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Hand pose estimation plays an essential role in sign language understanding and human-computer inter-
action. Existing RGB-based 2D hand pose estimation methods learn the joint locations from a single
resolution, which is not suitable for different hand sizes. To tackle this problem, we propose a new deep
learning-based framework that consists of two main modules. The first one presents a segmentation-based
approach to detect the hand skeleton and localize the hand bounding box. The second module regresses
the 2D joint locations through a multi-scale heatmap regression approach that exploits the predicted hand
skeleton as a constraint to guide the model. Moreover, we construct a new dataset that is suitable for both
hand detection and pose estimation tasks. It includes the hand bounding boxes, the 2D keypoints, the 3D
poses and their corresponding RGB images. We conduct extensive experiments on two datasets to validate
our method. Qualitative and quantitative results demonstrate that the proposed method outperforms the
state-of-the-art and recovers the pose even in cluttered images and complex poses.

Povzetek: V prispevku je predstavljena učna metoda za nalogo 2D ocenjevanja položaja roke z uporabo
monokularne RGB kamere.

1 Introduction

The hands are one of the most important and intuitive inter-
action tools for humans. Solving the hand pose estimation
problem is crucial for many applications, including human-
computer interaction, virtual reality, augmented reality and
sign language recognition.

The earlier works in hand tracking use special hardware
to track the hand, such as gloves and visual markers [1].
But, these types of solutions are expensive and restrict the
applications to limited scenarios. Tracking hands without
any device or markers is desirable. To this end, several
works have been proposed in the literature to tackle this
problem [2]. However, markerless hand pose estimation
is very challenging due to strong articulations and self-
occlusions. Furthermore, the hands have a huge variation
in shape, size, skin texture and color.

The rapid development of deep learning techniques rev-
olutionizes complex computer vision problems [3, 4] and
outperforms conventional methods in many challenging
tasks, including object classification [5], object segmen-
tation [6, 7] and object detection [8, 9]. Hand pose es-
timation is not an exception and deep convolution neural
networks (CNNs) [10] have been applied successfully in
[11, 12, 13]. These studies address the scenarios where the
hand is tracked via an RGB-D camera. However, depth-
enhanced data is not available everywhere, and they need
an overhead setup to utilize. Thus, estimating the hand pose
from a single RGB image has been an active and challeng-
ing area of research, as they are cheaper and easier to use
than depth sensors [14, 15, 16, 17].

We can classify RGB-based hand pose estimation meth-
ods into two broad categories as regression-based and
detection-based. The former approach uses CNNs as an au-
tomatic feature extractor to directly estimate the joint loca-
tions [14, 18, 19]. Although the regression-based approach
is fast at inference time, it remains a difficult optimization
problem due to its non-linear nature requiring many itera-
tions and a lot of data for convergence [20].

To overcome these limitations, recent solutions to human
and hand pose estimation problems use probability density
maps such as the heatmap [16, 21, 22]. They divide the
pose estimation problem into two steps. The first one finds
a dense pixel-wise prediction for each joint while the sec-
ond step infers the joint locations by finding the maximum
pixel in each heatmap. The heatmap representation helps
the neural network to estimate the joint locations robustly
and has a fast convergence property.

In this work, we focus on the 2D hand pose estima-
tion from a single RGB image. This task is also chal-
lenging due to the many degrees of freedom (DOF) and
the self-similarity of the hand. The proposed approach
has two principal components; The first one estimates the
hand skeleton using the UNet-based architecture [23]. The
hand bounding boxes are extracted in a post-processing
step from the predicted skeleton. The second part presents
a new multi-scale heatmap regression approach to estimate
joint locations from multiple resolutions. Specifically, the
network output is supervised on different scales to ensure
accurate poses for different hand image sizes. This strat-
egy helps the model for better learning of the contextual
and the location information. Besides, our method uses the
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predicted hand skeleton as additional information to guide
the network to predict the 2D hand pose.

We validate the proposed method on a common existing
Large-Scale Multi-View hand pose dataset (LSMV) [18].
Furthermore, we create a new dataset suitable for hand de-
tection and 2D pose estimation tasks using leap motion sen-
sors. This dataset includes 60 thousand samples, such that
each one contains the hand bounding box, the 2D keypoint,
3D pose and the corresponding RGB image. We extended
our experiments to our newly created dataset (GTHD). Re-
sults demonstrate that our method generates accurate poses
and outperforms three state-of-the-arts [18, 24, 25]. In
summary, our contributions are the following:

– We propose a segmentation-based approach for skele-
ton detection and hand bounding box localization.

