
https://doi.org/10.31449/inf.v45i7.3408 Informatica 45 (2021) 1–12 1

A Modified Binary Firefly Algorithm to Solve Hardware/Software

Partitioning Problem

Mourad Khetatba and Rachid Boudour

Department of computer science, LASE Laboratory- Badji Mokhtar University, Annaba, Algeria

E-mail: khetatbam@yahoo.fr and racboudour@yahoo.fr

Keywords: hw/sw partitioning, co-design, Firefly, meta-heuristic

Received: January 9, 2021

Hardware/Software (Hw/Sw) partitioning is a crucial step in Hw/Sw co-design that determines which

components of the embedded system could be implemented on hardware and which ones on software. It

aims to find a design implementation that fulfills all the specification requirements (functionality, goals,

and constraints) at a low cost. Most formulations of the Hw/Sw partitioning dilemma have proven to

NP-hard optimization problems. The firefly algorithm (FA) emerges as a significant tool of Swarm

Intelligence that has been applied in many areas of optimization. The main purpose of this paper is to

present a modified binary firefly algorithm to solve Hw/Sw partitioning problems. We compare the

performance and the quality of the solution of the proposed algorithm with two recently proposed FA

variants namely the Naive Bayesian Binary Firefly Algorithm (NBBFA) and the Binary Firefly

Algorithm (BFA); as well as other algorithms major partitioning in the literature. The computational

results show that it produced better results than the all algorithms used.

Povzetek: V tem članku je predstavljena sprememba algoritma Firefly za reševanje težave s

particioniranjem strojne in programske opreme.

1 Introduction
The embedded systems have become omnipresent in a

wide variety of applications and typically consist of a

combination of hardware components and one or more

microprocessors executing software functionalities. Their

complexity is increasing. Hence, the system designer has

the difficult task of selecting the appropriate

hardware/software components for building an embedded

system for a given application, by satisfying certain

constraints. They present colossal business opportunities

whose limits are still far from being reached. Winning in

the marketplace requires system development teams must

be the first to put better products to the market by

minimizing Time To Market (TTM). At the same time,

reducing the cost of the product must be done. The need

for co-designing hardware and software has long been

pointed out for the development of those systems. The

software is used for flexibility while specialized

hardware delivers performance in the embedded domain.

Hw/Sw co-design investigates the concurrent design of

hardware and software components of complex

electronic systems. It tries to exploit the synergy of

hardware and software to optimize and/or satisfy design

constraints [1]. A succession of steps starting with the

specification of the system tasks to their synthesis forms

what is called the Co-design process.

At the specification step, designing a complex

system necessarily involves cutting down its behavior

into a set of functions. This step is followed by another

where to decide how its functions will be implemented.

Hw/Sw partitioning is an important development step

during HW/SW co-design. According to Vahid [2],

Hw/Sw partitioning is the problem of defining what

module of the system will be executed as a series of

instructions (software) and what module will run in

parallel circuits on some chip as FPGA (hardware), such

as to achieve design goals like performance, cost, size,

and power. Hence, its primary task is the division of full

design into the hardware/software parts of the target

structure while respecting all kinds of restrains, and

provides the best compromising scheme in Hw/Sw

partitioning.

The two hardware and software implementations

typically have complementary advantages and

disadvantages. Hardware-executed partitions usually

perform faster at a cost of increased hardware area and

higher power consumption, while software tasks are

much easier to develop and modify, and they consume

less power compared to the hardware partitions. Critical

partitions of the system should be implemented in

hardware, whereas the others in software. Finding an

optimal partition is a tedious problem because of the

large number and different characteristics of the

specification of the functions that have to be considered.

Hw/Sw partitioning problem to be solved can be

expressed as an optimization problem that seeks to

minimize one or more criteria by defining a cost

function. It is considered as NP-hard problem for most

cases [3, 4, 5]. The latter presents a formal definition in

form of task graphs, widely used in partitioning

representation.

To bypass these hardiest problems and still provide

good solutions, particular studies were recently oriented

mailto:khetatbam@yahoo.fr

2 Informatica 45 (2021) 1–12 M. Khetatba et al.

to meta-heuristic nature-inspired algorithms, which can

be used to get high-quality results in a reasonable time

and with small computational efforts, even if they do not

guarantee to obtain globally optimum solutions. Meta-

heuristic algorithms including evolutionary and swarm

intelligence algorithms have shown successful results

when solving constrained problems [6, 7].

One of the recent swarm intelligence algorithms is

Firefly algorithm (FA) that was developed by [6]. This

algorithm is inspired by the social behavior of fireflies,

mating, and exchange of information using light flashes.

Owing to its few parameters to adjust, it is easy to

understand, to realize, and to compute. Simulations and

results indicate that FA is superior to PSO, GA, and

ACO taking in account both efficiency and success rate

in solving continuous optimization problems [8, 9].

Several researchers have improved the standard FA by

modifying the control and attractiveness parameters or by

hybridizing with other meta-heuristics [10]. Thus, many

FA variants have been developed to solve various

optimization problems such as Robotics [11], Civil

engineering [12], and Chemistry [13]. A list of other

different optimization problems solved by FA can be

found in [14].

As mentioned above, the Firefly Algorithm (FA) is a

nature-inspired optimization algorithm that can be

successfully applied to continuous optimization

problems. However, a lot of practical problems are

formulated as discrete optimization problems and the

algorithm cannot be applied directly to these discrete

problems. But, the results produced by the FA algorithm

in solving discrete NP-hard problems such as image

compression and processing [15], shape and size

optimization [16], and manufacturing cell problem [17]

encourage researchers to design novel FAs for discrete

optimization problems.

To solve the permutation flow shop scheduling

problems, a discrete firefly algorithm for minimizing the

makespan was proposed by Sayadi et al. [18], which was

designed by modifying the basic firefly algorithm to

adapt to solving discrete problems. A modified version

of FA was used by Durkota [19] to solve the class of

discrete problems called Quadratic Assignment Problems

(QAP), where a mapping into newly developed discrete

functions of continuous functions such as attraction,

distance, and movement, is recommended. A binary FA

is proposed by Palit et al [20] to deduce the meaning of

an encrypted message for cryptanalysis. Another

researcher, Falcon et al. [21] presented a binary adaptive

Firefly Algorithm for fault identification in parallel and

distributed system by using binary encoding on candidate

solution with adaptive light absorption coefficient to

improve the search. Chandrasekaran [22] developed a

binary version of FA to solve the reliability constrained

unit commitment problem. Khadwilard et al. [23] solved

the job shop scheduling problems using the Firefly

algorithm. To tackle the mapping from a continuous

search space to discrete search space for solving the non-

unicost set covering problem which is a well-known NP-

hard discrete optimization problem, Crawford et al. [24]

proposed a binary coded firefly algorithm based on the

use of different transfer functions investigated in terms of

convergence speed and accuracy of results. A discrete

Firefly algorithm (DFA) combined with the local search

(LS) method to enhance the searching accuracy and

information sharing among fireflies was proposed by

Karthikeyan [25] for solving multi-objective flexible job-

shop scheduling problems. Najeeb et al. [26] presented

all steps of applying Firefly algorithm to Constraint

Satisfaction Problems (CSPs) which have discrete nature.

This novel feature selection method is based on the

binary Firefly Algorithm (FA) and Naïve Bayesian

Classifier (NBC). A Naive Bayesian Binary Firefly

Algorithm (NBBFA) was developed by Rajalaxmi et al.

[27]. Each firefly moves to find the optimal gene set

from the search space for cancer identification based on

the fitness evaluation done through the naïve Bayes

classifier. A Novel Binary Firefly Algorithm for the

Minimum Labeling Spanning Tree Problem was

presented by M. Lin et al. [28]. This novel method allows

the updating positions of fireflies, which makes the

algorithm more suitable for solving discrete problems.

In most works above, the updating procedure of the

standard Firefly algorithm will be used and the result will

be converted to discrete values. The position of Firefly

shifts between ‘‘1’’ and ‘‘0’’ in discrete space. To

accomplish this, they used the sigmoid function to

constrain the position value of each firefly to the interval

[0, 1]. A complete survey for updating the position of

fireflies to transform continuous variables to binary

variables is presented by Tilahun et al. [29]. Some

variants of the sigmoid functions, S-shaped functions,

some variants of the tan hyperbolic functions, and V-

shaped functions are given. More generally, for a

complete overview of the topic, several reviews were

carried out. For instance, we highlight the recent works

by [30].

According to the best of our knowledge, there is no

published work dealing with the Hw/Sw partitioning

problems by using FA Algorithm. Thus, in this paper, we

proposed a modified binary FA algorithm to solve those

problems. Our approach takes into account several

constraints such as available area, execution time, and

memory. Optimal partitioning solutions are obtained via

this algorithm which is considered a new method in this

field.

