robertson, M.D.
Theys, B. Yao, D. Hensgen, and R.F. Freund. A
comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous dis-
tributed computing systems. Journal of Parallel and
Distributed Computing 61(6) (2001) 810-837.

[4] Crossbow Inc. http://www.xbow.com.
[5] M.L. Dertouzos and A.K.L. Mok. Multiprocessor

on-line scheduling of hard-real-time tasks. IEEE
Transactions on Software Engineering 15(2) (1989)
1497-1506.

[6] Evolution Robotics. www.evolution.com.
[7] C. Feng, L. Yang, J.W. Rozenblit, and P. Beudert.

Design of a wireless sensor network based auto-
matic light controller in theater arts. In Proceedings
of the 14th International Conference and Workshops
on the Engineering of Computer-Based System,
2007, pp. 161-170.

[8] J. Flinn, S.Y. Park, and M. Satyanarayanan. Balanc-
ing performance, energy, and quality in pervasive
computing. In Proceedings of the 22nd International
Conference on Distributed Computing Systems,
2002, pp. 217-226.

[9] IBM DB2. www.ibm.com/db2.

282 Informatica 35 (2011) 269–282 W. Xue et al.

[10] C. Intanagonwiwat, R. Govindan, and D. Estrin. Di-
rected diffusion: A scalable and robust communica-
tion paradigm for sensor networks. In Proceedings
of the 6th Annual International Conference on Mo-
bile Computing and Networking, 2000, pp. 56-67.

[11] H. Lin and C. Raghavendra. A dynamic load-
balancing policy with a central job dispatcher
(LBC). IEEE Transactions on Software Engineering
18(2) (1992) 148-158.

[12] S. Madden, M.J. Franklin, J.M. Hellerstein, and W.
Hong. TinyDB: An acquisitional query processing
system for sensor networks. ACM Transactions on
Database Systems 30(1) (2005) 122-173.

[13] G. Manimaran and C.R. Murthy. An efficient dy-
namic scheduling algorithm for multiprocessor real-
time systems. IEEE Transactions on Parallel and
Distributed Systems 9(3) (1998) 312-319.

[14] Microsoft SQL Server. www.microsoft.com/sql/.
[15] Oracle Database.

http://www.oracle.com/database/index.html.
[16] M. Pinedo. Scheduling Theory, Algorithms, and Sys-

tems. 2nd Edition, Prentice Hall, 2002.
[17] X. Qin and H. Jiang. A dynamic and reliability-

driven scheduling algorithm for parallel real-time
jobs on heterogeneous clusters. Journal of Parallel
and Distributed Computing 65(8) (2005) 885-900.

[18] K. Ramamritham, J. Stankovic, and P.F. Shiah. Effi-
cient scheduling algorithms for real-time multi-
processor systems. IEEE Transactions on Parallel
and Distributed Systems 1(2) (1990) 184-194.

[19] K.W. Ross and D.D. Yao. Optimal load balancing
and scheduling in a distributed computer system,
Journal of the Association for Computing Machinery
38(3) (1991) 676-689.

[20] R. Shah, B. Veeravalli, and M. Misra. On the design
of adaptive and decentralized load balancing algo-
rithms with load estimation for computational grid
environments. IEEE Transactions on Parallel and
Distributed Systems 18(12) (2007) 1675-1686.

[21] C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor
information networking architecture and applica-
tions. IEEE Personal Communications 8(4) (2001)
52-59.

[22] F. Siegemund and C. Flörkemeier. Interaction in
pervasive computing settings using bluetooth-
enabled active tags and passive RFID technology to-
gether with mobile phones. In Proceedings of the 1st
International Conference on Pervasive Computing
and Communications, 2003, pp. 378-387.

[23] S. Srinivasan and N.K. Jha. Safety and reliability
driven task allocation in distributed systems. IEEE
Transactions on Parallel and Distributed Systems
10(3) (1999) 238-251.

[24] N.M. Su, H. Park, E. Bostrom, J. Burke, M.B.
Srivastava, and D. Estrin. Augmenting film and
video footage with sensor data. In Proceedings of the
2nd International Conference on Pervasive Comput-
ing and Communications, 2004, pp. 3-12.

[25] R. Subrata, A.Y. Zomaya, and B. Landfeldt. Game-
theoretic approach for load balancing in computa-
tional grids. IEEE Transactions on Parallel and Dis-
tributed Systems 19(1) (2008) 66-76.

[26] A.N. Tantawi and D. Towsley. Optimal static load
balancing in distributed computer systems. Journal
of the Association for Computing Machinery 32(2)
(1985) 445-465.

[27] M. Weiser. The computer for the 21st century, Sci-
entific American 265(3) (1991) 94-100.

[28] Z. Wu, Q. Wu, H. Cheng, G. Pan, M. Zhao, and J.
Sun. ScudWare: A semantic and adaptive middle-
ware platform for smart vehicle space. IEEE Trans-
actions on Intelligent Transportation Systems 8(1)
(2007) 121-132.

[29] W. Xue and Q. Luo. Action-oriented query process-
ing for pervasive computing. In Proceedings of the
2nd Biennial Conference on Innovative Data Sys-
tems Research, 2005, pp. 305-316.

[30] W. Xue, Q. Luo, and L.M. Ni. Systems support for
pervasive query processing. In Proceedings of the
25th International Conference on Distributed Com-
puting Systems, 2005, pp. 135-144.

[31] Y. Yao and J. Gehrke. Query processing for sensor
networks. In Proceedings of the 1st Biennial Confer-
ence on Innovative Data Systems Research, 2003.

