
Informatica 35 (2011) 221-229 221

Programming the Story: Interactive Storytelling System

SeokKyoo Kim, SungHyun Moon and SangYong Han
Seoul National University, Seoul, Republic of Korea
E-mail: {anemone, shmoon, syhan}@pplab.snu.ac.kr

Juno Chang
Sangmyung University, Seoul, Republic of Korea
E-mail: jchang@smu.ac.kr

Keywords: interactive storytelling, planning, game programming

Received: September 1, 2009

A multi-story can be generated by the interactions of users in the interactive storytelling system. In this
paper, we suggest narrative structure and corresponding Storytelling Markup Language. Actor, Action,
and Constraint are declared and programmed using interactive storytelling system which generates the
stories. Generated stories can be transformed to multimedia formats which are texts, images, animations,
and others.

Povzetek: Opisan je sistem za generiranje mnogoterih zgodb.

1 Introduction
A term called ‘Digital Storytelling’ is being used in
various sectors of society nowadays. Studies are being
conducted not only in the academic fields that previously
have a field of storytelling, such as literature, but also in
media studies, computer engineering, and others, owing
to its involvement with digital technology. Although the
term has not been defined concretely, it is recognized as
a storytelling in the digital era.

One definition of digital storytelling is a storytelling
that is done by applying digital technology in the medial
environment or as an expression means. In other words,
digital storytelling in a broad sense indicates the case,
wherein digital technology is applied to entire media
environment in the production process of the audiovisual
materials, or, at least, to creating story and discourse as a
means of expression.

Interactive storytelling is one area of digital
storytelling. This concept is a type of narrative using an
interaction between the emotional and dramatic aspects
of the story and the computer, indicating storytelling on
which the user makes an influence so as to change the
direction which the story proceeds in.

The closest examples are edutainment, videogames
in which the progress and an ending of the story can be
various depending on the choices made by the user.
Especially in games, such a characteristic can be found in
RPG (Role Playing Game) or adventure game, visual
novels and others.

Studies on such interactive storytelling are not being
actively conducted yet, but various attempts are now
being made along with the development of online
contents such as online game. This study gives a
consideration to followings as essential components of
interactive storytelling.

1) Narrative Structure

- The essential elements for processing stories and
the structure to express such elements are
required.

2) Script language to embody narrative structure.
- A system, where the narrative structure is
expressed in the type of languages which authors
or programmers can understand so that the
computer can process it, needs to be arranged.

3) Story generator and authoring tool assisting in
generation of story and narrative structure even
without professional knowledge of programming
languages.
- The development environment, which allows
story makers to create stories easily even if they
do not have knowledge of script languages, should
be supported. The story generator interprets input
information as narrative structure, converts it in
script language, and then generates the story based
on it. The authoring tool are implemented as the
graphical user interface environment including the
story generator.

Figure 1 shows the constituents of an interactive
storytelling system.

Figure 1: An Interactive Storytelling System

222 Informatica 35 (2011) 221–229 S. Kim et al.

Among various important elements constituting an
interactive storytelling system, the narrative structure and
the interactive storytelling script language based on it are
suggested in this paper. For this purpose, the existing
script languages and their expression modes are
described in section 2, and the constraint-based narrative
structure is suggested in section 3. In section 4, SML
(Storytelling Markup Language) is suggested for the
system. This script language is fundamental to an
interactive storytelling system and is used to develop
story generator and authoring tools, making it possible to
generate stories. The last section summarizes this study,
discussing the method of utilizing this study and future
tasks.

2 Related works
Languages that have been used in an interactive
storytelling system so far can be largely divided into
three types; natural language, logic programming
language, and markup language derived from XML.

A natural language is the most suitable language to
narrate actions, characters, events, and other source of
story because it expresses a human language as it is.
Although using a natural language provides convenience
for users and increases accessibility or legibility, there
are many difficulties compared to processing the existing
programming languages. In previous studies, such a
natural language system was used in integration with a
speech recognition system, which was the system that
shows the final stories by processing natural language
came through the speech recognition system.