The rest of the paper is organized as follows. Section

2 lists the most reputed work in the field of Hw/Sw

partitioning methods. Section 3 illustrates briefly the

Firefly algorithm (FA). The partitioning problem

formulation is given in section 4. Experiment results are

discussed in Section 5. The work is concluded and

perspectives to future work are given in Section 6.

2 Related works
The earliest works for the Hw/Sw partitioning problem

can be found in [31]. Traditionally, Hw/Sw partitioning

has been done manually, causing substantial delay [32].

The system designer decided which functional objects (or

basic blocks) of the system could be implemented in

hardware and which ones could be realized in software,

A Modified Binary Firefly Algorithm to Solve Hardware/Software Partitioning Problem Informatica 45 (2021) 1–12 3

considering his experience in the field. These manual

approaches directly affect the development time and the

quality of the selected solution. Therefore, they were

limited only to small designs with small number of

constituent blocks [32]. But, the complexity of the

embedded system keeps increasing; thus, an efficient

HW/SW partitioning technique is required to ensure a

cost-effective embedded system while performance

constraints are satisfied.

Using automatic Hw/Sw partitioning has become a

necessity, and the partitioning results directly affect the

system performance. Enormous difficulties may be

encountered in obtaining the optimal solution since

partitioning is considered a combinatorial optimization

problem. Over the last two decades, a wide range of

approaches has been proposed: (a) start from the pure

software functional specification of the problem, then

migrate critical software functions to a hardware

implementation [33], Hardware-executed functions

usually perform faster with more expensive cost, and (b)

start with a pure hardware functional specification of the

system and iteratively moves the non-critical parts or

functions of the problem to the software as long as

performance constraints are fulfilled[34]. Software

function implementation requires more flexibility and

less cost, but more execution time.

Hw/Sw partitioning is considered a combinatorial

optimization problem (COP). Due to the complexity of

this category of problems, there are two kinds of automatic

approaches solving such problems; namely exact methods

and approached ones. Exact methods are simple to implement

and allow the exploration of all possible configurations;

therefore, they guarantee to provide optimal solutions,

respecting all constraints and requirements. However,

these algorithms become intractable when the problem

size is large.

Since Hw/Sw partitioning is considered NP-hard in

more cases [3], the solution space is immense, so it is

impossible to get an exact solution in a reasonable

amount of time. The idea is to find good-quality

solutions without investigating the entire search space. A

variety of "natural phenomena" such as evolution

imitation, annealing, or knapsack packing help to solve

the NP-hard problem of Hw/Sw partitioning by using

Meta-heuristic algorithms [35]. Their use in many

applications shows their efficiency and effectiveness to

solve large and complex problems.

In literature, meta-heuristics methods are divided

into two classes: firstly, meta-heuristics based on a single

solution such as Simulated Annealing (SA)[36] and Tabu

search(TS) [37], and secondly, meta-heuristics based on

a population of solutions. These meta-heuristics start

from an initial population of solutions often generated

randomly. Then, they iteratively apply the generation of

a new population and the replacement of the current

population. This process iterates until a given stopping

criterion. The performance of the population-based

algorithms is measured by checking their ability to

establish a proper compromise between the two concepts

exploration and exploitation. Avoiding getting trapped

in local optima and premature convergence, meta-

heuristics must have a balance between these two

concepts mentioned previously [38].

Many approaches focus on algorithmic aspects since

the HW/SW partitioning is proven as an NP-hard

optimization problem. Therefore, for a large-scale

partitioning problem, researchers have applied many

heuristic algorithms to HW/SW partitioning. In the

literature, we can cite some extensively used and popular

meta-heuristics algorithms for solving those problems

such as simulated annealing algorithms [36], Tabu search

[37], genetic algorithms [39,40], particle swarm

optimization [41,42], ACO[43,44], differential evolution

DE[45] and Bat Algorithm[46].

4 Informatica 45 (2021) 1–12 M. Khetatba et al.

Other designers seek to obtain more optimal

partitioning solutions by focusing on a combination of

existing meta-heuristic algorithms to solve the HW/SW

partitioning problems. Iguider et al. [47] combined the

Lagrangian Relaxation (LR) method with the 0–1

Knapsack Algorithm and the Genetic Algorithm to deal

with the Hw/Sw problem, considering three metrics:

hardware cost, execution time, and power consumption.

The objective is to minimize one metric, yet respecting

the constraints on the other two metrics. Yan et al. [48]

developed a novel HW/SW partitioning method based on

position disturbed particle swarm optimization with

invasive weed optimization (PDPSO-IWO). To solve the

premature convergence and avoid falling into local

optima, the particles in PDPSO-IWO move away from

the worst particle in the population, near which there is a

potential predatory threat. Shi et al.[49] proposed three

algorithms for multiple-choice hardware-software

partitioning to minimize execution time and power

consumption while meeting area constraints. To rapidly

generate approximate solutions, Firstly, a heuristic

algorithm was applied. Then, a customized tabu search

algorithm can further refine the approximate solution.

Finally, the exact solution was calculated by applying a

dynamic programming algorithm Li et al. [50] combine

the GA and TS algorithm which can be applied to the

dynamically reconfigurable system. The experiment

results have shown that their approach is a method with

high performance and can map the task graph to a

reconfigurable system with efficiency. To minimize the

logic area of System on a Programmable Chip (SOPC)

while respecting a time constraint, Dimassi et al.[51]

incorporated the binary search trees(BST) into the

genetic algorithm to address the problem of

software/hardware partitioning. An et al. [52] combined

the GA and the PSO algorithms. The solutions obtained

by these combinations are more accurate than those

given by classical algorithms in terms of cost and

execution time metrics. In Ref. 53, a hybrid method of

PSO and TS was proposed to solve the HW/SW

partitioning problems. A combination of the clustering

algorithm and the genetic algorithm was developed by

Weijia et al. [54]. Experiment results have shown that

this approach can accelerate converge to an appropriate

solution of a complex system with more tasks. Zhao et al.

[55] incorporate the simulated annealing algorithm in the

genetic algorithm. Experiment results have proven that

the proposed algorithm has given more accurate

partitions than the original genetic algorithm.

3 Firefly algorithm
Swarm intelligence is akin to a collective form of

intelligence seen in numerous animal species (insects,

fish, birds, mammals,...), most of them exhibiting very

developed social behaviors and important capacities of

adaptation to their environment. Computing was indeed

inspired by studies on swarm intelligence biological to

produce innovative algorithms. Firefly algorithm is a

relatively new swarm intelligence optimization method

that was developed by Yang [6]. This algorithm is

inspired by the social behavior of fireflies, mating, and

the exchange of information using light flashes. As a

reminder, Fireflies are small winged beetles capable of

producing a cool flashing light to mutual attraction. This

chemical light is generated from the lower abdomen of

the bodies of these insects. The color of this light can be

yellow, green, or pale red, with a wavelength between

510 and 670 nanometers. Females’ fireflies can imitate

the light signals of other species to attract the males’

fireflies which they capture and devour. Thus, Fireflies

communicate and attract each other with varied flashing

patterns. Firefly algorithm idealizes some characteristics

of the firefly behavior. They follow three rules [56]:

- All fireflies are unisex so that one firefly will be

attracted to other fireflies regardless of their sex;

- Each firefly is attracted only to the fireflies, that

are brighter than itself; the strength of the

attractiveness is proportional to the firefly’s

brightness, which attenuates over the distance.

The attractiveness decreases as the distance

increases between two fireflies. If there is no

brighter one than a particular firefly, the

brightest firefly moves randomly,

- Brightness of every firefly determines its quality

of solution; in most cases, it can be proportional

to the objective function.

The objective function to be optimized must

associate these phenomena. The Firefly algorithm is

based on two important concepts: the light intensity

variation and the attraction formulation. To simplify, the

attraction of fireflies is determined depending on the

brightness, where the brightness is determined with the

function objective. The basic steps of the FA are

summarized by the pseudo-code shown in Fig. 1, which

considers the three rules discussed above.

According to recent research, simulation results for

finding the global optima in solving optimization

problems show that the firefly algorithm is superior to

Figure 1: FA algorithm pseudo-code.

