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Hardware/Software (Hw/Sw) partitioning is a crucial step in Hw/Sw co-design that determines which 

components of the embedded system could be implemented on hardware and which ones on software. It 

aims to find a design implementation that fulfills all the specification requirements (functionality, goals, 

and constraints) at a low cost. Most formulations of the Hw/Sw partitioning dilemma have proven to 

NP-hard optimization problems. The firefly algorithm (FA) emerges as a significant tool of Swarm 

Intelligence that has been applied in many areas of optimization. The main purpose of this paper is to 

present a modified binary firefly algorithm to solve Hw/Sw partitioning problems. We compare the 

performance and the quality of the solution of the proposed algorithm with two recently proposed FA 

variants namely the Naive Bayesian Binary Firefly Algorithm (NBBFA) and the Binary Firefly 

Algorithm (BFA); as well as other algorithms major partitioning in the literature. The computational 

results show that it produced better results than the all algorithms used.  

Povzetek: V tem članku je predstavljena sprememba algoritma Firefly za reševanje težave s 

particioniranjem strojne in programske opreme. 

1 Introduction 
The embedded systems have become omnipresent in a 

wide variety of applications and typically consist of a 

combination of hardware components and one or more 

microprocessors executing software functionalities. Their 

complexity is increasing. Hence, the system designer has 

the difficult task of selecting the appropriate 

hardware/software components for building an embedded 

system for a given application, by satisfying certain 

constraints. They present colossal business opportunities 

whose limits are still far from being reached. Winning in 

the marketplace requires system development teams must 

be the first to put better products to the market by 

minimizing Time To Market (TTM). At the same time, 

reducing the cost of the product must be done.  The need 

for co-designing hardware and software has long been 

pointed out for the development of those systems. The 

software is used for flexibility while specialized 

hardware delivers performance in the embedded domain. 

Hw/Sw co-design investigates the concurrent design of 

hardware and software components of complex 

electronic systems. It tries to exploit the synergy of 

hardware and software to optimize and/or satisfy design 

constraints [1]. A succession of steps starting with the 

specification of the system tasks to their synthesis forms 

what is called the Co-design process. 

At the specification step, designing a complex 

system necessarily involves cutting down its behavior 

into a set of functions. This step is followed by another 

where to decide how its functions will be implemented. 

Hw/Sw partitioning is an important development step 

during HW/SW co-design. According to Vahid [2], 

Hw/Sw partitioning is the problem of defining what 

module of the system will be executed as a series of 

instructions (software) and what module will run in 

parallel circuits on some chip as FPGA (hardware), such 

as to achieve design goals like performance, cost, size, 

and power. Hence, its primary task is the division of full 

design into the hardware/software parts of the target 

structure while respecting all kinds of restrains, and 

provides the best compromising scheme in Hw/Sw 

partitioning.  

The two hardware and software implementations 

typically have complementary advantages and 

disadvantages. Hardware-executed partitions usually 

perform faster at a cost of increased hardware area and 

higher power consumption, while software tasks are 

much easier to develop and modify, and they consume 

less power compared to the hardware partitions.  Critical 

partitions of the system should be implemented in 

hardware, whereas the others in software. Finding an 

optimal partition is a tedious problem because of the 

large number and different characteristics of the 

specification of the functions that have to be considered. 

Hw/Sw partitioning problem to be solved can be 

expressed as an optimization problem that seeks to 

minimize one or more criteria by defining a cost 

function. It is considered as NP-hard problem for most 

cases [3, 4, 5]. The latter presents a formal definition in 

form of task graphs, widely used in partitioning 

representation. 

To bypass these hardiest problems and still provide 

good solutions, particular studies were recently oriented 
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to meta-heuristic nature-inspired algorithms, which can 

be used to get high-quality results in a reasonable time 

and with small computational efforts, even if they do not 

guarantee to obtain globally optimum solutions. Meta-

heuristic algorithms including evolutionary and swarm 

intelligence algorithms have shown successful results 

when solving constrained problems [6, 7]. 

One of the recent swarm intelligence algorithms is 

Firefly algorithm (FA) that was developed by [6]. This 

algorithm is inspired by the social behavior of fireflies, 

mating, and exchange of information using light flashes. 

Owing to its few parameters to adjust, it is easy to 

understand, to realize, and to compute. Simulations and 

results indicate that FA is superior to PSO, GA, and 

ACO taking in account both efficiency and success rate 

in solving continuous optimization problems [8, 9].  

Several researchers have improved the standard FA by 

modifying the control and attractiveness parameters or by 

hybridizing with other meta-heuristics [10].  Thus, many 

FA variants have been developed to solve various 

optimization problems such as Robotics [11], Civil 

engineering [12], and Chemistry [13]. A list of other 

different optimization problems solved by FA can be 

found in [14]. 

As mentioned above, the Firefly Algorithm (FA) is a 

nature-inspired optimization algorithm that can be 

successfully applied to continuous optimization 

problems. However, a lot of practical problems are 

formulated as discrete optimization problems and the 

algorithm cannot be applied directly to these discrete 

problems. But, the results produced by the FA algorithm 

in solving discrete NP-hard problems such as image 

compression and processing [15], shape and size 

optimization [16], and manufacturing cell problem [17] 

encourage researchers to design novel FAs for discrete 

optimization problems.  