Since logic programming languages use an artificial
intelligence planning technique in the narrative structure
of an interactive storytelling system, programming
languages that are compatible with logic programming
are used. For example, there are STRIPS (STanford
Research Institute Problem Solver) [2] and languages
derived from STRIPS. STRIP, which was introduced to
solve problems of Al, is the most suitable for expressing
a planning algorithm of narrative structure, thus it is used
in an interactive storytelling system [3] [4].

Lastly, there is XML (eXtensible Markup
Language). HTML (Hyper-Text Markup Language), a
subordinate concept of XML, is used as the standard
output format of the World Wide Web all over the world,
and many users, thus, know or can easily learn the
format. Along with such an environmental factor, XML
expresses all information in letter that users know,
leading to high legibility. XML has been widely used as
the standard to express information since proposed by
W3c (World Wide Web Consortium), and it is even
suggested that it might replace HTML. Many developing
tools have already included the libraries dealing with
XML and are continuously developing it. Accordingly,
HTML has an advantage of being widely used.

Most of all, XML, a language with the property of
generality, can add various formats and express almost
any imaginable formats.

In regard to XML-derived languages used in an
interactive storytelling system such as MPML (Multi-
modal Presentation Markup Language) [5], AIML
(Artificial Intelligence Markup Language) [6],
APML(Affective Presentation Markup Language)[7],
FML(Functional Markup Language)[8], BML(Behavior
Markup Language)[9].

MPML is a markup language suitable for controlling
actions of characters similar to the real world. MPML is
a powerful language which can provide the control for
behavior of second dimensional characters, the
presentation flow, and the integration of external objects.
FML and BML are designed to unify representational
framework for Embodied Conversational Agents to
produce multimodal behaviours of computer-generated
characters in a broad range of circumstances. APML is
another attempting version for ECA able to generate
context-adapted behaviours based on Mind-Body
interface; Mind which represents the personality of an
agent, and Body reflects its appearance and expressive
behaviours. However, they have some shortcomings to
be the script language for generating stories which this
study aims at, because it is a language for controlling the
agent.

In the VISTA (Virtual Interactive Story Telling
Agents) project [10], AIML was used to write programs.
AIML is a XML style script language supporting for AI
application program, and the Vista system used AIML
interlocked with Prolog. AIML was used in the question-
answer relationship applied to stories, while Prolog was
used to generate various action rules. With regard to
AIML, however, all the questions and answers should be
defined in advance, and it is hard to produce various
results inferred from the various conditions. Besides,
there is another difficulty that general users who are not
familiar with programming should know Prolog.

In addition to language to formalize narrative
structure, authoring tools which assist to program the
language and specify the information have been
investigated and developed: INSCAPE[11] and
PRISM[12] . In INSCAPE, an author writes an
interactive story idea; prepares characters, props, and
stages; and plan entire flow of story with those assets to
achieve desired goals. It also adopted XML-style
language, called ICML(Inscape Communication Mark-up
Language) for underlying data model. It is designed to
create interactive stories for edutainment, simulation,
training, and other areas of nonlinear story. PRISM
provides story map to set up interactive story in a similar
way to INCACPE and it adopts hybrid narrative structure
combining “condition based branching narrative” and
“planning” methods to generate interactive story

3 Narrative structure
As examined previously, various script languages have
been used in an interactive storytelling system. This
paper suggests SML based on XML. Although there are
already script languages derived from XML, such as
MPML or AIML, these languages cannot defined the

PROGRAMMING THE STORY: INTERACTIVE… Informatica 35 (2011) 221–229 223

narrative structure or have difficulties in generating the
variety of stories. In comparison, SML suggested in this
study has following strength: it defines the narrative
structure so that authors can intuitively program stories
without difficulties and then can define the languages
conforming to XML format according to this narrative
structure.

3.1 Constraint based narrative structure
The previous studies have expressed stories mainly in
STRIPS or Lisp format in order to solve problems based
on AI planning techniques [1][4][13]. In regard to a
planning algorithm of narrative structure, there are HTN
(Hierarchical Task Network) and HSP (Heuristic
Planning). STRIPS is used in the systems using HTN and
HSP. The structure of HTN can be represented as a tree,
in which the conclusion of story is a route and each sub-
conclusion is a child. This employs a top-down method,
which leads to good narrative coherence. In contrast,
HSP generates the route from an initial state to a goal
state, which makes it possible to generate stories flexibly
[3]. It can be said that the method introduced in a text is a
kind of HSP.