– We propose a multi-scale heatmap regression archi-
tecture that uses the hand skeleton as additional in-
formation to constrain the 2D hand pose estimation
task. The reported qualitative and quantitative re-
sults demonstrate the competitiveness of the proposed
method.

– We introduce a new dataset to validate the hand detec-
tion and the 2D pose estimation methods.

We organize the rest of the paper as the following. Sec-
tion 2 gives the problem definition as well as the related
work. Section 3 describes in detail our hand detection and
pose estimation approaches and defines the required steps
to build our hand pose dataset. Section 4 discusses the con-
ducted experiments and the obtained qualitative and quan-
titative results. Finally, Section 5 provides the main con-
clusion of this work and a direction for further research.

2 Related work

2.1 Hand detection
The hand detection task identifies the hand region and dis-
tinguishes it from the background. It has many applications
including, gesture recognition [26] hand segmentation and
hand tracking [27]. Traditional computer vision methods
follow a feature extraction and classification scheme for
hand detection. They extract skin color features, shape fea-
tures or combine the two types of features to represent the
image [28]. Following, they utilize a classifier to check
each pixel, whether it belongs to the hand or not [29].

Deep learning-based methods circumvent such bottle-
necks by unifying feature extraction and classification
phases. This combined strategy has been outperforming
conventional methods for the last five years. For instance,
[30] employs two streams Faster RCNN [8] for hand de-
tection. The first stream extracts feature maps from depth
video while the second one extracts it from RGB video.
After that, they use an alignment stage to connect the two
features and they run a region proposal network to classify

the pixels. Another method [31] applies multi-scale Faster-
RCNN to avoid missing the small hands.

2.2 Hand pose estimation

Estimating the 2D hand pose has been an active and chal-
lenging area of research in computer vision. Recently deep
learning-based methods achieve competitive performance
in this task as well. We can classify these based on the in-
put modality into two broad categories as depth-based and
RGB-based. In the former class, several studies achieve
accurate 2D pose estimation results for images containing
single hand [11, 12, 13, 32]. Also, [33] handles multi-hands
using pictorial structure models and Mask-RCNN.

RGB-based methods are more challenging and less stud-
ied in the literature. Early studies give the cropped hand
image as input to the ResNet-based model to directly
regress the 2D joint by minimizing the mean-squared er-
ror (MSE) between the predicted 2D joint annotations and
their ground truth [18]. Recently, [25] employs a graph-
based framework to allow features at each node to be rep-
resented by 2D spatial confidence maps. Also, [24] pro-
pose an adaptive graphical model network that includes two
branches of CNNs computing unary and pairwise potential
functions and a graphical model to integrate the calculated
information. [34] employs a cascaded CNN to predict the
silhouette information (mask) and the 2D key-points in an
end-to-end manner after localizing the hand region. To per-
form efficient small hand 2D pose estimation, [35] simul-
taneously regresses the hand region of interests and hand
key-points. Subsequently, it iteratively uses the hand RoIs
as feedback information for boosting the hand keypoints
estimation performance. [8] proposes the Limb Probabilis-
tic Mask, which uses a Gaussian distribution mask rather
than the one-hot mask. To address the self-occlusion is-
sue, it splits the whole hand mask into five fingers and the
palm. The 2D pose regression task employs the synthe-
sized hand mask to model the structural relationship be-
tween the 2D keypoints. All the aforementioned state-of-
the-art methods results are presented in Table 1 that sum-
marized the hand detection and pose estimation techniques.
Besides, it shows the used datasets, including LSMV [18],
OneHand10K [34], CMU and MPII+NZSL [37]. The re-
sults are reported using the mean PCK metric [37], which
is widely used to evaluate human and hand pose estima-
tion methods. It considers the predicted joints as correct
if the distance to the ground truth joint is within a certain
threshold γ. Some approaches use a normalized thresh-
old by dividing all the joints values by the size of the hand
bounding box. In this work, we propose a new multi-scale
heatmap regression architecture that uses the 2D skeleton
as a constraint to accurately estimate the 2D hand pose for
small and big hands.
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Hand detection Model Estimation
method

meanPCK↑a,b Threshold
γ

Gomez
et al
[18]