To solve the permutation flow shop scheduling 

problems, a discrete firefly algorithm for minimizing the 

makespan was proposed by Sayadi et al. [18], which was 

designed by modifying the basic firefly algorithm to 

adapt to solving discrete problems.  A modified version 

of FA was used by Durkota [19] to solve the class of 

discrete problems called Quadratic Assignment Problems 

(QAP), where a mapping into newly developed discrete 

functions of continuous functions such as attraction, 

distance, and movement, is recommended. A binary FA 

is proposed by Palit et al [20] to deduce the meaning of 

an encrypted message for cryptanalysis. Another 

researcher, Falcon et al. [21] presented a binary adaptive 

Firefly Algorithm for fault identification in parallel and 

distributed system by using binary encoding on candidate 

solution with adaptive light absorption coefficient to 

improve the search.  Chandrasekaran [22] developed a 

binary version of FA to solve the reliability constrained 

unit commitment problem. Khadwilard et al. [23] solved 

the job shop scheduling problems using the Firefly 

algorithm. To tackle the mapping from a continuous 

search space to discrete search space for solving the non-

unicost set covering problem which is a well-known NP-

hard discrete optimization problem, Crawford et al. [24] 

proposed a binary coded firefly algorithm based on the 

use of different transfer functions investigated in terms of 

convergence speed and accuracy of results. A discrete 

Firefly algorithm (DFA) combined with the local search 

(LS) method to enhance the searching accuracy and 

information sharing among fireflies was proposed by 

Karthikeyan [25] for solving multi-objective flexible job-

shop scheduling problems. Najeeb et al. [26] presented 

all steps of applying Firefly algorithm to Constraint 

Satisfaction Problems (CSPs) which have discrete nature. 

This novel feature selection method is based on the 

binary Firefly Algorithm (FA) and Naïve Bayesian 

Classifier (NBC). A Naive Bayesian Binary Firefly 

Algorithm (NBBFA) was developed by Rajalaxmi et al. 

[27].  Each firefly moves to find the optimal gene set 

from the search space for cancer identification based on 

the fitness evaluation done through the naïve Bayes 

classifier. A Novel Binary Firefly Algorithm for the 

Minimum Labeling Spanning Tree Problem was 

presented by M. Lin et al. [28]. This novel method allows 

the updating positions of fireflies, which makes the 

algorithm more suitable for solving discrete problems. 

In most works above, the updating procedure of the 

standard Firefly algorithm will be used and the result will 

be converted to discrete values. The position of Firefly 

shifts between ‘‘1’’ and ‘‘0’’ in discrete space. To 

accomplish this, they used the sigmoid function to 

constrain the position value of each firefly to the interval 

[0, 1]. A complete survey for updating the position of 

fireflies to transform continuous variables to binary 

variables is presented by Tilahun et al. [29].  Some 

variants of the sigmoid functions, S-shaped functions, 

some variants of the tan hyperbolic functions, and V-

shaped functions are given. More generally, for a 

complete overview of the topic, several reviews were 

carried out.  For instance, we highlight the recent works 

by [30]. 

According to the best of our knowledge, there is no 

published work dealing with the Hw/Sw partitioning 

problems by using FA Algorithm. Thus, in this paper, we 

proposed a modified binary FA algorithm to solve those 

problems. Our approach takes into account several 

constraints such as available area, execution time, and 

memory. Optimal partitioning solutions are obtained via 

this algorithm which is considered a new method in this 

field. 

The rest of the paper is organized as follows. Section 

2 lists the most reputed work in the field of Hw/Sw 

partitioning methods. Section 3 illustrates briefly the 

Firefly algorithm (FA). The partitioning problem 

formulation is given in section 4. Experiment results are 

discussed in Section 5. The work is concluded and 

perspectives to future work are given in Section 6. 

2 Related works 
The earliest works for the Hw/Sw partitioning problem 

can be found in [31]. Traditionally, Hw/Sw partitioning 

has been done manually, causing substantial delay [32]. 

The system designer decided which functional objects (or 

basic blocks) of the system could be implemented in 

hardware and which ones could be realized in software, 
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considering his experience in the field. These manual 

approaches directly affect the development time and the 

quality of the selected solution. Therefore, they were 

limited only to small designs with small number of 

constituent blocks [32]. But, the complexity of the 

embedded system keeps increasing; thus, an efficient 

HW/SW partitioning technique is required to ensure a 

cost-effective embedded system while performance 

constraints are satisfied. 

Using automatic Hw/Sw partitioning has become a 

necessity, and the partitioning results directly affect the 

system performance. Enormous difficulties may be 

encountered in obtaining the optimal solution since 

partitioning is considered a combinatorial optimization 

problem. Over the last two decades, a wide range of 

approaches has been proposed: (a) start from the pure 

software functional specification of the problem, then 

migrate critical software functions to a hardware 

implementation [33], Hardware-executed functions 

usually perform faster with more expensive cost, and (b) 

start with a pure hardware functional specification of the 

system and iteratively moves the non-critical parts or 

functions of the problem to the software as long as 

performance constraints are fulfilled[34]. Software 

function implementation requires more flexibility and 

less cost, but more execution time. 

Hw/Sw partitioning is considered a combinatorial 

optimization problem (COP). Due to the complexity of 

this category of problems, there are two kinds of automatic 

approaches solving such problems; namely exact methods 

and approached ones. Exact methods are simple to implement 

and allow the exploration of all possible configurations; 

therefore, they guarantee to provide optimal solutions, 

respecting all constraints and requirements. However, 

these algorithms become intractable when the problem 

size is large. 