HTN constructs a story using a tree. The route node
and each non-terminal node indicate the conclusion and
the sub-conclusion of the story, respectively, while the
terminal node indicates occurrence of a certain action. In
regard to the way of constructing the story, the final
conclusion is divided into several sub-conclusions, each
of which is divided again into another sub-conclusion,
and then the story is generated by solving each sub-
conclusion. Here, several actions are collected to solve
the smallest unit of sub-conclusion.

In other words, it is considered that the story is the
combination of sub-conclusions and the lowest level sub-
conclusion includes the collection of the specific
character’s actions. The story is generated using a divide-
and-conquer planning technique based on Al, in which
the problem is divided into the smaller units, which are
then solved and combined. In such a structure, the
conclusion cannot be reached unless the sub-conclusion
is satisfied, which, in turn, guarantees the coherent flow
of the story. In another aspect, the story is processed
centering on the only actions that are preconditions for
the conclusion, so only stories expressed on the route of
HTN are formed, thereby causing the decrease in the
degree of freedom.

In case of an ideal type of interactive storytelling, the
story should have a high degree of freedom while
maintaining its coherent flow. It is, however, not easy to
realize an interactive storytelling system satisfying both
of them, because these two are usually in a contradictory
relationship [13]. This study aims at the direction of story
generation that makes it possible for authors to adjust the
degree of freedom and the coherence of stories.

The previous studies have maintained a causal
relationship through the divide-and-conquer planning
based on AI, but reached the limit for the degree of
freedom. Therefore, this study suggests the form that
escapes from such a frame by eliminating the

hierarchical structure. In other words, contrary to the
existing structures, the stories are seen as the continuous
actions of the character after eliminating the step of sub-
conclusion. Instead of the eliminated sub-conclusions,
the constraint conditions such as a causal relationship or
a temporal relationship between actions are declared in
order to maintain the unity of the story. And through the
degree of such constraint conditions, the degree of the
coherence and the degree of freedom can be properly
adjusted to the extent which the author wants.

The narrative structure suggested in this study is
divided to constituent declaration and constraint
declaration. The constituent declaration defines actor,
action property, stage, and props, while the constraint
declaration suggests the various condition-relation
structures that can control the flow of the story and
support the nonlinear process of the story.

3.2 Constituent declaration
In the constituent declaration, the basic constituents
necessary for stories are declared. The constituents
defined in the declaration include property, stage, actor,
props, action and others. Figure 2 shows the constituents
defined in the declaration and the interdependence
among them.

Figure 2: Declaration Constituents and Relationships

- Property
A property expresses the characteristic of actors

or props numerically. Actors or props can have the
value corresponding to necessary properties for each
as a numerical value.

- Stage
A Stage displays the space where the story

proceeds.

- Actor
An Actor is the constituent that becomes the

subject or the object of the story, which performs
itself or is performed. There is a name for each
actor, and it contains the types of properties that the
actor has, the value of each, and the stage
information that marks the space in which the actor
is at the very beginning of the story.

- Props

224 Informatica 35 (2011) 221–229 S. Kim et al.

Props refer to things that cannot be the subject
but object of actions. Thus, things or actors who
cannot be the subject of actions are defined as props.

- Action
An action indicates the motion that actors can

take. It displays actors who can carry out such an
action, properties necessary for the action, stages
where the action can occur, and how many objects
of the action are.

In this constraint based narrative structure, properties
commonly exist between actors and actions. This is the
device for generating stories, wherein more logical
choice can be made in deciding the motions of actors.
Let’s consider one example in order to understand uses
of such a device. Followings are assumed; an actor ‘A’
has properties of talkative = “80” and aggressive = “30”,
an action ‘attack’ has properties of talkative = “30” and
aggressive = “80”, and an action ‘talk’ has properties of
talkative = “80” and aggressive = “30”.