 1. Initialize the parameters:

 NP // Population size

 D // Problem dimension

 Max_gen // Maximum of iterations

2. Define objective function f(x), X=(x1,x2,…,xD)

3. Generate initial population of fireflies Xi(i=1,2,..NP)

4. Define light intensity Ii at Xi

5. Set light absorption coefficient

6. Set initial attractiveness

7. Set t at 0 // t is counter iteration

8. While(t max_gen)

9. For (i=1 to NP) // all fireflies

10. For (j=1to NP) // all fireflies

11. If(Ii > Ij) Move firefly I towards j endif

12. Update attractiveness and light intensity I

13. Evaluate new solutions

14. Endfor

15. Endfor

16. Rank the fireflies and find the current best solution

17. Increment t

18. Endwhile

19. Display the best solution

A Modified Binary Firefly Algorithm to Solve Hardware/Software Partitioning Problem Informatica 45 (2021) 1–12 5

both PSO and GA taking into account both efficiency

and success rate [56, 57]. These facts give the inspiration

to investigate to find optimal solutions using FA in

solving Hw/Sw partitioning problems.

To design FA properly, the variation of light

intensity and formulation of the attractiveness [4] must

be defined. The light intensity varies with the distance

exponentially and monotonically. It can be approximated

as follows:

𝐼 = 𝐼0𝑒−𝛾𝑟2
 (1)

Where 𝐼0 represents the original light intensity and γ

is a fixed light absorption coefficient. rij indicates the

distance between firefly i and firefly j, at positions xi and

xj, respectively, and is defined as follows:

𝑟𝑖𝑗 = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2𝑑

𝑘=1
 (2)

Where xi,k is the kth component of the spatial

coordinate xi of the ith firefly, and d is the number of

dimensions.

The attractiveness β of fireflies is proportional to

their light intensities 𝐼. It implies how strong it attracts

other members of the swarm. The attractiveness β is

expressed as follows:

𝛽 = 𝛽0𝑒−𝜇𝑟2
 (3)

Where r is the distance between two fireflies, 𝛽0 is

the attractiveness at r=0 and γ is a fixed light absorption

coefficient.

The movement of a firefly i, which is attracted by a

more attractive (i.e. brighter) firefly j, is given by the

following equation:

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛽0𝑒−𝜇𝑟2
(𝑥𝑗

(𝑡)
− 𝑥𝑖

(𝑡)
) + 𝛼 (𝑟𝑎𝑛𝑑 −

1

2
) (4)

Where the first term is the current position of a

firefly, the second term is, attraction to another more

attractive firefly, and the third term is randomization,

with α being the randomization parameter, while rand is

a randomly generated number from interval [0, 1].

4 Problem formulation
Today, the embedded system to be partitioned is modeled

as a Directed Acyclic Graph (DAG), which becomes the

input to the Hardware/Software (HW/SW) partitioning

step. In this work, the HW/SW partitioning problem is

based on the same system model which is used in [58, 3].

The node in the DAG stands for a basic block; the edges

stand for communication and precedence relationship

between blocks.

The DAG G = (V, E), which is used to describe the

system behavior, consists of a set of functions or tasks

which are represented by vertices V = {vi | i = 1,2,..N},

and a set of data and control dependencies which are

represented by edges E = {eij | eij = (vi,vj), vi, vj εV}.

Assume that N denotes the number of nodes(tasks), let

X=(x1,x2,…,xN) be the feasible solution set of the

partitioning problem, where xi ε {0,1} and xi denotes

how vi(task i) is realized where xi=1(xi=0) means vi is

realized through hardware(software), m1 nodes which

will be implemented in Hw and m2 others nodes in

Sw(n=m1+m2),VHw = {vi | i = 1,2,..m1},VSw= {vi | i =

1,2,..m2}).

Clearly, this step of Hw/Sw partitioning has a

dramatic impact on the cost and performance of the

whole system. Some design-quality attributes which must

perfectly describe the solution are used to measure the

validity of the solution. Most works, in literature, were

proposed to study the Hw/Sw partitioning problem with

three metrics, execution time, hardware area, and

communication cost[3,58,59,60]. Other approaches have

also added to different cost metrics the power

consumption and software memory usage [42,61,62,63].

In this article, a basic block or task can be defined as

a 9-tuple vi =(Ti
Sw,Ti

Hw,Ai
Hw, Dmi

Sw, Cmi
Sw, Sci

Sw, Hci
Hw,

Pci
Hw, Pci

Sw) where:

- Ti
Sw represents the execution time of the ith task

if implemented in software processor,

- Ti
Hw denotes the execution time taken by the

task i when executed in hardware

- The hardware implementation of the ith task

requires area Ai
Hw on the hardware task.

- Software area DMi
Sw (for data) and CMi

Sw (for

instructions) represent the software memory

utilized by the ith module

- Si
Sw and Si

Hw represent the cost taken by the

block i when implemented in software module

and onto hardware

- Pci
Sw and Pci

Hw are respectively the power

consumption in software and hardware of the ith

block

On the other hand, each edge, ei includes Comcij

which represents the communication cost between tasks

vi and vj. An important assumption is made that vertices

mapped onto the same computing unit have negligible

communication latency; i.e. Sw-Sw or Hw-Hw

communication Cost can be considered 0 for practical

purposes. The communication cost in this context refers

to the delay time required to transfer the data from the

hardware module to the software module and vice versa.

The assignment of Hw/Sw partitioning is to map Sw

tasks to CPU and Hw tasks to hardware components

while satisfying design constraints. In this paper, the

problem of HW/SW partitioning is formulated as a single

objective optimization problem combining multiple cost

terms into a single scalar function. The objectives used to

guide the Hw/Sw partitioning algorithm through the

optimization process are the total execution time (Texe),

total hardware area(A), total memory required (M), total

power consumption(Pc), and total global cost (Gc)

calculated using the following equations, respectively.

𝑇𝑠𝑤 = ∑ ((1 − 𝑥𝑖) ∗ 𝑇𝑖
𝑆𝑤) (5)

𝑛

𝑖=1

𝑇𝐻𝑤 = ∑(𝑥𝑖 ∗ 𝑇𝑖
𝐻𝑤) (6)

𝑛

𝑖=1

6 Informatica 45 (2021) 1–12 M. Khetatba et al.

𝑇𝑒𝑥𝑒 = 𝑇𝑠𝑤 + 𝑇𝐻𝑤 (7)

𝐴 = ∑(𝑥𝑖 ∗ 𝐴𝑖
𝐻𝑤) (8)

𝑛

𝑖=1

𝑀 = ∑ ((1 − 𝑥𝑖) ∗ (𝐷𝑀𝑖
𝑆𝑤 + 𝐶𝑀𝑖

𝑆𝑤))

𝑛

𝑖=1

 (9)

𝐺𝑐𝑜𝑚 = ∑ (∑ (𝑥𝑖 ∗ 𝐶𝑐𝑜𝑚𝑖𝑗)

𝑗∈𝑉𝑆𝑤

+ ∑ ((1 − 𝑥𝑖) ∗ 𝐶𝑐𝑜𝑚𝑖𝑗)

𝑗∈𝑉𝐻𝑤

)

𝑛

𝑖=1

 (10)

𝑃𝑐 = ∑ ((𝑥𝑖 ∗ 𝑃𝑐𝑖
𝐻𝑤) + ((1 − 𝑥𝑖) ∗ 𝑃𝑐𝑖

𝑆𝑤))

𝑛

𝑖=1

 (11)

𝐺𝑐 = ∑ ((𝑥𝑖 ∗ 𝑆𝑖
𝐻𝑤) + ((1 − 𝑥𝑖) ∗ 𝑆𝑖

𝑆𝑤))

𝑛

𝑖=1

+ 𝐺𝑐𝑜𝑚 + 𝑃𝑐 (12)

Then, the cost function which expresses the factors

that the designer wants to minimize and satisfying some

constraints can be formulated as follows:

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝜔1 ∗ 𝑇𝑒𝑥𝑒 + 𝜔2 ∗ 𝐴 + 𝜔3 ∗ 𝑀 + 𝜔4 ∗ 𝐺𝑐 (13)

Where ω1, ω2, ω3, and ω4 are positive integers

which reflect how much weightage is given to each

associated metric for a particular partition. For example,

to give more importance to execution time for the

partitioning decision, the weight corresponding to the

execution time metric can be increased and to ignore any

metric included in cost function f(x1, x2, x3, x4), the

weight corresponding to this metric must be set to zero.

Tmax, Amax, Mmax, Ccommax, Pcmax, and Gcmax

represent execution time constraint, hardware area

constraint, Communication constraint, Maximum power

consumption required, Maximum Memory required, and

the desired global cost respectively. For our study, the

partitioning problem that consists of minimizing the

objective function f(x1, x2, x3, x4) with the respect of

constraints, can be formulated as the follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑇𝑒𝑥𝑒 ≤ 𝑇𝑚𝑎𝑥
𝐴 ≤ 𝐴𝑚𝑎𝑥
𝐺𝑐 ≤ 𝐺𝑚𝑎𝑥

 (14)

Thus, the original firefly algorithm needs to be

modified in the context of Hw/Sw partitioning problems.