Since Hw/Sw partitioning is considered NP-hard in 

more cases [3], the solution space is immense, so it is 

impossible to get an exact solution in a reasonable 

amount of time. The idea is to find good-quality 

solutions without investigating the entire search space. A 

variety of "natural phenomena" such as evolution 

imitation, annealing, or knapsack packing help to solve 

the NP-hard problem of Hw/Sw partitioning by using 

Meta-heuristic algorithms [35]. Their use in many 

applications shows their efficiency and effectiveness to 

solve large and complex problems.  

In literature, meta-heuristics methods are divided 

into two classes: firstly, meta-heuristics based on a single 

solution such as Simulated Annealing (SA)[36] and Tabu 

search(TS) [37], and secondly, meta-heuristics based on 

a population of solutions.  These meta-heuristics start 

from an initial population of solutions often generated 

randomly. Then, they iteratively apply the generation of 

a new population and the replacement of the current 

population. This process iterates until a given stopping 

criterion. The performance of the population-based 

algorithms is measured by checking their ability to 

establish a proper compromise between the two concepts 

exploration and exploitation.   Avoiding getting trapped 

in local optima and premature convergence, meta-

heuristics must have a balance between these two 

concepts mentioned previously [38].   

Many approaches focus on algorithmic aspects since 

the HW/SW partitioning is proven as an NP-hard 

optimization problem. Therefore, for a large-scale 

partitioning problem, researchers have applied many 

heuristic algorithms to HW/SW partitioning. In the 

literature, we can cite some extensively used and popular 

meta-heuristics algorithms for solving those problems 

such as simulated annealing algorithms [36], Tabu search 

[37], genetic algorithms [39,40], particle swarm 

optimization [41,42], ACO[43,44], differential evolution 

DE[45] and Bat Algorithm[46]. 
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Other designers seek to obtain more optimal 

partitioning solutions by focusing on a combination of 

existing meta-heuristic algorithms to solve the HW/SW 

partitioning problems. Iguider et al. [47] combined the 

Lagrangian Relaxation (LR) method with the 0–1 

Knapsack Algorithm and the Genetic Algorithm to deal 

with the Hw/Sw problem, considering three metrics: 

hardware cost, execution time, and power consumption. 

The objective is to minimize one metric, yet respecting 

the constraints on the other two metrics. Yan et al. [48] 

developed a novel HW/SW partitioning method based on 

position disturbed particle swarm optimization with 

invasive weed optimization (PDPSO-IWO).  To solve the 

premature convergence and avoid falling into local 

optima, the particles in PDPSO-IWO move away from 

the worst particle in the population, near which there is a 

potential predatory threat.  Shi et al.[49]  proposed three 

algorithms for multiple-choice hardware-software 

partitioning to minimize execution time and power 

consumption while meeting area constraints. To rapidly 

generate approximate solutions, Firstly, a heuristic 

algorithm was applied.  Then, a customized tabu search 

algorithm can further refine the approximate solution. 

Finally, the exact solution was calculated by applying a 

dynamic programming algorithm Li et al. [50] combine 

the GA and TS algorithm which can be applied to the 

dynamically reconfigurable system. The experiment 

results have shown that their approach is a method with 

high performance and can map the task graph to a 

reconfigurable system with efficiency. To minimize the 

logic area of System on a Programmable Chip (SOPC) 

while respecting a time constraint, Dimassi et al.[51] 

incorporated the binary search trees(BST) into the 

genetic algorithm to address the problem of 

software/hardware partitioning. An et al. [52] combined 

the GA and the PSO algorithms. The solutions obtained 

by these combinations are more accurate than those 

given by classical algorithms in terms of cost and 

execution time metrics. In Ref. 53, a hybrid method of 

PSO and TS was proposed to solve the HW/SW 

partitioning problems. A combination of the clustering 

algorithm and the genetic algorithm was developed by 

Weijia et al. [54]. Experiment results have shown that 

this approach can accelerate converge to an appropriate 

solution of a complex system with more tasks. Zhao et al. 

[55] incorporate the simulated annealing algorithm in the 

genetic algorithm. Experiment results have proven that 

the proposed algorithm has given more accurate 

partitions than the original genetic algorithm. 

3 Firefly algorithm  
Swarm intelligence is akin to a collective form of 

intelligence seen in numerous animal species (insects, 

fish, birds, mammals,...), most of them exhibiting very 

developed social behaviors and important capacities of 

adaptation to their environment. Computing was indeed 

inspired by studies on swarm intelligence biological to 

produce innovative algorithms. Firefly algorithm is a 

relatively new swarm intelligence optimization method 

that was developed by Yang [6]. This algorithm is 

inspired by the social behavior of fireflies, mating, and 

the exchange of information using light flashes. As a 

reminder, Fireflies are small winged beetles capable of 

producing a cool flashing light to mutual attraction. This 

chemical light is generated from the lower abdomen of 

the bodies of these insects. The color of this light can be 

yellow, green, or pale red, with a wavelength between 

510 and 670 nanometers. Females’ fireflies can imitate 

the light signals of other species to attract the males’ 

fireflies which they capture and devour. Thus, Fireflies 

communicate and attract each other with varied flashing 

patterns. Firefly algorithm idealizes some characteristics 

of the firefly behavior. They follow three rules [56]:  

- All fireflies are unisex so that one firefly will be 

attracted to other fireflies regardless of their sex; 

- Each firefly is attracted only to the fireflies, that 

are brighter than itself; the strength of the 

attractiveness is proportional to the firefly’s 

brightness, which attenuates over the distance. 