Faster R-CNN for
bounding box detection

ResNet-50 Direct re-
gression

80.74 on LSMV (Self-
dataset)

0.01-0.06
(N)

Kong et
al [24]

Cropping square im-
age patches of anno-
tated hands

Adaptive graphical
model

Heatmaps
detection

70.34 on CMU and
85.63 on LSMV

0.01-0.06
(N)

Kong et
al [25]

Cropping square im-
age patches of anno-
tated hands

Spatial information
aware graph convolu-
tional network

Heatmaps
detection

81.72 on MPII+NZSL,
71.65 on CMU and
85.56 on LSMV

0.01-0.06
(N)

Wang
et al
[34]

Semantic segmentation
using CNN

Mask-pose cascaded
CNN

Heatmaps
detection

90.27 on OneHand10K
(Self-dataset) and 74.82
on MPII+NZSL

0.2

Wang
et al
[35]

Hand region localiza-
tion using CNN-based
bounding box regres-
sion

Simultaneously regress
the hand region of in-
terests and hand key-
points

Heatmaps
detection

0.94 on OneHand10K 0.2

Chen et
al [8]

Limb probabilistic
mask with splitting the
hand into fingers and
palm

Nonparametric struc-
ture regularization
machine

Direct re-
gression

88.46 on OneHand 10k
and 80.03 on CMU

0.1-0.3
and 0.04-
0.012
(N)

Table 1: Summary of related 2D hand pose estimation approaches and their obtained results. We show the meanPCK
metric for defined thresholds on a specific dataset. ↑: higher is better, a, b: begin and the end of the experimented interval
of thresholds γ and N refers to a normalized threshold.

3 Proposed method
Our proposed approach for 2D hand pose estimation uses
a skeleton-based approach to detect the hand and extract
the bounding boxes. The second part uses the predicted
skeleton as a constraint to guide the proposed multi-scale
heatmap regression approach to predict the 2D joint loca-
tions of the cropped hand.

3.1 Skeleton detection and hand bounding
box localization

We represent the detected hand location in an image by
a rectangular region with four corners. Faster-RCNN [8]
type of deep network models directly regress the four cor-
ner coordinates from the given hand image.

Alternatively, we can predict the 2D hand skeleton and
extract the bounding box in a post-processing step (Figure
1). Direct regression of the bounding box is useful for hand
cropping but cannot be further exploited for other tasks.
In contrast, estimating the hand skeleton includes useful
information that guides the 2D pose estimation. Also, the
segmentation task is less challenging than predicting the
bounding box.

Of course, one needs to have the training data with cor-
responding skeletons. We can obtain this type of data using
a 3D hand tracker and an RGB camera to provide the 2D
key-points (see Section 3.3). We create the ground truth
data for the skeleton by connecting the joints in each finger

and attaching the palm to the ends of each finger. Also, we
represent each joint location by the standardized Gaussian
blob.

We can treat hand skeleton data as a segmentation mask.
Thus, we use the well-known UNet architecture [23] since
it is one of the best encoder-decoder architectures for se-
mantic segmentation. It has two major properties. The first
one is the skip connections between the encoder and the
decoder layers that enable the network to learn the loca-
tion and the contextual information. The second property
is its symmetry, leading to better information transfer and
performances.

The model outputs single feature maps on which we ap-
ply a sigmoid activation function to bound the prediction
values between 0 (background) and 1 (hand). We localize
the bounding box using a post-processing step, in which we
identify the foreground pixels, and then we apply a region
growing algorithm. In our case, the horizontal and verti-
cal boundaries of the recovered regions are reported as the
location of the detected hand. Our model robustly differ-
entiates between the skin of the hand and that of the face.
Also, it can detect the hand even in cluttered images or dif-
ferent lightning conditions (see Section 4.2).

Concerning the loss function, we did two experiments.
In the first one, we only used the L1 loss function, which
can not robustly localize the skeleton and adversely affect-
ing the bounding box localization results. In contrast, us-
ing the combination of L1 loss (Equation 1) and a SoftDice
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Figure 1: The proposed method for hand bounding box detection. Unlike many deep learning approaches that use Faster
R-CNN [8] model to directly estimate the bounding box (top), we predict the skeleton image and infer the bounding box
in a post-processing step (bottom).

(Equation 2) loss with their empirical weights can robustly
localize the hand (Equation 3).