So, when firefly i moves towards firefly j, the position of

firefly i must replace the real number by a binary

number. For this purpose, we suggest to incorporate the

mutation operator of the standard DE into FA Algorithm.

Since the standard mutant operator generates real-coded

vectors, not bit strings, a new probability estimation

operator must be used to tackle this problem in the

Binary Firefly algorithm. The probability estimation

operator can effectively preserve the diversity of the

population and enhance the global search ability. For

more details, the probability estimation operator is

defined by formula [(17),(18)] as follows:

𝑃 (𝑥𝑖𝑗
(𝑡+1)

) =
1

(1 + 𝑒−
2𝑏(𝑀𝑂−0,5)

1+2𝐹)

 (17)

𝑀𝑂 = 𝑥𝑟1,𝑗
(𝑡)

+ 𝐹 ∗ (𝑥𝑟2,𝑗
(𝑡)

− 𝑥𝑟3,𝑗
(𝑡)

) (18)

Where b is a bandwidth factor used to increase the

search efficiency, F is the scaling factor which is a

positive constant; t is the index of generation; xr1,j
(t),xr2,j

(t)

and xr3,j
(t) are the jth-bits of three randomly selected

fireflies with index r1≠r2≠r3≠i.

By this scheme, three-parent fireflies will be

considered aiming to establish the probability

distribution model. The bit of the mutant firefly will then

be “1” or “0”. Hence, using the machine operator (MO)

formula [(17), (18)] guarantees to provide a binary code

for updating xi
(t+1). Once, the probability estimation

vector is determined, the corresponding updated position

of the firefly i, xi
(t+1), is deduced by applying the

following equation:

𝒙𝒊𝒋
(𝒕+𝟏)

= {
𝟏 𝒊𝒇 𝒓𝒂𝒏𝒅𝒊𝒋 < 𝑷(𝒙𝒊𝒋

(𝒕+𝟏)
)

 𝟎 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
 (𝟏𝟗)

Where randij is a stochastic number uniformly

distributed within [0, 1] and P(xij
(t+1)) is the jth

component of the probability vector of the ith firefly.

Thus, line 11 of the pseudo-code of the firefly

algorithm given in figure 1 becomes as follows (figure

3).

5 Experiments and results
Important work has been done in hardware/software

partitioning in recent years. Nevertheless, it is impossible

to perform a comprehensive comparison of all the

existing approaches due to the large incompatibility in

their co-design environments and the lack of proper

benchmarks [64]. Presently, there isn’t a test set accepted

by embedded system’s Hw/Sw partitioning worldwide

[65]. No attempts have been made to solve Hw/Sw

partitioning problems by using the Firefly algorithm.

For our study, similar to the analysis methods in [47,

54, 59, 65, 66, 67], the instances of all metrics to be

employed in the experiments, are generated randomly.

The values of software execution time (Ti
Sw), hardware

execution time (Ti
Hw), and hardware area occupied (Ai

Hw)

were generated randomly, as in [47, 54, 59, 65, 66, 67].

For example, [65] used random values for the two

metrics area and hardware execution time generated

respectively in [0, 100] and [0, 60] to validate their

results. For the case of hardware execution time (Ti
Hw),

values were generated randomly in the range [1,50];

software execution time (Ti
Sw), values were generated

randomly in the range [1,5* Ti
Hw]; while for the hardware

area (Ai
Hw) values were generated in the range [1,60].

Table 1 summarizes the interval values for all metrics.

In order to evaluate the efficiency and performance

of the proposed algorithm, we proposed, ten DAGs

(Direct Acyclic Graph) are randomly generated using the

TGFF (Task Graphs for free) tool [68] by specifying the

number of nodes, every node is associated with one basic

Figure 2: Using PEO in firefly algorithm.

 11. if (Ii>Ij)

 { Move firefly I towards firefly j by applying eq. (4);

 Update position xi
(t+1) by applying eq. (19)

 }// endif

A Modified Binary Firefly Algorithm to Solve Hardware/Software Partitioning Problem Informatica 45 (2021) 1–12 7

block. In our study, then we set different metrics (area,

software execution time, hardware execution time, etc.)

for different blocks, and eventually, we get 10 DAGs

with 100, 200, 300,400,500,600,700,800,900, and 1000

nodes respectively.

In this section, we compare the solution quality and

performance of the proposed algorithm BFA-PEO with

two recently proposed FA variants and other major

partitioning algorithms in the literature. The involved

algorithms are listed in Table 2. The population size of

all algorithms was set as NP =30, the maximal generation

number was 300. Table 2 lists the parameter settings of

each meta-heuristic used in this comparison.

Two experiments were performed to verify and

compare the effectiveness and the performance of the

proposed algorithm BFA-PEO. We ran the algorithms 50

times for the same input by using the same population

initialization and took the best of the cost function.

5.1 First experiment

We consider the problem that consists of minimizing the

objective function f1(x1,x2) with the respect of the

constraints on the execution time(Tmax) and hardware

area(Amax). The goal is to find the optimal Hw/Sw

partitioning with lower execution time and area. f1(x1,x2) can

be expressed by using the following equation:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1(𝑥1, 𝑥2) = 𝑇𝑒𝑥𝑒 + 𝐴

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{
𝑇𝑒𝑥𝑒 ≤ 𝑇𝑚𝑎𝑥
𝐴 ≤ 𝐴𝑚𝑎𝑥

 (20)

Table 3 presents the experimental results achieved

by the algorithms retained to conduct this study where

the best fitness value is displayed. The best results of the

algorithms are written in bold. Looking at table 3 and

table 4, it is obvious that BFA-PEO searches out better

solutions than the other algorithms while BFA and

NBDE perform second-best results. The saBDE

algorithm comes last, providing the worst results.

Consider an application specified as a DAG (directed

acyclic graph) with 500 nodes. We remember that the

candidate partitioning solutions are also vectors of 500

values set to 0 and 1 where each value of the vector is a

module implemented in hardware (Hw) if it is equal to 1,

or in software (Sw) if it is equal to 0. The best solution in

this first experiment is a vector that contains the

minimum of the execution time and area parameters,

The cost of the initial population is thus calculated using

the objective function. We obtain the best initial solution

composed of 239 software modules and 261 hardware

modules with fitness equal to 41897. BFA-PEO has

provided a binary solution composed of 75 software

modules and 425 hardware modules corresponding to

fitness equal to 25240. BFA has found a fitness equal to

26723 for a binary vector composed of 7 software

modules and 493 hardware modules while NDBE has

produced a fitness equal to 26800 for a binary

configuration composed of 27 software modules and 473

hardware modules.

As can be seen, BFA-PEO performs significantly

better than all other algorithms. The BFA-PEO

developed by incorporating a novel probability

Parameters Value

hardware execution time (Ti
Hw) [1..50];

software execution time (Ti
Sw) 5* Ti

Hw

hardware area (Ai
Hw) [1..60]

Memoy required (DMi
Sw+CMi

Sw) [1..100]

Hardware cost(Si
Hw) [1..100]

Software cost(Si
Sw) [1..20]

Communication cost(Ccomij) [1..30]

Hardware Power cost(Pci
Hw) [1..20]

Software power cost(Pci
Sw) [1..5]

Table 1: Metrics settings.

Algorithm Control Parameters

BFA[28] β0=1, γ =1, α=081

NBBFA[27] β0=0,97, γ =1, α=0,2

BFA-PEO F=0.2; b=20, β0=1, γ=1, α=0,81

GA crossover = 0.8; Mutation = 0.05

BPSO W=1,c1=c2=2;

saBDE[68] crossover=0.8

DDE[69] Mutation=0.05,crossover=0.8

BDE[69] Mutation=0.05,perturbation=0.5

NBDE[70] crossover=0.8

NMBDE[71] Cr=0.8,f=1

Table 2: Parameters settings of each method.

 Methods

Nodes

GA BPSO SaBDE DDE BDE NBDE NMBDE NBBFA BFA BFA-PEO

100 5147 7020 7696 5532 6818 5357 6830 5600 5302 5147

200 10331 15265 16382 10848 13839 10703 14592 12209 10724 10283

300 16125 23385 23989 16124 21246 16065 21777 18170 16060 15116

400 22598 31293 32519 21430 29503 21278 30656 25079 21344 20214

500 29963 39454 41271 26926 37232 26800 38169 31330 26723 25240

600 37613 48451 49400 32302 46031 32285 47105 37630 32216 30310

700 43854 56512 57934 37530 53577 37503 54915 45045 37370 35180

800 52450 64525 67245 42690 61918 42587 61940 51272 42576 40138

900 61002 73168 74058 48270 70507 48163 71117 58445 48247 45583

1000 69048 80771 82224 53358 77814 53312 78009 64545 53307 50475

Table 3: Simulation Results.