The attractiveness decreases as the distance 

increases between two fireflies.  If there is no 

brighter one than a particular firefly, the 

brightest firefly moves randomly, 

- Brightness of every firefly determines its quality 

of solution; in most cases, it can be proportional 

to the objective function. 

The objective function to be optimized must 

associate these phenomena. The Firefly algorithm is 

based on two important concepts: the light intensity 

variation and the attraction formulation. To simplify, the 

attraction of fireflies is determined depending on the 

brightness, where the brightness is determined with the 

function objective. The basic steps of the FA are 

summarized by the pseudo-code shown in Fig. 1, which 

considers the three rules discussed above. 

According to recent research, simulation results for 

finding the global optima in solving optimization 

problems show that the firefly algorithm is superior to 

 

Figure 1: FA algorithm pseudo-code. 

 1. Initialize the parameters:  

    NP // Population size 

    D   //   Problem dimension 

    Max_gen // Maximum of iterations 

2. Define objective function f(x), X=(x1,x2,…,xD) 

3. Generate initial population of fireflies Xi(i=1,2,..NP) 

4. Define light intensity Ii at Xi 

5. Set light absorption coefficient  

6. Set initial attractiveness  

7. Set t at 0 // t is counter iteration 

8. While(t max_gen) 

9.     For (i=1 to NP ) // all fireflies 

10.       For (j=1to NP) // all fireflies 

11.           If( Ii  > Ij) Move firefly I towards j endif 

12.           Update attractiveness and light intensity I 

13.           Evaluate new solutions 

14.       Endfor 

15.   Endfor 

16.   Rank the fireflies and find the current best solution 

17.   Increment t   

18. Endwhile 

19. Display the best solution 
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both PSO and GA taking into account both efficiency 

and success rate [56, 57]. These facts give the inspiration 

to investigate to find optimal solutions using FA in 

solving Hw/Sw partitioning problems. 

To design FA properly, the variation of light 

intensity and formulation of the attractiveness [4] must 

be defined. The light intensity varies with the distance 

exponentially and monotonically. It can be approximated 

as follows: 

𝐼 = 𝐼0𝑒−𝛾𝑟2
                                                                   (1) 

Where 𝐼0 represents the original light intensity and γ 

is a fixed light absorption coefficient. rij indicates the 

distance between firefly i and firefly j, at positions xi and 

xj, respectively, and is defined as follows: 

𝑟𝑖𝑗 = √∑ (𝑥𝑖,𝑘 − 𝑥𝑗,𝑘)
2𝑑

𝑘=1
                             (2) 

 

Where xi,k is the kth component of the spatial 

coordinate xi of the ith firefly, and d is the number of 

dimensions. 

The attractiveness β of fireflies is proportional to 

their light intensities 𝐼. It implies how strong it attracts 

other members of the swarm. The attractiveness β is 

expressed as follows: 

𝛽 = 𝛽0𝑒−𝜇𝑟2
                                                            (3) 

Where r is the distance between two fireflies, 𝛽0 is 

the attractiveness at r=0 and γ is a fixed light absorption 

coefficient. 

The movement of a firefly i, which is attracted by a 

more attractive (i.e. brighter) firefly j, is given by the 

following equation: 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛽0𝑒−𝜇𝑟2
(𝑥𝑗

(𝑡)
− 𝑥𝑖

(𝑡)
) + 𝛼 (𝑟𝑎𝑛𝑑 −

1

2
)      (4) 

Where the first term is the current position of a 

firefly, the second term is, attraction to another more 

attractive firefly, and the third term is randomization, 

with α being the randomization parameter, while rand is 

a randomly generated number from interval [0, 1]. 

4 Problem formulation 
Today, the embedded system to be partitioned is modeled 

as a Directed Acyclic Graph (DAG), which becomes the 

input to the Hardware/Software (HW/SW) partitioning 

step. In this work, the HW/SW partitioning problem is 

based on the same system model which is used in [58, 3]. 

The node in the DAG stands for a basic block; the edges 

stand for communication and precedence relationship 

between blocks. 

The DAG G = (V, E), which is used to describe the 

system behavior, consists of a set of functions or tasks 

which are represented by vertices V = {vi | i = 1,2,..N}, 

and a set of data and control dependencies which are 

represented by edges E = {eij | eij = (vi,vj), vi, vj εV}. 

Assume that N denotes the number of nodes(tasks),  let 

X=(x1,x2,…,xN) be the feasible solution set of the 

partitioning problem, where xi ε {0,1} and  xi denotes 

how  vi(task  i) is realized where  xi=1(xi=0) means  vi is 

realized through hardware(software), m1 nodes which 

will be implemented in Hw and m2 others nodes in 

Sw(n=m1+m2),VHw = {vi | i = 1,2,..m1},VSw= {vi | i = 

1,2,..m2}).  

Clearly, this step of Hw/Sw partitioning has a 

dramatic impact on the cost and performance of the 

whole system. Some design-quality attributes which must 

perfectly describe the solution are used to measure the 

validity of the solution. Most works, in literature, were 

proposed to study the Hw/Sw partitioning problem with 

three metrics, execution time, hardware area, and 

communication cost[3,58,59,60]. Other approaches have 

also added to different cost metrics the power 

consumption and software memory usage [42,61,62,63]. 