L1(x, x̂) = ‖ x− x̂‖11 (1)

SoftDice(x, x̂) = 1− 2x̂Tx

‖x̂‖22 + ‖x‖22
(2)

Total(x, x̂) = λ1L1(x, x̂) + λ2SoftDice(x, x̂) (3)

Where: x, x̂, λ1 and λ2 represent the ground truth skele-
ton, the predicted skeleton and the two hyperparameters
of the loss function (set to 0.4 and 0.6, respectively). We
trained the model for 20 epochs using a batch size of 8.

3.2 Multi-scale heatmaps regression for 2D
hand pose estimation

Most of the existing hand pose estimation methods pre-
dict the heatmaps at a single-scale. However, the hand in
the original image can have several sizes (close/far hands).
Hence, when we use a single scale image, the cropped hand
image size cannot be suitable for all the dataset samples.

To address this limitation, we propose a multi-scale
heatmaps regression architecture that performs the back-
propagation process for many resolutions providing better
joint learning for both large and small hands. Moreover,
the cropped hand image would include some parts of the
background. To overcome this problem, we employ the
predicted hand skeleton to act as an attention mechanism
for the network to focus on hand pixels. This makes the 2D
pose regression task less challenging to optimize.

Figure 2 shows our skeleton-aware multi-scale heatmaps
network approach for 2D hand pose estimation. We feed
the concatenation of the cropped hand image and the pre-
dicted skeleton to the first convolution layer. The latter is
followed by two downsampling ResNet blocks, two upsam-
pling ResNet blocks, and a final transposed convolution

layer that recovers the input resolution. After each down-
sampling (similarly upsampling), we apply a 1 × 1 convo-
lution layer followed by a sigmoid activation function to
output 21 or 20 feature maps representing the heatmaps in
GTHD or LSMV datasets, respectively. The heatmaps res-
olution is divided/multiplied by two after each downsam-
pling/upsampling.

In test time, we calculate a weighted average of the pre-
dicted five heatmaps to find the coordinate of the 2D key-
points. We formulate the loss function in (Equation 4) as:

L(x, x̂) =

k∑
i=1

δi‖ xi − x̂i‖22 (4)

Where: k is the number of scales including the full res-
olution output, and δi is the weight given for each scale. In
our experiments we choose k = 5 and δi is set be 1, 1/2
and 1/4 for scales 128, 64 and 32 respectively.

3.3 Datasets

Deep learning methods require a large number of labeled
data for training. There is a lack of datasets that has RGB
hand images with their 2D annotations that we can use to
train our proposed approaches. For example, [38] has RGB
images with their 2D annotations, but they are both small
scale and do not describe the hand by joint annotations.

Our method has been implemented and tested on two
different datasets. The first one is LSMV [18], which is
one of the large-scale datasets that provide the hand bound-
ing boxes, the 2D key-points as well as the 3D pose. We
split the data into 60000, 15000, and 12760 samples for the
training set, validation set, and test set, respectively. While
LSMV [18] can be used to train and validate the 2D hand
pose estimators, it can not be used for hand detection since
it does not have images without hands.

To overcome this limitation, and train both the hand de-
tector and the hand pose estimator, we have built our own



Skeleton-aware Multi-scale Heatmap Regression for. . . Informatica 45 (2021) 593–604 597

Figure 2: The overall architecture of the proposed 2D hand pose estimation approach uses the hand skeleton as a constraint
and estimates the joint heatmaps from multiple scales.

dataset (GTHD) using an RGB camera and a Leap Mo-
tion sensor [39]. It is composed of two subsets; The first
one has 60 thousand RGB images with their correspond-
ing hand bounding boxes, 2D keypoints, and 3D pose. The
second set has 15 thousand RGB images that present either
the background or people who do not show their hands.
The new dataset has a large variation in hand poses, back-
grounds, skin color and texture

The RGB camera provides an image with a resolution of
640 × 480 pixels. The leap motion controller is a combi-
nation of hardware and software that senses the fingers of
the hand to provide the 3D joint locations. Hence, a pro-
jection process from 3D space to the 2D image plane is
necessary. We achieve this goal in two steps. In the first
one, we use OpenCV to estimate specific intrinsic parame-
ters of the camera. In the second step, we estimate the ex-
trinsic parameters between the leap motion controller and
the camera. To get the correct pose with its corresponding
image, we synchronize the two sensors in time.