8 Informatica 45 (2021) 1–12 M. Khetatba et al.

estimation operator (PEO) based on the distribution of

estimation algorithm was found to perform better than

other algorithms because of an improved balance

between exploration and exploitation.

In previous sections, the authors [56, 57] found that

the firefly algorithm is superior to PSO and GA in terms

of efficiency and success rate. According to Table 3, our

results provided by the three variants of FA confirm their

claim.

In Table 4, we report the best, worst, Mean, and

standard deviation of the evaluation function values over

50 runs. From this table, it is clear that BFA-PEO, BFA

and DDE converge quickly to good solutions. At the

beginning, from the first ten iterations, both BFA-PEO,

BFA, and DDE algorithms have a fast improvement of

their objective function. The best cost function has been

reduced to almost half. It has improved from 41897 to

around 26000 for the three algorithms mentioned above.

Then, BFA-PEO fitness continued to decrease until it

reached the value of 25240 which represents the best

result of all the algorithms. We can see that there is no

change in the cost function for DDE and saBDE. Their

fitness remains fixed regardless of the number of

iterations, while the other methods continue to slightly

decrease their function. NBDE does the exception and

produces finally, at the 300 iterations, a promising

solution whose fitness is equal to 26800. In summary, the

BFA-PEO always provides the best results.

5.2 Second experiment

We consider the problem that consists of minimizing the

objective function f2(x) with the respect of the Gcmax

constraint. f2(x) can be formulated as the follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2(𝑥) = 𝐺𝑐

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{
𝐺𝑐 ≤ 𝐺𝑐𝑚𝑎𝑥

𝑃𝑐 ≤ 𝑃𝑐𝑚𝑎𝑥

𝐶𝑐𝑜𝑚 ≤ 𝐶𝑐𝑜𝑚𝑚𝑎𝑥

 (21)

Table 5 outlines the results of NBBFA, BFA, BFA-

PEO, GA, BPSO, SaBDE, DDE, BDE, NBDE, and

NMBDE. The best results are highlighted in bold. As it

may be observed, the proposed BFA-PEO algorithm

always performs superior to other meta-heuristics. We

can see easily the big gap between the values provided

by BFA-PEO and the others. For example, for node

1000, the cost function is 11380 for the BFA-PEO,

while, for DDE which comes in the second position, the

value of the objective function is 58612. Too, we notice

 Algorithms

Iterations

GA BPSO SaBDE DDE BDE NBDE NMBDE NBBFA BFA BFA-PEO

10

Best 40146 40819 41367 26926 40754 36601 40998 32228 26876 26509

Worst 40741 41367 41367 26926 40754 36601 40998 33456 27217 27135

Mean 40392,77 41165,17 41367 26926 40754 36601 40998 32837,03 26977,2 26802,43

St. Dev. 29607,25 418,43 0 0 0 0 0 99317,70 95,13 35682,58

40

Best 37543 40584 41367 26926 39108 28304 40482 32094 26842 25431

Worst 37700 41363 41367 26926 39108 28304 40482 33148 26956 25579

Mean 37675,4 4103303 41367 26926 39108 28304 40482 32692,63 26891,2 25485,1

St. Dev. 1542,64 538,33 0 0 0 0 0 66005,77 36,64 1547,49

80

Best 35841 40275 41367 26926 38866 27554 40336 32025 26831 25301

Worst 35934 41355 41367 26926 38866 27554 40336 32991 26924 25388

Mean 35909,6 40921,2 41367 26926 38866 27554 40336 32534,4 26855,55 25352,1

St. Dev. 818,92 736,41 0 0 0 0 0 58573,11 28,32 390,557

120

Best 34445 40100 41343 26926 38866 27118 39350 31917 26806 25285

Worst 34687 41347 41343 26926 38866 27118 39350 32759 26881 25337

Mean 34654,33 40784,5 41343 26926 38866 27118 39350 32366,33 26849,2 25310,43

St. Dev. 2209,62 788,11 0 0 0 0 0 40742,89 20,25 153,31

160

Best 33181 39775 41343 26926 38605 27036 39350 31680 26788 25244

Worst 33316 41327 41343 26926 38605 27036 39350 32649 26838 25305

Mean 33288,5 40784,4 41343 26926 38605 27036 39350 32295,4 26818,65 25279,27

St. Dev. 1929,65 1104,47 0 0 0 0 0 53844,97 12,39 169,86

200

Best 32255 39713 41343 26926 38071 26917 38953 31655 26767 25244

Worst 32398 41297 41343 26926 38071 26917 38953 32649 26827 25283

Mean 32338,43 40883,1 41343 26926 38071 26917 38953 32252,5 26808,2 25264,57

St.Dev. 13338,25 1294,31 0 0 0 0 0 62370,72 18,61 121,65

240

Best 30687 39356 41343 26926 38020 26873 38368 31655 26747 25240

Worst 31482 41231 41343 26926 38020 26873 38953 32649 26806 25266

Mean 31209,47 40643,4 41343 26926 38020 26873 38758 32203,8 26786,3 25252,97

St. Dev. 136507,3 1413,75 0 0 0 0 76050 52714,03 18,88 45,437

280

Best 30241 39356 41343 26926 38020 26842 38335 31649 26723 25240

Worst 30737 41228 41343 26926 38020 26873 38368 34030 26800 25255

Mean 30600,9 40437,2 41343 26926 38020 26862,67 38357 33229,1 26763,3 25247,937

St. Dev. 36528,16 1294,93 0 0 0 213,56 242 311068,42 27,45 13,867

300

Best 29963 39356 41271 26926 37232 26800 38169 31330 26723 25240

Worst 30466 40790 41343 26926 38020 26842 38335 32649 26800 25251

Mean 30267,27 40083,4 41319 26926 37757,33 26828 38279,67 31983 26737,15 25244,97

St. Dev. 46573,86 912,69 1152 0 137987,57 392 6123,55 158631,93 17,45 12,56

Table 4: Simulation Results for node=500.

A Modified Binary Firefly Algorithm to Solve Hardware/Software Partitioning Problem Informatica 45 (2021) 1–12 9

that the algorithm is always followed by the other two

algorithms BFA and NBDE. The results produced by our

BFA-PEO are very logical since, according to the

equations used to randomly generate the cost metrics, the

algorithm must always provide solutions composed of

software blocks only, while the other meta-heuristics

give purely hardware or mixed solution. BFA and NBDE

provide the same results representing the fitness of

purely hardware solutions. The recent NBBFA based on

using the Sigmoid function provides poor results and is

positioned with the latest algorithms. The superior results

mean that the proposed approach can tackle the Hw/Sw

partitioning problems efficiently.

6 Conclusion
As the standard FA operates in the continuous space, this

paper presents for the first time a binary FA algorithm to

tackle the Hw/Sw partitioning problems. The metrics and

the constraints are integer numbers generated randomly.

The performance of BFA-PEO (Binary Firefly algorithm

with Probability Estimation Operator) has then been

compared with that of the existing approaches like

saBDE, DDE, etc., taking into account the quality of the

solution. This type of performance comparison has not

been attempted so far on the said problem. The proposed

probability estimation operator enables BFA to

manipulate binary-valued solutions directly and

effectively preserve the diversity of the population and

enhance the global search ability. Table 3 and Table 5

summarize the conclusions we have drawn after

executing and comparing the different system

partitioning methods. A future study could extend the

system model to encompass other quality attributes. We

will demonstrate the effectiveness of our algorithm on

some practical examples.

Acknowledgement
The authors would like to thank the DGRSDT (General

Directorate of Scientific Research and Technological

Development) - MESRS (Ministry of Higher Education

and Scientific Research), ALGERIA, for the financial

support of Embedded System Laboratory (LASE).

References
[1] J. Teich(2012). Hardware/Software Codesign: The

Past, the Present, and Predicting the Future.

Proceedings of the IEEE,Vol. 100,pp. 1411–1430.

https://doi.org/10.1109/jproc.2011.2182009

[2] F. VAHID (2009). What is hardware/software

partitioning? ACM SIGDA newsletter, New York,

NY. v. 39, n. 6, pp. 4-7.

https://doi.org/10.1145/1862900.1862901

[3] W. Jigang, T. Srikanthan, and G. Chen (2010).

Algorithmic aspects of hardware/software

partitioning: 1D search algorithms. Institute of

Electrical and Electronics Engineers. Transactions

on Computers, vol. 59, no. 4, pp. 532–544.

https://doi.ieeecomputersociety.org/10.1109/TC.200

9.173

[4] P. Arato, S. Juhasz, Z.A. Mann and A. Orban(2003).