In this article, a basic block or task can be defined as 

a 9-tuple vi =(Ti
Sw,Ti

Hw,Ai
Hw, Dmi

Sw, Cmi
Sw, Sci

Sw, Hci
Hw, 

Pci
Hw, Pci

Sw) where: 

- Ti
Sw represents the execution time of the ith task 

if implemented in software processor, 

- Ti
Hw denotes the execution time taken by the 

task i when executed in hardware 

- The hardware implementation of the ith task 

requires area Ai
Hw on the hardware task. 

- Software area DMi
Sw (for data)   and CMi

Sw (for 

instructions) represent the software memory 

utilized by the ith module 

- Si
Sw and Si

Hw represent the  cost  taken by the 

block i when    implemented in software module   

and onto hardware 

- Pci
Sw and Pci

Hw are respectively the power 

consumption in software and hardware of the ith 

block 

On the other hand, each edge, ei includes Comcij 

which represents the communication cost between tasks 

vi and vj. An important assumption is made that vertices 

mapped onto the same computing unit have negligible 

communication latency; i.e. Sw-Sw or Hw-Hw 

communication Cost can be considered 0 for practical 

purposes. The communication cost in this context refers 

to the delay time required to transfer the data from the 

hardware module to the software module and vice versa. 

The assignment of Hw/Sw partitioning is to map Sw 

tasks to CPU and Hw tasks to hardware components 

while satisfying design constraints. In this paper, the 

problem of HW/SW partitioning is formulated as a single 

objective optimization problem combining multiple cost 

terms into a single scalar function. The objectives used to 

guide the Hw/Sw partitioning algorithm through the 

optimization process are the total execution time (Texe),  

total hardware area(A), total memory required (M), total 

power consumption(Pc),  and total global cost (Gc)   

calculated using the following equations,  respectively. 

𝑇𝑠𝑤 = ∑ ((1 − 𝑥𝑖) ∗ 𝑇𝑖
𝑆𝑤)                                                                                       (5)

𝑛

𝑖=1

 

𝑇𝐻𝑤 = ∑(𝑥𝑖 ∗ 𝑇𝑖
𝐻𝑤)                                                                                                   (6)

𝑛

𝑖=1
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𝑇𝑒𝑥𝑒 =  𝑇𝑠𝑤 + 𝑇𝐻𝑤                                                                                     (7) 

𝐴 =  ∑(𝑥𝑖 ∗ 𝐴𝑖
𝐻𝑤)                                                                                                    (8)

𝑛

𝑖=1

 

𝑀 = ∑ ((1 − 𝑥𝑖) ∗ (𝐷𝑀𝑖
𝑆𝑤 + 𝐶𝑀𝑖

𝑆𝑤))

𝑛

𝑖=1

                                                              (9) 

𝐺𝑐𝑜𝑚 = ∑ ( ∑ (𝑥𝑖 ∗ 𝐶𝑐𝑜𝑚𝑖𝑗)

𝑗∈𝑉𝑆𝑤

+ ∑ ((1 − 𝑥𝑖) ∗ 𝐶𝑐𝑜𝑚𝑖𝑗)

𝑗∈𝑉𝐻𝑤

)

𝑛

𝑖=1

               (10) 

𝑃𝑐 = ∑ ((𝑥𝑖 ∗ 𝑃𝑐𝑖
𝐻𝑤) +  ((1 − 𝑥𝑖) ∗ 𝑃𝑐𝑖

𝑆𝑤))

𝑛

𝑖=1

                                                   (11) 

𝐺𝑐 = ∑ ((𝑥𝑖 ∗ 𝑆𝑖
𝐻𝑤) + ((1 − 𝑥𝑖) ∗ 𝑆𝑖

𝑆𝑤))

𝑛

𝑖=1

+ 𝐺𝑐𝑜𝑚  + 𝑃𝑐                            (12) 

Then, the cost function which expresses the factors 

that the designer wants to minimize and satisfying some 

constraints can be formulated as follows: 

𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) = 𝜔1 ∗ 𝑇𝑒𝑥𝑒 + 𝜔2 ∗ 𝐴 + 𝜔3 ∗ 𝑀 + 𝜔4 ∗ 𝐺𝑐       (13) 

Where ω1, ω2, ω3, and ω4 are positive integers 

which reflect how much weightage is given to each 

associated metric for a particular partition. For example, 

to give more importance to execution time for the 

partitioning decision, the weight corresponding to the 

execution time metric can be increased and to ignore any 

metric included in cost function f(x1, x2, x3, x4), the 

weight corresponding to this metric must be set to zero. 

Tmax, Amax, Mmax, Ccommax, Pcmax, and Gcmax 

represent execution time constraint, hardware area 

constraint, Communication constraint, Maximum power 

consumption required, Maximum Memory required, and 

the desired global cost respectively. For our study, the 

partitioning problem that consists of minimizing the 

objective function f(x1, x2, x3, x4) with the respect of 

constraints, can be formulated as the follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑇𝑒𝑥𝑒  ≤  𝑇𝑚𝑎𝑥
𝐴 ≤ 𝐴𝑚𝑎𝑥       
𝐺𝑐 ≤ 𝐺𝑚𝑎𝑥    

                                                                      (14) 

Thus, the original firefly algorithm needs to be 

modified in the context of Hw/Sw partitioning problems. 

So, when firefly i moves towards firefly j, the position of 

firefly i must replace the real number by a binary 

number. For this purpose, we suggest to incorporate the 

mutation operator of the standard DE into FA Algorithm. 