Finally, to find the rotation and translation matrices, we

manually mark one key-point in a set of hand images and
solve the PnP problem by computing the 3D-2D correspon-
dences [40]. Figure 3 illustrates the results of the calibra-
tion process. We randomly split the GTHD dataset into
a training set (75%), a validation set (10%) and a test set
(15%).

3.4 Evaluation metrics

We report the performance of the hand skeleton detection
module using famous classification metrics, such as Accu-
racy, Precision, Recall and F1. Furthermore, we calcu-
late the Area Under ROC Curve (AUC) for GTHD datasets
since it measures how well the two classes (Hand and No-
Hand) are separable. It calculates the trade-off between the
true positive rate and the false positive rate. Also, we re-
port the Intersection over Union (IOU) metric to quantify
our model performance in the hand bounding box detection
task. It evaluates the predicted bounding boxes by compar-
ing them against the ground truth.
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Figure 3: Examples of our hand dataset images having the bounding boxes and 21 joints annotations taken from four
subjects and covering many pose and backgrounds.

To quantitatively evaluate the performance of the pro-
posed 2D hand pose regression methods, we use the Prob-
ability of Correct Keypoint (PCK) metric [37] as it is used
frequently in human and hand pose estimation tasks.We use
a normalized threshold by dividing all the joints values by
the size of the hand bounding box. Also, for additional
quantification of the performance of the proposed method,
we report the mean joint pixel error (MJPE) over the input
hand image with 128× 128 resolution.

4 Experiments

4.1 Implementation details

We train the models for 30 epochs using a batch size of 8
and Adam as an optimizer. We initialize the learning rate to
0.01, and we decrease it after every eight epochs by 10%.
We conduct all experiments on NVIDIA GTX 1080 GPU
using PyTorch v1.6.0.

Before giving the RGB image as input to the model, we
resize and normalize the datasets by subtracting the mean
from all the images. The number of heatmaps is the number
of joints where we represent each one with a Gaussian blob
in a map of the same size of the image. The coordinate of
the joint is the location of the highest value in the heatmap.
We find them by applying the argmax function.

To validate our hand detection approach, we use differ-
ent degrees of skeleton thickness (1, 3 and 6). In the first
case, the skeleton is simply composed of lines. In other
cases, it has thicker connections and regions around the
joints. Furthermore, we select a threshold that represents
the the number of foreground pixels to be the criterion to
separate the two classes (Hand and NoHand).

Dataset Faster-RCNN [8] Ours
GTHD 0912 0.923
LSMV 0.895 0.917

Table 2: Bounding box evaluation on LSMV and our
GTHD dataset with IOU.

4.2 Hand detection and bounding-box
estimation results

Our approach for hand bounding box localization can ro-
bustly estimate the hand skeleton and localize the hand
bounding box for the two datasets. It does not produce
any false positives for background images or images with
people who do not show their hands (see Figure 4 and Fig-
ure 5).

The correct threshold for selecting Hand from NoHand
depends on the data. A robust threshold should elimi-
nate the noise and be in an interval that does not miss
samples from the dataset distribution. In other words, the
selected threshold should decrease both the false-negative
rate (adding samples from the NoHand class) and false pos-
itive rate (missing samples from the Hand class) to achieve
high performance and robustly detect the hand. Figure 7.
shows that selecting a threshold from the interval [200, 400]
is the best choice for our dataset. Also, the thickest skele-
ton representation seems to be more robust to the noise. It
outperforms the other representations and achieves a higher
performance (AUC = 0.99). Finally, our approach records
high scores of Accuracy = 0.99, Precision = 0.97,
Recall = 0.99 and F1 = 0.98.

We do not report the AUC for the LSMV dataset be-
cause it does not have images without hands. Neverthe-
less, we predict the skeleton representation to extract the
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Figure 4: The results of the skeleton estimation and the bounding box localization on the GTHD dataset using thick and
thin skeleton representations. The rows from top to down show: the input image, the ground truth skeleton, the predicted
skeleton, and the obtained bounding boxes.

Figure 5: The results of the skeleton estimation and the bounding box localization on the LSMV dataset [18] using thin
and thick skeleton representations. The rows from top to down show: the input image, the ground truth skeleton, the
predicted skeleton, and the obtained bounding boxes.
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Figure 6: Qualitative results for 2D hand pose estimation on GTHD and LSMV datasets. The columns from left to right
in each image show: the direct regression proposed in [18], our proposed skeleton aware multi-scale heatmaps regression
and the ground truth joints.