Hardware/software partitioning in embedded system

design. In Proc. of the IEEE Int. Symposium on

Intelligent Signal Processing, pp. 197-202.

https://doi.org/10.1109/isp.2003.1275838

[5] S.A Tahaee and A.H. Jahangir (2010). A Polynomial

Algorithm for Partitioning Problems. ACM Trans.

Embed. Comput. Syst., vol.9 (4), pp.1–34.

https://doi.org/10.1145/1721695.1721700

[6] X.S. Yang (2008). Nature-inspired meta-heuristic

algorithms. Luniver Press, UK.

[7] A. H. Gandomi (2014). Interior search algorithm

(ISA): a novel approach for global optimization. ISA

transactions 53, no. 4, pp.1168-1183.

https://doi.org/10.1016/j.isatra.2014.03.018

[8] X.S. Yang (2012). Efficiency analysis of swarm

intelligence and randomization techniques. Journal

of computational and theoretical Nanoscience, vol.9

(2), pp.189-198.

https://doi.org/10.1166/jctn.2012.2012

[9] I. Fister, Jr. I. Fister, X.-S. Yang and J. Brest

(2013). A comprehensive review of firefly

algorithms. Swarm and Evolutionary Computation,

13, 34-46.

https://doi.org/10.1016/j.swevo.2013.06.001

[10] H. Wang, W. Wang, and S. Xiao (2019). A survey of

firefly algorithm. Journal of Nanchang Institute of

Technology, vol. 38, no. 4, pp. 71–77.

[11] S. Severin and J. Rossmann (2012). A comparison of

different metaheuristic algorithms for optimizing

 Methods

Nodes GA PSO SaBDE DDE BDE NBDE NMBDE NBBFA BFA BFA-PEO

100 38287 60556 5782 5782 5782 5782 4041 26172 5782 1137

200 261227 271957 81866 11896 17352 11896 17428 137960 11896 2362

300 576130 629696 334259 18188 79662 18188 38143 370402 18188 3561

400 1142102 1118569 764473 23774 247164 23774 150353 674114 23774 4602

500 1727779 1754802 1306480 29624 261859 29624 424189 1095953 29624 5820

600 2566649 2549646 2031003 35330 635326 35330 603421 1662421 35330 6996

700 3497128 3461190 2827546 41500 1067305 41500 793618 2205311 41500 7955

800 4586485 4571337 3898644 47670 2008235 47670 1693334 2718329 47670 9075

900 5831982 5812487 4997017 52854 3305082 52854 2124837 3444275 52854 10247

1000 7182356 7167670 6376675 58612 4409207 58612 2801863 3944907 58612 11380

Table 5: Simulation Results for objective function f2.

https://doi.org/10.1109/jproc.2011.2182009
https://doi.org/10.1145/1862900.1862901
https://doi.ieeecomputersociety.org/10.1109/TC.2009.173
https://doi.ieeecomputersociety.org/10.1109/TC.2009.173
https://doi.org/10.1109/isp.2003.1275838
https://doi.org/10.1145/1721695.1721700
https://doi.org/10.1016/j.isatra.2014.03.018
https://doi.org/10.1166/jctn.2012.2012
https://doi.org/10.1016/j.swevo.2013.06.001

10 Informatica 45 (2021) 1–12 M. Khetatba et al.

blended PTP movements for industrial robots.

Intelligent robotics and applications , pp. 321-330.

https://doi.org/10.1007/978-3-642-33503-7_32

[12] S. Delir, A. Foroughi-Asl and S. Talatahari (2019).

A Hybrid Charged System Search – Firefly

Algorithm For Optimization Of Water Distribution

Networks. International Journal of Optimization in

Civil Engineering, vol.9 (2), pp. 273-290.

https://www.sid.ir/en/journal/JournalListPaper.aspx?

ID=282331

[13] C. Ren, J. Zhao, L. Chen, and Y. Huang (2018).

Application of Firefly Algorithm in Scheduling

Optimization of Combined Cooling, Heating and

Power with Multiple Objectives. Chemical

Engineering Transactions, vol.67, pp.829-834.

DOI: 10.3303/CET1867139

[14] M. A. Nemmich , F. Debbat (2020). Hybrid Bees

Approach Based on Improved Search Sites Selection

by Firefly Algorithm for Solving Complex

Continuous Functions. Informatica 44 (2020) 183–

198.

https://doi.org/10.31449/inf.v44i2.2385

[15] M.-H. HORNG (2012). Vector quantization using

the firefly algorithm for image compression.

Expert Syst. Appl., vol. 39 (1), pp. 1078–1091.

https://doi.org/10.1016/j.eswa.2011.07.108

[16] L. F. F. MIGUEL (2012). Shape and size

optimization of truss structures considering dynamic

constraints through modern meta-heuristic

algorithms. Expert Systems with Applications, vol.

39 (10), pp. 9458–9467.

https://doi.org/10.1016/j.eswa.2012.02.113

[17] M.K. Sayadi, A. Hafezalkotob and S.G. Jalali Naini

(2013). Firefly-inspired algorithm for discrete

optimization problems: An application to

manufacturing cell formation. Journal of

Manufacturing Systems, vol.32 (1), pp. 78-84.

https://doi.org/10.1016/j.jmsy.2012.06.004

[18] M.K. Sayadi, R. Ramezanian, and N. Ghaffari-

Nasab (2010). A discrete firefly metaheuristic with

local search for makespan minimization in

permutation flow shop scheduling problems.

International Journal of Industrial Engineering

Computations, Vol.1, No. 1, pp.1-10.

https://doi.org/10.5267/j.ijiec.2010.01.001

[19] K. Durkota (2011). Implementation of a Discrete

Firefly Algorithm for the QAP Problem within the

Seage Framework. BSc Thesis, Faculty of Electrical

Engineering, Czech Technical University.

[20] S. Palit, S. Sinha, , M. Molla, , A. Khanra and M.

Kule (2011). A cryptanalytic attack on the knapsack

cryptosystem using binary firefly algorithm. In : the

second international conference on computer and

communication technology, IEEE, pp.428-432.

https://doi.org/10.1109/iccct.2011.6075143

[21] R. Falcon, M. Almeida and A. Nayak (2011). Fault

identification with binary adaptive fireflies in

parallel and distributed systems. In: IEEE congress

on evolutionary computation (CEC-2011), IEEE,

pp.1359-1366.

https://doi.org/10.1109/cec.2011.5949774

[22] K. Chandrasekaran and S. Simon (2012). Network

and reliability constrained unit commitment problem

using binary real coded firefly algorithm.

International journal of electrical power & energy

systems, vol. 43(1), pp. 921-932.

https://doi.org/10.1016/j.ijepes.2012.06.004

[23] Khadwilard, S. Chansombat, T. Thepphakorn, W.

Chainate, and P. Pongcharoen (2012). Application of

firefly algorithm and its parameter setting for job

shop scheduling. The Journal of Industrial

Technology, Vol. 8, No. 1, pp.49-58.

http://www.ojs.kmutnb.ac.th/index.php/joindtech/art

icle/view/4399

[24] S. KARTHIKEYAN, P. Asokan, S. Nickolas and T.

Page (2015). A hybrid discrete firefly algorithm for

solving multi-objective flexible job shop scheduling

problems. International Journal of Bio-Inspired

Computation, vol. 7 (6), pp. 386-407.

http://dx.doi.org/10.1504/IJBIC.2015.073165

[25] B. Crawford, R. Soto, M. Olivares-Suarez, and W.

Palma (2014). A Binary Coded Firefly Algorithm

That Solves the Set Covering Problem. In Advances

in Intelligent Systems and Computing,pp. 65- 73

https://doi.org/10.1007/978-3-319-06740-7_6

[26] R. F. Najeeb and B. N. Dhannoon (2018). A Feature

Selection Approach Using Binary Firefly Algorithm

For Network Intrusion Detection System. ARPN

Journal of Engineering and Applied Sciences. VOL.

13, NO. 6. ISSN 1819-6608

http://www.arpnjournals.org/jeas/research_papers/rp

_2018/jeas_0318_6935.pdf

[27] R.R. Rajalaxmi, E. Gothai, .R. Thamilselvan, P.

Gokila Bindha, and P.Natesan (2019). Naïve Bayes

guided Binary Firefly Algorithm for Gene Selection

in Cancer Classification. International Journal of

Recent Technology and Engineering (IJRTE)

ISSN: 2277-3878, Volume-8 Issue-4.pp. 7405 -7409

https://doi.org/10.35940/ijrte.d5308.118419

[28] M. Lin, F. Liu, H. Zhao and J. Chen (2020). A

Novel Binary Firefly Algorithm for the Minimum

Labeling Spanning Tree Problem. Computer

Modeling in Engineering & Sciences Tech Science

Press.