Since the standard mutant operator generates real-coded 

vectors, not bit strings, a new probability estimation 

operator must be used to tackle this problem in the 

Binary Firefly algorithm. The probability estimation 

operator can effectively preserve the diversity of the 

population and enhance the global search ability. For 

more details, the probability estimation operator is 

defined by formula [(17),(18)] as follows: 

𝑃 (𝑥𝑖𝑗
(𝑡+1)

) =
1

(1 + 𝑒−
2𝑏(𝑀𝑂−0,5)

1+2𝐹 )

                                                                      (17) 

𝑀𝑂 = 𝑥𝑟1,𝑗
(𝑡)

+ 𝐹 ∗ (𝑥𝑟2,𝑗
(𝑡)

− 𝑥𝑟3,𝑗
(𝑡)

)                                                                        (18) 

Where b is a bandwidth factor used to increase the 

search efficiency, F is the scaling factor which is a 

positive constant; t is the index of generation; xr1,j
(t),xr2,j

(t) 

and xr3,j
(t) are the jth-bits of three randomly selected 

fireflies with index r1≠r2≠r3≠i.  

By this scheme, three-parent fireflies will be 

considered aiming to establish the probability 

distribution model. The bit of the mutant firefly will then 

be “1” or “0”. Hence, using the machine operator (MO) 

formula [(17), (18)] guarantees to provide a binary code 

for updating xi
(t+1). Once, the probability estimation 

vector is determined, the corresponding updated position 

of the firefly i, xi
(t+1), is deduced by  applying  the 

following  equation: 

𝒙𝒊𝒋
(𝒕+𝟏)

= {
𝟏            𝒊𝒇 𝒓𝒂𝒏𝒅𝒊𝒋 < 𝑷(𝒙𝒊𝒋

(𝒕+𝟏)
)

        𝟎            𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                             
                                   (𝟏𝟗)       

Where randij is a stochastic number uniformly 

distributed within [0, 1] and P(xij
(t+1)) is the jth 

component of the probability vector of the ith firefly. 

Thus, line 11 of the pseudo-code of the firefly 

algorithm given in figure 1 becomes as follows (figure 

3). 

5 Experiments and results 
Important work has been done in hardware/software 

partitioning in recent years. Nevertheless, it is impossible 

to perform a comprehensive comparison of all the 

existing approaches due to the large incompatibility in 

their co-design environments and the lack of proper 

benchmarks [64]. Presently, there isn’t a test set accepted 

by embedded system’s Hw/Sw partitioning worldwide 

[65]. No attempts have been made to solve Hw/Sw 

partitioning problems by using the Firefly algorithm. 

For our study, similar to the analysis methods in [47, 

54, 59, 65, 66, 67], the instances of all metrics to be 

employed in the experiments, are generated randomly. 

The values of software execution time (Ti
Sw), hardware 

execution time (Ti
Hw), and hardware area occupied (Ai

Hw) 

were generated randomly, as in [47, 54, 59, 65, 66, 67]. 

For example, [65] used random values for the two 

metrics area and hardware execution time generated 

respectively in [0, 100] and [0, 60] to validate their 

results. For the case of hardware execution time (Ti
Hw), 

values were generated randomly in the range [1,50]; 

software execution time (Ti
Sw), values were generated 

randomly in the range [1,5* Ti
Hw]; while for the hardware 

area (Ai
Hw) values were generated in the range [1,60]. 

Table 1 summarizes the interval values for all metrics. 

In order to evaluate the efficiency and performance 

of the proposed algorithm, we proposed, ten DAGs 

(Direct Acyclic Graph) are randomly generated using the 

TGFF (Task Graphs for free) tool [68] by specifying the 

number of nodes, every node is associated with one basic 

 
Figure 2: Using PEO in firefly algorithm. 

 11. if (Ii>Ij) 

  { Move firefly  I towards firefly j by applying   eq. (4); 

     Update position xi
(t+1) by applying eq. (19) 

  }// endif 
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block. In our study, then we set different metrics (area, 

software execution time, hardware execution time, etc.) 

for different blocks, and eventually,   we get 10 DAGs 

with 100, 200, 300,400,500,600,700,800,900, and 1000 

nodes respectively.  

In this section, we compare the solution quality and 

performance of the proposed algorithm BFA-PEO with 

two recently proposed FA variants and other major 

partitioning algorithms in the literature. The involved 

algorithms are listed in Table 2. The population size of 

all algorithms was set as NP =30, the maximal generation 

number was 300. Table 2 lists the parameter settings of 

each meta-heuristic used in this comparison. 

Two experiments were performed to verify and 

compare the effectiveness and the performance of the 

proposed algorithm BFA-PEO. We ran the algorithms 50 

times for the same input by using the same population 

initialization and took the best of the cost function. 

5.1 First experiment 

We consider the problem that consists of minimizing the 

objective function f1(x1,x2) with the respect of the 

constraints on the execution time(Tmax) and hardware 

area(Amax). The goal is to find the optimal Hw/Sw 

partitioning with lower execution time and area. f1(x1,x2) can 

be expressed by using the following equation: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1(𝑥1, 𝑥2) = 𝑇𝑒𝑥𝑒 + 𝐴 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
𝑇𝑒𝑥𝑒 ≤   𝑇𝑚𝑎𝑥
𝐴  ≤   𝐴𝑚𝑎𝑥

                                                                                                      (20)   

Table 3 presents the experimental results achieved 

by the algorithms retained to conduct this study where 

the best fitness value is displayed. The best results of the 

algorithms are written in bold. Looking at table 3 and 

table 4, it is obvious that BFA-PEO searches out better 

solutions than the other algorithms while BFA and 

NBDE perform second-best results. The saBDE 

algorithm comes last, providing the worst results.  