<actor actorid="A">
<propertyR propertyId="talkative">80</propertyR>
<propertyR propertyId = "aggressive">30</propertyR>

</actor>
<action actionid = "attack">

<subR subId="A"/>
<propertyR propertyId = "talkative">30</propertyR>
<propertyR propertyId = "aggressive">80</propertyR>

</action>
<action actionid = "talk">

<subR subId="A"/>
<propertyR propertyId = "talkative">80</propertyR>
<propertyR propertyId = "aggressive">30</propertyR>

</action>

If an actor ‘A’ is in a situation where he or she has to
perform one motion either ‘attack’ or ‘talk’, the
possibility of carrying out ‘talk’ motion increases due to
the property value. It is necessary to fully unitize this
structure in a story generator in order to establish the
balance between characteristics and actions of actors.

The constituents listed above are combined, thereby
generating an event. In brief, an event means that a
specific actor carries out a certain motion, wherein the
defined form of the action determines the presence of an
object.

Figure 3: Components of event

Figure 3 shows the necessary components of an
event. To put it concretely, an event is expressed as actor,
stage, action, and props are combined in such form as
“Specific actor does what action (something) (to
someone) where”. The generation of story in this
structure means the generation of such an event. In
addition, a special component called ‘viewpoint’ is
placed in order to reduce the complexity in story
generation. This indicates the stage at which the user is
currently looking. The generation of all the stories is
limited to the current viewpoint, which is in line with a
play where audiences see only one stage. As a curtain
comes down when the stage is changing, the change of
viewpoint is required to change the stage in this
structure. As an initial stage should be specified in a
play, the viewpoint for a beginning point of the story
should be specified in the constituent declaration as well.

3.3 Constraint declaration
In the constraint declaration, various constraint
conditions that can control the direction of narrative flaw
are declared. Such constraint conditions play a role of
framework holding the direction in which the story
proceeds, preventing the story from taking the wrong
way. The degree of freedom is determined according to a
dynamic of constraint conditions, and the types of
constraint condition are shown below. The parts
explained here is conceptual, so it is necessary to support
a wildcard character (‘?’) or logical operation so as to
control the stories more delicately when writing these in
an actual script language.

1) Ending : (event)  (end)

This is a condition that ends the story. If a given
event occurs, the story ends. The multiple endings
can be setup by assigning several kinds of events.

<ending endingId = "HappyEnding">
<preEventList>

<preEvent>
<preSub subtype=”actor” preSubId= "Monica"/>
<actionR actionId = "love"/>

PROGRAMMING THE STORY: INTERACTIVE… Informatica 35 (2011) 221–229 225

<preObj objType=”actor” actorId = "Joseph"/>
</prevent>

</preEventList>
</ending>

2) Transaction : (pre event)  (post event)

Two events occur together like a transaction. This
condition is set in order to induce another event to
occur in sequence upon occurrence of a specific
event. In script languages, the function, where post-
event can refer to the subject and the object of pre-
event, should be provided in order to make
extensive forms of transaction condition. For
example, let’s assume the case where a wildcard
character “?” designated as any actor, is given as a
condition, and pre-event is defined as “?” hit “?”. It
should be possible to define post-event for this case
in the same construction with ‘[The object of pre-
event] hit [the subject of pre-event]’. In this case,
the subject and the object of post-event are
determined at the time pre-event occurs.

<transaction transactionId = "HitAfter">
<preEventList>

<preEvent>
<preSub subType="actor" preSubId ="ALL” />
<actionR actionId = "hit" />
<preObj objType="actor” objId="All"/>

</preEvent>
</preEventList>
<postEventList>

<postevent>
<postSub type="actor" postSubId="Robert"/>
<actionR actionId = "hit"/>
<postObj type="actor" postObjId="RS"/>

</postEvent>
</postEventList>

</transaction>

3) Transition : (event/action)  (change property)

Transition constraint is to change the value of a
specific property upon occurrence of a designated
event or action. The condition is set, for example, as
the construction of ‘reduce a property of an object,
‘health’, for a ‘hit’ action.’ This is useful to define
the motion accompanied with changes of a specific
state.