Figure 7: The impact of the threshold selection on the performances.
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Figure 8: Quantitative comparison of the proposed 2D hand pose estimation with the other methods [18, 41, 24] using
PCK metric. Left for GTHD and right for LSMV.

hand bounding boxes and perform our proposed 2D hand
pose estimation method (Figure 5). Also, we report IOU
in Table 2 showing that the proposed method outperforms
Faster-RCNN [8].

To show the influence of the hand detection step on the
bounding box localization performance, we record AUC
and IOU metrics for different thresholds on the GTHD
dataset. Figure 7 shows that the performance of the bound-
ing box localization is strongly related to skeleton detec-
tion. Also, the thickest skeleton representation seems to be
more robust to the noise. It outperforms the other represen-
tations and achieves a higher performance (0.99 in AUC
and 0.92 in IOU).

4.3 Pose estimation results

The proposed method can robustly estimate the 2D hand
pose even in the cases of complex poses and cluttered im-
ages. Figure 6 shows some randomly selected test images
on LSMV and GTHD datasets.

We compare the proposed pose estimation approach
against three-deep learning-based methods [18, 24, 25] on
the LSMV dataset. Our baseline is [18] that uses ResNet-
50 architecture [5] to directly regress the 2D joints from
RGB images. The other deep-based methods [24, 25] are
two of the existing state-of-the-art in 2D hand pose estima-
tion. The proposed skeleton-aware multi-scale heatmaps
regression method outperforms [18, 24, 25] since it learns
the joint location from many resolutions. It reports the
highest PCK across all the thresholds (Table 3).

To further demonstrate the effectiveness of the proposed
approach, we conduct additional experiments on the GTHD
dataset. In the first one, we perform two state-of-the-art
methods [18, 41]. The second experiment applies single-
scale heatmap regression using UNet architecture [23] on
128 × 128 resolution images. The third experiment per-
forms our multi-scale heatmaps regression without the
skeleton information. In the last experiment, we perform
our skeleton aware multi-stage heatmap regression archi-

tecture shown in Figure 2. We can see from Figure 8 that
our method achieves a high PCK score (0.98) with a small
threshold in LSMV and GTHD datasets. Furthermore, the
hand skeleton representation improves the proposed multi-
scale heatmaps regression method since it constrains the
2D pose estimation task (Table 4).

Estimating the 2D hand pose using the single-scale
heatmaps regression outperforms the direct regression
since the detected heatmaps help CNNs to learn better the
joint locations and converge faster (Figure 8). Finally, our
proposed method for 2D hand pose estimation provides
more improvement for our dataset since it has more com-
plex poses, face occlusion cases, and lighting condition
variations (Figure 8 and Table 4).

5 Conclusion

In this work, we propose a new learning-based method for
2D hand pose estimation. It performs multi-scale heatmaps
regression and uses the hand skeleton as additional infor-
mation to constrain the regression problem. It provides bet-
ter results compared with the direct regression and single-
scale heatmaps regression. Also, we present a new method
for hand bounding box localization that first estimates the
hand skeleton and then extracts the bounding box. This
approach provides accurate results since it learns more in-
formation from the skeleton. Furthermore, we introduce
a new RGB hand pose dataset that can use both for hand
detection and 2D pose estimation tasks.

For future work, we plan to exploit our 2D hand pose
estimation method to improve the 3D hand pose estimation
from an RGB image. Also, we plan to incorporate other
constraints that can restrict the hand pose estimation prob-
lem.
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Threshold of PCK 0.01 0.02 0.03 0.04 0.05 0.06 meanPCK
Gomez et al [18] 39.27 71.12 90.43 93.56 94.38 95.69 80.74
Kong et al [24] 41.38 85.67 93.96 96.61 97.77 98.42 85.63
Kong et al [25] 41.27 85.89 93.82 96.43 97.61 98.29 85.56

Ours 51.02 88.91 95.30 97.54 98.27 98.63 88.27

Table 3: Comparison with the state-of-the-art methods on the LSMV datasets with the PCK metric.

Methods GTHD LSMV
Gomez et al [18] 13.20 10.00

Lie et al. [41] 6.25 8.05
Single-scale [23] 7.33 5.87
Ours w/o skeleton 5.89 4.95

Ours 5.51 4.67

Table 4: Comparison with the state-of-the-art methods on
GTHD and LSMV datasets with Mean pixel errors.
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