DOI :10.32604/cmes.2020.09502

[29] S. L. Tilahun and J. M. T. Ngnotchouye (2016).

Firefly Algorithm for optimization problems with

non-continuous variables: A Review and Analysis.

Preprint submitted to Elsevier.

https://arxiv.org/abs/1602.07884v1

[30] V. Kumar and D. Kumar (2021). A Systematic

Review on Firefly Algorithm: Past, Present,

and Future. Archives of Computational Methods in

Engineering, Vol. 28, pp.3269–3291

https://doi.org/10.1007/s11831-020-09498-y

[31] S. A. Edwards, L. Lavagno, E. A. Lee et al.(1997).

Design of Embedded Systems: Formal Models

Validation, and Synthesis. Proceedings of the IEEE,

vol.85 (3), pp.366-390.

https://doi.org/10.1109/5.558710

[32] B. Mei, P. Schaumont and S.Vernalde (2000). A

hardware-software partitioning and scheduling

https://doi.org/10.1007/978-3-642-33503-7_32
https://www.sid.ir/en/journal/JournalListPaper.aspx?ID=282331
https://www.sid.ir/en/journal/JournalListPaper.aspx?ID=282331
doi:%2010.3303/CET1867139
https://doi.org/10.31449/inf.v44i2.2385
https://doi.org/10.1016/j.eswa.2011.07.108
https://doi.org/10.1016/j.eswa.2012.02.113
https://doi.org/10.1016/j.jmsy.2012.06.004
https://doi.org/10.5267/j.ijiec.2010.01.001
https://doi.org/10.1109/iccct.2011.6075143
https://doi.org/10.1109/cec.2011.5949774
https://doi.org/10.1016/j.ijepes.2012.06.004
http://www.ojs.kmutnb.ac.th/index.php/joindtech/article/view/4399
http://www.ojs.kmutnb.ac.th/index.php/joindtech/article/view/4399
http://dx.doi.org/10.1504/IJBIC.2015.073165
http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_0318_6935.pdf
http://www.arpnjournals.org/jeas/research_papers/rp_2018/jeas_0318_6935.pdf
https://doi.org/10.35940/ijrte.d5308.118419
file:///H:/DOI%20:10.32604/cmes.2020.09502
https://arxiv.org/abs/1602.07884v1
https://doi.org/10.1007/s11831-020-09498-y
https://doi.org/10.1109/5.558710

A Modified Binary Firefly Algorithm to Solve Hardware/Software Partitioning Problem Informatica 45 (2021) 1–12 11

algorithm for dynamically reconfigurable embedded

systems. In Proceedings of ProRISC. Citeseer, pp.

405–411.

http://rijndael.ece.vt.edu/schaum/papers/2000prorisc.

pdf

[33] R. Ernst, J. Henkel and T. Benner (2002). Hardware-

software cosynthesis for microcontrollers. Readings

in hardware/software co-design, pp. 18–29.

https://doi.org/10.1016/b978-155860702-6/50004-1

[34] J. Wu, T. Srikanthan and C. Yan (2008).

Algorithmic aspects for power-efficient

hardware/software partitioning. Math Comput Simul.

, vol.79 (4), pp.1204–1215.

https://doi.org/10.1016/j.matcom.2007.09.003

[35] R.S. Rajakumari, K. Hariharan, R. Manikandan and

K.R. Sekar (2018). A Survey on various method

used in Hardware and Software Partitioning.

International Journal of Pure and Applied

Mathematics, Vol. 118 No. 18, pp.2365-2385. ISSN:

1311-8080 (printed version); ISSN: 1314-3395 (on-

line version)

url: http://www.ijpam.eu

[36] Y. Jing, J. Kuang, J. Du, and B. Hu (2014).

Application of improved simulated annealing

optimization algorithms in hardware/software

partitioning of the reconfigurable system-on-chip.

Communications in Computer and Information

Science, vol. 405, pp. 532– 540.

https://doi.org/10.1007/978-3-642-53962-6_48

[37] J. Wu, P. Wang, S.-K. Lam, and T.

Srikanthan(2013). Efficient heuristic and tabu search

for hardware/software partitioning. The Journal of

Supercomputing, vol. 66, no. 1, pp. 118–134.

https://doi.org/10.1007/s11227-013-0888-9

[38] M.M. Shehab, A.T. Khader and M.A. Al-Betar

(2016). New selection schemes for particle swarm

optimization. In Proceedings ,the 7th International

Conference on Information Technology.

http://dx.doi.org/10.15849/icit.2015.0003

[39] G. Li, J. Feng, J. Hu, C. Wang and D. Qi (2014).

Hardware/Software Partitioning Algorithm Based

on Genetic Algorithm. Journal of Computers, Vol.

9, No. 6.

https://doi.org/10.4304/jcp.9.6.1309-1315

[40] M. Riabi, Y. Manai, and J.Haggège (2015).

Hardware/Software partitioning approach for

embedded system design based on Genetic

Algorithm. International Journal of Scientific

Research & Engineering Technology (IJSET)

ISSN: 2356-5608, Vol.3, issue 3, pp.20-25.

ipco-co.com/IJSET/ACECS2015/5.pdf

[41] S.-A. Li, C.-C. Hsu, C.-C. Wong, and C.-J.

Yu(2011). Hardware/software co-design for particle

swarm optimization algorithm. Information

Sciences, vol. 181, no. 20, pp. 4582 4596.

https://doi.org/10.1016/j.ins.2010.07.017

[42] M.B. Abdelhalim , S.E.-D. Habib (2011). An

integrated high-level hardware/software partitioning

methodology. Des. Autom. Embeded System, vol.15,

pp.19–50. DOI 10.1007/s10617-010-9068-9

[43] E. M. F. El Houby, N. I. R. Yassin and S. Omran

(2017). A Hybrid Approach from Ant Colony

Optimization and K-nearest Neighbor for

Classifying Datasets Using Selected Features.

Informatica ,vol. 41(4),pp. 495–506.

https://www.informatica.si/index.php/informatica/art

icle/view/1444/1096

[44] Y.-D. Zhang, L.-N. Wu, G. Wei, H.-Q. Wu, and Y.-

L. Guo(2009). Hardware/software partition using

adaptive ant colony algorithm. Control and

Decision, Issue 9, pp. 1385–1389.

[45] D. Das, M.L. Verma and A. Das (2014). A

Differential Evolutionary Approach to Solve the

Hardware Software Partitioning Problem.

International Journal of Engineering Research &

Technology, vol.3, issue 7. ISSN: 2278-0181

IJERTV3IS071071

[46] S. Prakasam, M. Venkatachalam, M. Saroja, N.

Pradheep, and P. Gowthaman (2016). A novel bat

inspired algorithm for hardware-software codesign

partitioning. International Journal of

Multidisciplinary Research and Development. Vol.

3; Issue 3; pp. 88-92; (Special Issue). Online ISSN:

2349-4182

http://www.allsubjectjournal.com

[47] A. Iguider, K. Bousselam, O. Elissati, M. Chami,

and A. En-Nouaary (2020). Heuristic algorithms for

multi-criteria hardware/software partitioning in

embedded systems codesign. Computers and

Electrical Engineering, vol. 84, pp. 106-210.

https://doi.org/10.1016/j.compeleceng.2020.106610

[48] XH. Yan, FZ. He and YL. Chen (2017). A novel

hardware/software partitioning method based on

position disturbed particle swarm optimization with

invasive weed optimization. Journal Of Computer

Science And Technology, vol. 32(2), pp.

340–355.

DOI 10.1007/s11390-017-1714-2

[49] W. Shi, J. Wu, S.-k. Lam, and T. Srikanthan (2016).

Algorithms for Bi-objective Multiple-choice

Hardware/Software Partitioning. Computers and

Electrical Engineering, vol. 50, pp. 127-142.

https://doi.org/10.1016/j.compeleceng.2016.01.006

[50] L. Li, J. Sun, W. Li, Z. Lv and F. Guan.

Hardware/software partitioning based on hybrid

genetic and tabu search in the dynamically

reconfigurable system (2015). International

J. of Control & Automation. Vol. 8(1) pp.29–36.

http://dx.doi.org/10.14257/ijca.2015.8.1.03

[51] S. Dimassi, M. Jemai, B. Ouni and A. Mtibaa

(2015). Optimization Algorithms for

Hardware/Software Partitioning. International

journal of computer science,communication &

information Technology (CSCIT),vol.2(1),pp.23-27.

ipco-co.com/CSCIT_Journal/papers-

CSCIT/CSCIT/CSCIT%20-%20Vol.2%20-

%20issue1%20-%202015/5.pdf

[52] L. An, F. Jinfu, L. Xiaolong, and Y. Xiaotian(2010).