<transit transitId = "Work">
<preEventList>

<preEvent>
<preSub subType="actor"

preSubId ="Monica" />
<actionR actionId = " work" />

</preEvent>
</preEventList>
<postTransitList>

<postTransit transiType="actor”

transitSubId="RS" propertyId = "tiredness"
value = "20"/>

</postTrasitList>
</transit>

4) Induction : (condition of property) 

event/action)

It can declare to perform an event or a motion when
a specific attribute satisfies a certain condition. The
condition is set, for example, as the construction of
“eat rice when hungry is less than 30.” This
constraint condition is assigned to make an actor
perform a specific motion according to the change
of state.

<induction inductionId = "Hungry">
<preTransitList>

<propTransit TransitSubId ="ALL"
propertyId = "hungryness"
value = "80" compare="GT"/>

</preTransitList>
<postEventList>

<postEvent>
<PostSub Type="actor" postSubId="RS" />
<actionR actionId = "eat" />

</postEvent>
</postEventList>

</induction>

5) Must : (pre event)  (post event)

This is a constraint condition that executes various
functions. The semantic view of this condition
indicates that ‘When pre-event is performed without
occurrence of post-event, post-event must occur
before the story ends.’ In other words, this
constraint condition is used if an event that occurs
as a result must occur upon occurrence of an event
corresponding to a cause in a causal relationship,
Also, a negative option can be placed in post-event
so that post-event should never occur when pre-
event occurs. This can put a constraint so that
another event can never follow when a specific
event occurs. In addition, an event that must occur
on any occasion can be indicated by setting only
post-event not pre-event.

<must mustId = "EatAfter">
<preEventList>

<preEvent>
<preSub subtype="actor" preSubId="Monica"/>
<actionR actionId = "eat" />

</preEvent>
<preEventList>
<postEventList>

<postEvent>
<actor actorId = "Monica" />

<action actionId = "wash" />
<props prosId = ”dish” />

226 Informatica 35 (2011) 221–229 S. Kim et al.

</postevent>
</must>

6) Ordering : (pre event)  (post event)

This is a declaration to adjust the logical flow of the
story. It makes no difference even if events assigned
here don’t occur. It only indicates ‘pre-event must
occur prior to post-event at all times’. In other
words, if pre-event doesn’t occur, post-event
wouldn’t occur either.

<ordering orderingId = "WinAfter">
<preEventList>

<preEvent>
<preSub subtype="actor"preSubId="ALL"/>
<actionR actionId = "win" />

</preEvent>
</preEventList>
<postEventList>

<postEvent>
<postSub Type="actor” postSubId="RS" />
<actionR actionId="get"/>
<props prosId=”money”/>

</postEvent>
<postEventList>

</ordering>

7) Stage Change : (event)  (change stage)

This is a constraint declaration that changes the
current stage of the subject or the object of an event
when a specific event occurs. This is similar to an
effect that makes characters on stage withdraw or
makes characters appear on stage in a play.

<stageChange stageChangeId = "Work">
<preEventList>

<preEvent>
<preSub Type="actor" preSubId="Monica"/>
<actionR actionId="leave" />

</preEvent>
</preEventList>
<targetStage>

<ActorR actorId="Monica"/>
<stageR stageid="office"/>

</targetstage>
</stageChange >

In summary, the basic environment and constituent
required in the story are defined in the constituent
declaration, and the constraint items holding the outline
of overall direction of story are assigned in the constraint
declaration.

4 SML (Storytelling Markup
language)

4.1 SML
The narrative structure with the purpose of an interactive
storytelling was defined previously. However, the
previously defined structure is simply a kind of an
abstract data type. In order to generate stories, it is
necessary to express above components in definite
language so that the story generation engine can process
them. The language for expressing narrative structure
requires following characteristics.

First, the legibility should be good enough so that
users can easily understand the meanings without any
difficulty and add what they want. There would be no
occasion to write codes, because the authoring tools are
basically used. However, good legibility is necessary so
that there would be no difficulties even in the case of
writing codes directly.