Consider an application specified as a DAG (directed 

acyclic graph) with 500 nodes. We remember that the 

candidate partitioning solutions are also vectors of 500 

values set to 0 and 1 where each value of the vector is a 

module implemented in hardware (Hw) if it is equal to 1, 

or in software (Sw) if it is equal to 0. The best solution in 

this first experiment is a vector that contains the 

minimum of the execution time and area parameters,  

The cost of the initial population is thus calculated using 

the objective function.  We obtain the best initial solution 

composed of 239 software modules and 261 hardware 

modules with fitness equal to 41897. BFA-PEO has 

provided a binary solution composed of 75 software 

modules and 425 hardware modules corresponding to 

fitness equal to 25240. BFA has found a fitness equal to 

26723 for a binary vector composed of 7 software 

modules and 493 hardware modules while NDBE has 

produced a fitness equal to 26800 for a binary 

configuration composed of 27 software modules and 473 

hardware modules. 

As can be seen, BFA-PEO performs significantly 

better than all other algorithms. The BFA-PEO 

developed by incorporating a novel probability 

Parameters Value 

hardware execution time (Ti
Hw) [1..50]; 

software execution time (Ti
Sw) 5* Ti

Hw 

hardware area (Ai
Hw) [1..60] 

Memoy required (DMi
Sw+CMi

Sw) [1..100] 

Hardware cost(Si
Hw) [1..100] 

Software cost(Si
Sw) [1..20] 

Communication cost(Ccomij) [1..30]  

Hardware Power cost(Pci
Hw) [1..20] 

Software power cost(Pci
Sw) [1..5] 

Table 1: Metrics settings. 

Algorithm Control Parameters 

BFA[28] β0=1, γ =1, α=081 

NBBFA[27] β0=0,97, γ =1, α=0,2 

BFA-PEO F=0.2; b=20, β0=1, γ=1, α=0,81 

GA crossover = 0.8;  Mutation = 0.05 

BPSO W=1,c1=c2=2; 

saBDE[68] crossover=0.8 

DDE[69] Mutation=0.05,crossover=0.8 

BDE[69] Mutation=0.05,perturbation=0.5 

NBDE[70] crossover=0.8 

NMBDE[71] Cr=0.8,f=1 

Table 2: Parameters settings of each method. 

     Methods 

 

Nodes 

GA BPSO SaBDE DDE BDE NBDE NMBDE NBBFA BFA BFA-PEO 

100 5147 7020 7696 5532 6818 5357 6830 5600 5302 5147 

200 10331 15265 16382 10848 13839 10703 14592 12209 10724 10283 

300 16125 23385 23989 16124 21246 16065 21777 18170 16060 15116 

400 22598 31293 32519 21430 29503 21278 30656 25079 21344 20214 

500 29963 39454 41271 26926 37232 26800 38169 31330 26723 25240 

600 37613 48451 49400 32302 46031 32285 47105 37630 32216 30310 

700 43854 56512 57934 37530 53577 37503 54915 45045 37370 35180 

800 52450 64525 67245 42690 61918 42587 61940 51272 42576 40138 

900 61002 73168 74058 48270 70507 48163 71117 58445 48247 45583 

1000 69048 80771 82224 53358 77814 53312 78009 64545 53307 50475 

Table 3: Simulation Results. 
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estimation operator (PEO) based on the distribution of 

estimation algorithm was found to perform better than 

other algorithms because of an improved balance 

between exploration and exploitation.  

In previous sections, the authors [56, 57] found that 

the firefly algorithm is superior to PSO and GA in terms 

of efficiency and success rate. According to Table 3, our 

results provided by the three variants of FA confirm their 

claim.  

In Table 4, we report the best, worst, Mean, and 

standard deviation of the evaluation function values over 

50 runs. From this table, it is clear that BFA-PEO, BFA 

and DDE converge quickly to good solutions.  At the 

beginning, from the first ten iterations, both BFA-PEO, 

BFA, and DDE algorithms have a fast improvement of 

their objective function. The best cost function has been 

reduced to almost half. It has improved from 41897 to 

around 26000 for the three algorithms mentioned above. 

Then, BFA-PEO fitness continued to decrease until it 

reached the value of 25240 which represents the best 

result of all the algorithms.  We can see that there is no 

change in the cost function for DDE and saBDE. Their 

fitness remains fixed regardless of the number of 

iterations, while the other methods continue to slightly 

decrease their function. NBDE does the exception and 

produces finally, at the 300 iterations, a promising 

solution whose fitness is equal to 26800. In summary, the 

BFA-PEO always provides the best results. 

5.2 Second experiment 

We consider the problem that consists of minimizing the 

objective function f2(x) with the respect of the Gcmax 

constraint. f2(x) can be formulated as the follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓2(𝑥) = 𝐺𝑐 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
𝐺𝑐 ≤ 𝐺𝑐𝑚𝑎𝑥

𝑃𝑐 ≤ 𝑃𝑐𝑚𝑎𝑥

𝐶𝑐𝑜𝑚 ≤ 𝐶𝑐𝑜𝑚𝑚𝑎𝑥

                                                                                           (21) 