Algorithm of hardware/software partitioning based

on genetic particle swarm optimization. Journal of

http://rijndael.ece.vt.edu/schaum/papers/2000prorisc.pdf
http://rijndael.ece.vt.edu/schaum/papers/2000prorisc.pdf
https://doi.org/10.1016/b978-155860702-6/50004-1
https://doi.org/10.1016/j.matcom.2007.09.003
http://www.ijpam.eu/
https://doi.org/10.1007/978-3-642-53962-6_48
https://doi.org/10.1007/s11227-013-0888-9
http://dx.doi.org/10.15849/icit.2015.0003
https://doi.org/10.4304/jcp.9.6.1309-1315
file:///H:/ipco-co.com/IJSET/ACECS2015/5.pdf
https://doi.org/10.1016/j.ins.2010.07.017
file:///H:/DOI%2010.1007/s10617-010-9068-9
https://www.informatica.si/index.php/informatica/article/view/1444/1096
https://www.informatica.si/index.php/informatica/article/view/1444/1096
file:///H:/IJERTV3IS071071
http://www.allsubjectjournal.com/
https://doi.org/10.1016/j.compeleceng.2020.106610
file:///H:/DOI%2010.1007/s11390-017-1714-2
https://doi.org/10.1016/j.compeleceng.2016.01.006
ttp://dx.doi.org/10.14257/ijca.2015.8.1.03
file:///H:/ipco-co.com/CSCIT_Journal/papers-CSCIT/CSCIT/CSCIT%20-%20Vol.2%20-%20issue1%20-%202015/5.pdf
file:///H:/ipco-co.com/CSCIT_Journal/papers-CSCIT/CSCIT/CSCIT%20-%20Vol.2%20-%20issue1%20-%202015/5.pdf
file:///H:/ipco-co.com/CSCIT_Journal/papers-CSCIT/CSCIT/CSCIT%20-%20Vol.2%20-%20issue1%20-%202015/5.pdf

12 Informatica 45 (2021) 1–12 M. Khetatba et al.

Computer-Aided Design & Computer Graphics, vol.

22, no. 6, pp. 927–933.

https://doi.org/10.3724/sp.j.1089.2010.10834

[53] G. Li, J. Feng, C. Wang and J. Wang (2014).

Improved hardware/software partitioning algorithm

based on combination of PSO and TS. Journal of

Comput. Inf. System. Vol 10(14) ,pp. 5975–5985.

[54] L.Weijia , L. Lanying , S. Jianda , L. Zhiqiang, and

F. Guan (2014). Hardware/software partitioning of

combination of clustering algorithm and genetic

algorithm. International journal of control and

automation, vol. 7, no. 1,pp 347-356.

https://doi.org/10.14257/ijca.2014.7.1.31

[55] X. Zhao, H. Zhang, Y. Jiang, S. Song, X. Jiao, and

M. Gu (2013). An Effective Heuristic-Based

Approach for Partitioning. Hindawi Publishing

Corporation Journal of Applied Mathematics.

Volume 2013, Article ID 138 037, 8 pages.

http://dx.doi.org/10.1155/2013/138037

[56] X.S. Yang (2009). Firefly algorithms for multimodal

optimization, Stochastic Algorithms. Foundations

and Applications (SAGA) Lecture Notes in Computer

Sciences, 5792, pp. 169–78.

https://doi.org/10.1007/978-3-642-04944-6_14

[57] X.S. Yang (2010). Firefly Algorithm, Levy Flights

and Global Optimization. Research and

Development in Intelligent Systems XXVI (Eds M.

Bramer, R. Ellis, Petridis), Springer London,

pp. 209-218.

https://doi.org/10.1007/978-1-84882-983-1_15

[58] P.Arató, Z. Á. Mann and A. Orbán (2005).

Algorithmic aspects of hardware/software

partitioning. ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol.

10, no. 1, pp. 136–156.

https://doi.org/10.1145/1044111.1044119

[59] K. Yahyaoui (2017). Partitioning and Scheduling

Resolution Problems By Bees Mating Strategy. In

Dres’ Systems. International Journal of Computing,

vol. 16(2), pp.97-105.

https://doi.org/10.47839/ijc.16.2.886

[60] G. Li, J. Feng, C. Wang and J. Wang (2014).

Hardware/software partitioning algorithm based on

the combination of genetic algorithm and tabu

search. Engineering Review, vol. 34, no. 2, pp.

151 –160. https://hrcak.srce.hr/122370

[61] T.-Y. Lee, Y.-H. Fan, Y.-M. Cheng, C.-C. Tsai

and R.-S. Hsiao (2007). Enhancement of hardware-

software partition for embedded multiprocessor

FPGA systems. In Third International Conference

on Intelligent Information Hiding and Multimedia

Signal Processing, IIHMSP 2007, vol. 1. IEEE,

2007, pp. 19–22.

https://doi.org/10.1109/iihmsp.2007.4457483

[62] P. K. Nath and D.Datta (2014). Multi-objective

hardware–software partitioning of embedded

systems: A case study of JPEG encoder. Applied

Soft Computing, vol. 15, pp. 30–41.

https://doi.org/10.1016/j.asoc.2013.10.032

[63] E. Sha, L. Wang, Q. Zhuge, J. Zhang and J.

Liu(2015). Power efficiency for hardware/software

partitioning with time and area constraints on

MPSOC. International Journal of Parallel

Programming, vol.43(3),pp. 381 –402.

https://doi.org/10.1007/s10766-013-0283-4

[64] M. Lopez-Vallejo and J. Lopez (2003). On the

hardware-software partitioning problem: System

modeling and partitioning techniques. ACM

Transactions on Design Automation of Electronic

Systems, vol. 8(3), pp.269–297.

http://dx.doi.org/10.1145/785411.785412

[65] N. Govil and S. R. Chowdhury (2015). A High

Speed Metaheuristic Algorithmic Approach to

Hardware Software Partitioning for Low-cost SoCs.

International Symposium on Rapid System

Prototyping (RSP), 2015.

https://doi.org/10.1109/rsp.2015.7416554

[66] X. Zhao, H. Zhang, Y. Jiang, S. Song, X. Jiao and

M.Gu (2013). An Effective Heuristic-Based

Approach for Partitioning. Journal of Applied

Mathematics, Vol. 2013, Article ID 138037, 8 pages.

https://doi.org/10.1155/2013/138037

[67] Task Graphs for Free (TGFF v3.0) [EB/OL]. [2012-

11-20]. http://z iyang.eecs.umich.edu/ dickrp/tgff/.

[68] A. K.Qin and P. N. Suganthan (2005). Self-adaptive

differential evolution algorithm for numerical

optimization. In Proceedings of IEEE Congress on

Evolutionary Computation, vol. 2, pp. 1785–1791.

https://doi.org/10.1109/cec.2005.1554904

[69] J. Krause and H. S. Lopes (2013). A Comparison of

Differential Evolution Algorithm with Binary and

Continuous Encoding for the MKP. BRICS Congress

on Computational Intelligence & 11th Brazilian

Congress on Computational Intelligence, 2013.

https://doi.org/10.1109/brics-cci-cbic.2013.70

[70] H. Xingshi and L.Han (2007). A novel binary

differential evolution algorithm based on artificial

immune system. IEEE congress on evolutionary

computation (CEC 2007), pp.2267-2272.

https://doi.org/10.1109/cec.2007.4424753

[71] A. W. Mohamed (2016). A New Modified Binary

Differential Evolution Algorithm and its

Applications. Applied Mathematics & Information

Sciences, vol.10, No. 5, pp. 1965-1969.

https://doi.org/10.18576/amis/100538

https://doi.org/10.3724/sp.j.1089.2010.10834
https://doi.org/10.14257/ijca.2014.7.1.31
http://dx.doi.org/10.1155/2013/138037
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/978-1-84882-983-1_15
https://doi.org/10.1145/1044111.1044119
https://doi.org/10.47839/ijc.16.2.886
https://hrcak.srce.hr/122370
https://doi.org/10.1109/iihmsp.2007.4457483
https://doi.org/10.1016/j.asoc.2013.10.032
https://doi.org/10.1007/s10766-013-0283-4
http://dx.doi.org/10.1145/785411.785412
https://doi.org/10.1109/rsp.2015.7416554
https://doi.org/10.1155/2013/138037
https://doi.org/10.1109/cec.2005.1554904
https://doi.org/10.1109/brics-cci-cbic.2013.70
https://doi.org/10.1109/cec.2007.4424753
https://doi.org/10.18576/amis/100538