Second, there should be good expressiveness. In the
previously suggested structure, an actor or an action has
subordinate constituents in complex form. In particular,
the way the motion is defined demands information of
properties necessary for the motion, actors who can
perform the motion, and stages where the motion can
occur. Each motion, however, has different number of
such constituents.

The structures defined in the constraint declaration
are combined by a relationship of ‘AND’ or ‘OR’ and
demands a wildcard character, and a reference structure,
thereby becoming more complex. The language should
be able to express such structures that are defined as
being complex and multilateral.

Third, the structure should be easy to deal with. It
requires the operation of generating or parsing the codes
written in the given language using an authoring tool or a
story generator. The structure of the language should be
easy to deal with, so that it would be easy to develop an
authoring tool or a story generator that supports such a
language. Such a characteristic of the language can be
considered very important in case that an authoring tool,
a story generator and a script language are independent
from each other, which even makes it possible to develop
various authoring tools or story generators to support the
language afterwards.

The language should be defined with the above
conditions in mind in order to achieve satisfactory
results. When taking the structures of already existing
languages into consideration, a XML (eXtensible
Markup Language) format can be easily considered first.
XML can be seen as a super-ordinate concept of HTML
(Hyper-Text Markup Language). HTML is well known
to many users because HTML is used as a standard
output mode of World Wide Web. Many users, in turn,
can read and write HTML. Thus, the XML mode can be
considered to have quite excellent legibility.

In addition, XML itself is a language that can add
various formats freely, leading to fairly good
expressiveness. Also, since XML is widely known and

PROGRAMMING THE STORY: INTERACTIVE… Informatica 35 (2011) 221–229 227

used, there are many related libraries. Since it is easy to
deal with languages with help of libraries, the XML
format is, in a sense, the ‘easy-to-handle structure’.

As described, XML satisfies all the conditions
required as a language listed above. This study, thus,
defines the previously defined narrative structure in the
XML format, naming the language as SML (Storytelling
Markup Language). The DTD (Document Type
Definition) of SML is not included in a text, since the
constituents and the constraint conditions of the
previously presented narrative structure are large in
quantity and complicated.

4.2 An example of SML

Figure 4: An Example of Story Structure.

Figure 4 is a drawing which illustrates some part of the
story, while Figure 5 simply shows only the necessary
part for the story illustrated in Figure 4 in SML. The
event of ‘Frodo finds the One Ring in the Middle Earth’
or ‘Gollum finds the One Ring in the Middle Earth’ is set
to occur for sure with constraint ‘must’ with no ‘pre-
event’. With constraint ‘transaction’, upon generation of
an event that ‘somebody finding the One Ring in the
Middle Earth’, ‘the finder rules or is ruled by the One
Ring.’, in such a case, whether ruled by the One Ring or
not depends on properties of Frodo and Gollum. The
property value of ‘ruling’ is higher value than that of
‘being ruled by’ in case of Frodo, while the property
value of ‘being ruled by’ is higher in Gollum. In such
cases, an event, in which an action of ‘ruling’ occurs, has
a higher possibility of being generated as for Frodo,
while the possibility of generating an event, in which an
action of ‘being ruled by’ occurs, increases as for
Gollum.

4.3 Story generator
In previous sections, the narrative structure was defined,
along with the language to express it. At this point,
complier or interpreter is needed to interpret the codes
written in the given language and to perform the
operation. In other words, a story generator, which
receives given SML codes and generates stories, is
required.

Figure 5: Example for expression of story structure using
SML

When the story is viewed as the connection of
continuous events, the generation of a high-quality story
depends on how proper the order these events are
sequenced in. When Stem refers to a set having ‘item’ as
domain, Sevent can be expressed as followings.

Ssubject = Sactor

SDO = Sactor ∪ Sprops

SIO = Sactor ∪ Sprops

SEvent = {(xsubject, xstage, xaction, xDO, xIO) | xsubject∈ Ssubject,

xstage∈ Sstage, xaction∈ Saction, xDO∈ SDO, xIO∈ SIO}

228 Informatica 35 (2011) 221–229 S. Kim et al.

In other words, a set of events can be viewed as a
Cartesian product of domains; subject, stage, action, DO
and IO, and one event is represented as a tuple of
(subject, stage, action, DO, IO). In a wider prospective, if
the tuple is viewed as node of graph, a story can be
considered as a connection of nodes. Therefore, the
generation of story can be understood as setting a proper
path of the graph, wherein events are nodes.