Table 5 outlines the results of NBBFA, BFA, BFA-

PEO, GA, BPSO, SaBDE, DDE, BDE, NBDE, and 

NMBDE. The best results are highlighted in bold. As it 

may be observed, the proposed BFA-PEO algorithm 

always performs superior to other meta-heuristics. We 

can see easily the big gap between the values provided 

by BFA-PEO and the others. For example, for node 

1000, the cost function is 11380 for the BFA-PEO, 

while, for DDE which comes in the second position, the 

value of the objective function is 58612. Too, we notice 

        Algorithms 

 
Iterations 

GA BPSO SaBDE DDE BDE NBDE NMBDE NBBFA BFA BFA-PEO 

10 

Best 40146 40819 41367 26926 40754 36601 40998 32228 26876 26509 

Worst 40741 41367 41367 26926 40754 36601 40998 33456 27217 27135 

Mean 40392,77 41165,17 41367 26926 40754 36601 40998 32837,03 26977,2 26802,43 

St. Dev. 29607,25 418,43 0 0 0 0 0 99317,70 95,13 35682,58 

40 

Best 37543 40584 41367 26926 39108 28304 40482 32094 26842 25431 

Worst 37700 41363 41367 26926 39108 28304 40482 33148 26956 25579 

Mean 37675,4 4103303 41367 26926 39108 28304 40482 32692,63 26891,2 25485,1 

St. Dev. 1542,64 538,33 0 0 0 0 0 66005,77 36,64 1547,49 

80 

Best 35841 40275 41367 26926 38866 27554 40336 32025 26831 25301 

Worst 35934 41355 41367 26926 38866 27554 40336 32991 26924 25388 

Mean 35909,6 40921,2 41367 26926 38866 27554 40336 32534,4 26855,55 25352,1 

St. Dev. 818,92 736,41 0 0 0 0 0 58573,11 28,32 390,557 

120 

Best 34445 40100 41343 26926 38866 27118 39350 31917 26806 25285 

Worst 34687 41347 41343 26926 38866 27118 39350 32759 26881 25337 

Mean 34654,33 40784,5 41343 26926 38866 27118 39350 32366,33 26849,2 25310,43 

St. Dev. 2209,62 788,11 0 0 0 0 0 40742,89 20,25 153,31 

160 

Best 33181 39775 41343 26926 38605 27036 39350 31680 26788 25244 

Worst 33316 41327 41343 26926 38605 27036 39350 32649 26838 25305 

Mean 33288,5 40784,4 41343 26926 38605 27036 39350 32295,4 26818,65 25279,27 

St. Dev. 1929,65 1104,47 0 0 0 0 0 53844,97 12,39 169,86 

200 

Best 32255 39713 41343 26926 38071 26917 38953 31655 26767 25244 

Worst 32398 41297 41343 26926 38071 26917 38953 32649 26827 25283 

Mean 32338,43 40883,1 41343 26926 38071 26917 38953 32252,5 26808,2 25264,57 

St.Dev. 13338,25 1294,31 0 0 0 0 0 62370,72 18,61 121,65 

240 

Best 30687 39356 41343 26926 38020 26873 38368 31655 26747 25240 

Worst 31482 41231 41343 26926 38020 26873 38953 32649 26806 25266 

Mean 31209,47 40643,4 41343 26926 38020 26873 38758 32203,8 26786,3 25252,97 

St. Dev. 136507,3 1413,75 0 0 0 0 76050 52714,03 18,88 45,437 

280 

Best 30241 39356 41343 26926 38020 26842 38335 31649 26723 25240 

Worst 30737 41228 41343 26926 38020 26873 38368 34030 26800 25255 

Mean 30600,9 40437,2 41343 26926 38020 26862,67 38357 33229,1 26763,3 25247,937 

St. Dev. 36528,16 1294,93 0 0 0 213,56 242 311068,42 27,45 13,867 

300 

Best 29963 39356 41271 26926 37232 26800 38169 31330 26723 25240 

Worst 30466 40790 41343 26926 38020 26842 38335 32649 26800 25251 

Mean 30267,27 40083,4 41319 26926 37757,33 26828 38279,67 31983 26737,15 25244,97 

St. Dev. 46573,86 912,69 1152 0 137987,57 392 6123,55 158631,93 17,45 12,56 

Table 4: Simulation Results for node=500. 
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that the algorithm is always followed by the other two 

algorithms BFA and NBDE. The results produced by our 

BFA-PEO are very logical since, according to the 

equations used to randomly generate the cost metrics, the 

algorithm must always provide solutions composed of 

software blocks only, while the other meta-heuristics 

give purely hardware or mixed solution. BFA and NBDE 

provide the same results representing the fitness of 

purely hardware solutions. The recent NBBFA based on 

using the Sigmoid function provides poor results and is 

positioned with the latest algorithms. The superior results 

mean that the proposed approach can tackle the Hw/Sw 

partitioning problems efficiently. 

6 Conclusion 
As the standard FA operates in the continuous space, this 

paper presents for the first time a binary FA algorithm to 

tackle the Hw/Sw partitioning problems. The metrics and 

the constraints are integer numbers generated randomly. 

The performance of BFA-PEO (Binary Firefly algorithm 

with Probability Estimation Operator) has then been 

compared with that of the existing approaches like 

saBDE, DDE, etc., taking into account the quality of the 

solution. This type of performance comparison has not 

been attempted so far on the said problem. The proposed 

probability estimation operator enables BFA to 

manipulate binary-valued solutions directly and 

effectively preserve the diversity of the population and 

enhance the global search ability. Table 3 and Table 5 

summarize the conclusions we have drawn after 

executing and comparing the different system 

partitioning methods. A future study could extend the 

system model to encompass other quality attributes. We 

will demonstrate the effectiveness of our algorithm on 

some practical examples. 
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