From this point of view, this study excludes AI
techniques and suggests a story generator using graph in
which a node is an event, in contrary to previous studies.

As explained above, when an event is seen as a node
in graph, a story can be one path connecting a series of
nodes in graph. In this case, the story generation is soon
down to the issue of setting the graph path in order that is
not contrary to the constraint conditions. Thus, most of
the problems to consider can be thought by converting
them to graph problems.

First let’s consider the expression of an event.
Although it is said that an event can be seen as a node,
nodes can be large in number according to the amount of
data if all types of generable events are actually
generated and the path between each node is specified as
other graph problems. In case of events containing a
wildcard character, in particular, the number of nodes
will increase by geometric progression when all events
are generated. Thus, even though it can be perceived as a
graph problem in the conceptual aspect, the realization
that uses memory on a practical level should be
considered. In that,

It should be approached with the form in which not
all events are generated as nodes but generated events are
managed as nodes. Also, with managing the list of
constraint conditions, it would be realistic to determine
whether to set a route or not by comparing such a list and
an event to be generated.

The problem of generating events can be seen as the
problem of selecting one among many paths that can be
chosen at the current node, which requires a function or a
value that becomes a benchmark of path choice. In
Prim’s MST (Minimum Spanning Tree) algorithm, for
example, the closest node in MST constructed so far
becomes a benchmark of selecting a path.

This study considers the method which put a great
deal of weight on the node having the highest value of
property combination among available actions choices,
which was also mentioned earlier in relation to [Figure
4]. Because when a specific person should select one
among more than two actions, it is believed that it’s more
reasonable to carry out action suiting to one’s propensity.

The condition of this choice needs to be processed
by the concept of possibility in order to avoid the
uniformity of the narrative. The problem of adhering to
constraint conditions can be understood as a problem of
dynamically managing the path between the nodes in
graph, a problem of managing topological order, and a
problem of preventing the path from repeating infinitely.
If an event B cannot occur right after an event A in a
conceptual aspect, then it can be understood as there is
no path from node A to a node B. Moreover, when a
temporal relationship exists between two events such as

‘transaction’, ‘must’, and ‘ordering’, the constraint
conditions can be satisfied by establishing topological
order. Also, the conflict among constraint conditions can
be prevented by prohibiting the generation of indefinite
repetition.

4.4 Example of story generation
The story was generated through a story generator based
on the algorithm suggested above, after the construction
of The Lord of the Rings story was simplified and then
expressed in SML defined above, Figure 6 is the
currently realized authoring tool, and Figure 7 shows one
example of created stories.

Figure 6: Interactive storytelling authoring tool

Figure 7: Example of story generation

Depending on the property values of Frodo and
Gollum, the story that is completely different from what
we previous knew could be generated. Besides this,
several kinds of different endings can be generated. The
results are printouts in a plain text format. However, if it
is expressed in script language and then combined with
the output interpreter by extending this study further, it
would be possible to express it in other media such as
picture and animation. The output interpreter, which
prints the generated text in the form of a series of
drawings, is in development.

5 Conclusions
The text investigates the concept and the structure of an
interactive storytelling system, and then suggests the
narrative structure and the language to express it. The
narrative structure suggested in this study cannot be
considered as an ideal one for generating stories.
However, it suggests a possibility in regard to how to
express the structure constructed in such a way in

PROGRAMMING THE STORY: INTERACTIVE… Informatica 35 (2011) 221–229 229

language and what else is required to generate stories
using the language that is expressed in such a way.

The narrative structure and SML suggested in this
paper have following strengths, compared to exiting
interactive storytelling systems.

First, the previous studies left much to be desired in
relation to languages due to undue stress given to
applications. On the other hand, this paper studies on
languages, increasing expansion possibility of the system
that can be combined and linked.

Second, the narrative structure of this study can add
or delete the components as occasion demands, and even
new narrative structure can be applied. For example, the
narrative structure which is an application of data flow
system using token can be made.

Third, various interactive storytelling systems using
SML can be developed, thereby applied to games and
educational multimedia system.

Currently, this study is expected to proceed in three
directions; first is to improve the narrative structure and
the functions of the language, second is to realize an
interactive storytelling system which can generate the
results not in text format but with various multi medias
such as picture and animation by using the authoring
tool and the output interpreter, and the last is to proceed
in developing the script language and the control system
that can control actions of NPC (Non Playable character)
in MMORPG (Massively Multiplayer Online Role
Playing Game) by applying SML, in cooperation with a
domestic game company.

As shown in this study, SML shows a possibility to
be the language that could be widely applied to the areas
of game and multimedia.

References
[1] F. Charles, S. J. Mead, and M Cavazza, “User

Intervention in Virtual Interactive Storytelling,”
Proceedings of VRIC 2001, Laval, France, 2001.

[2] R. Fykes, and N. Nilsson, “STRIPS: A new
approach to the application of theorem proving to
problem solving,” Artificial Intelligence 2, pp. 189-
208, 1971.

[3] M. Cavazza, F Charles, and S. J. Mead, “Interacting
with Virtual Characters in Interactive Storytelling.”
ACM Joint Conference on Autonomous Agents and
Multi-Agent Systems, pp. 318-325, 2002.

[4] L. M. Barros and S. R. Musse, “Introducing
narrative principles into planning-based interactive
storytelling,” In Proceedings of ACM SIGCHI

International Conference on Advances in Computer
Entertainment Technology, pp. 35-42, 2005.

[5] H. Prendinger, S. Descamps, and M. Ishizuka.
“MPML: A markup language for controlling the
behavior of life-like characters.” Journal of Visual
Languages and Computing, pp. 183-203, 2004.

[6] A.L.I.C.E. AI foundation, “Artificial Intelligence
Markup Language (AIML),” Technical Report,
URL: http://alice.sunlitsurf.com/TR/2001/WD-aiml/,
2001.

[7] B. DeCarolis, M. Bilvi, and C. Pelachaud. “APML,
a Mark-up Language for Believable Behavior
Generation,” In H. Prendinger and M. Ishizuka,
editors, Life-like Characters. Tools, Affective
Functions and applications, pp. 65-85, 2004.

[8] B. Krenn and Gregor Sieber, “Functional Mark-up
for Behaviour Planning: Theory and Practice,” In
Proceedings of the AAMAS 2008 Workshop. Why
Conversational Agents do what they do. PP. 12 -16,
2008.

[9] S. Kopp, B. Krenn, S. Marsella, A.N. Marshall, C.
Pelachaud, H. Pirker, K. R. Thorisson, and H.
Vilhjalmsson, “Towards a Common Framework for
Multimodal Generation: The Behavior Markup
Language,” In The Proceedings of the 6th
International Conference in Itelligent Virtual
Agents. pp. 205-217, 2006.

[10] E. Figa and P. Tarau, “The VISTAProject: An
Agent Architecture for Virtual Interactive
Storytelling,” In Proceedings of Technologies for
Interactive Digital Storytelling and Entertainment,
pp. 106, 2003.

[11] N. Zagalo, S. Gobel, A. Torres, R. Malkewitz, and
V. Branco, “INSCAPE: Emotion Expression and
Experience in an Authoring Environment”, In
Proceedings of Technologies for Interactive Digital
Storytelling and Entertainment 2006, pp. 219-230,
2006.

[12] Y. Cheong, Y. Kim, W. Min, E. Shim, and J. Kim,
“PRISM: A Framework for Authoring Interactive
Narratives”, In Proceedings of the 1st Joint
International Conference on Interactive Digital
Storytelling 2008, pp. 297-308, 2008.

[13] F. Charles, M. Lozano, S. J. Mead, A. F. Bisquerra,
and M. Cavazza. “Planning formalisms and
authoring in interactive storytelling,” In
Proceedings of Technologies for Interactive Digital
Storytelling and Entertainment, pp. 216-225, 2003.

230 Informatica 35 (2011) 221–229 S. Kim et al.

