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In this paper Blue noddy optimization (BNO) algorithm and European Night crawler optimization 

(ENO) algorithm are applied to solve the power loss reduction problem. Key objective is to reduce the 

power loss with voltage stability enhancement and minimization of voltage deviation.  Exodus and 

Preying behaviour of the Blue noddy has been imitated to formulate the algorithm.  In the mathematical 

formulation of Exodus deed - collusion between the Blue noddy has been avoided and blue noddy will 

converge in the direction of most excellent companion. Position update of the Blue noddy is based on the 

most excellent explore agent. Preying behaviour is based on the line and angle of preying. Logically the 

angle, velocity will be transformed by the Blue noddy and it will do spiral act in the air to seizure the 

prey. Exploration and Exploitation is augmented through the Exodus and preying behaviour. In ENO 

algorithm reproduction nature of the European Night crawler is imitated to design the algorithm.   

European Night crawler population is created through the off-springs with two different kinds of 

reproduction. The dimension of the adolescent European Night crawler is alike to the parent. In the 

method Cross over operation has been implemented by considering the parent European Night crawler 

and Cauchy mutation has been included in order to elude the solution to be trapped under local optima. 

With and without voltage stability (L –index) proposed BNO and ENO algorithms are verified in IEEE 

30 Bus system. Active power loss reduction has been achieved with L-index improvement and voltage 

deviation minimized. 

Povzetek: V tem prispevku sta za reševanje problema zmanjšanja izgube energije uporabljena algoritem 

BNO za optimizacijo in algoritem ENO (European Night crawler optimization). 

 

1 Introduction 
Active power loss reduction is an important problem in 

Electrical power system.   Many methodologies from 

conventional techniques; Newton, successive quadratic 

programming, linear programming, interior point (Abril et 

al., Bjelogrlic et al., Granville, Grudinin, Edalatpanah et 

al.,  ) [1-5] to evolutionary and swarm based algorithms; 

Ant colony, Fish swarm, Frog leaping, Wolf search, 

Bacterial foraging, Whale optimization, Marine Predators 

Algorithm, harmony search algorithm  (Ebeed et al., Li, 

Jian et al., Yasir Muhammad et al.,  Barakat et al., Sahli 

et al.,  Mouassa et al., Mandal et al., Khazali et al., Tran 

et al., )  [6-10] are chronologically applied to solve the 

problem. Yet various factors are influenced in the poor 

performance of the techniques. In conventional methods 

inequality constraints are unable to be included 

successfully and in evolutionary based algorithms 

balancing the exploration and exploitation are major task 

to reach the most excellent solution [11-18]. There 

should be proper trade-off between exploration and 

exploitation because when trade-off failed then it not at 

all possible to reach a better solution [21-25]. This paper 

proposes Blue noddy optimization (BNO) algorithm and 

European Night crawler optimization (ENO) algorithm 

for power loss reduction.  Main objective is to reduce the 

power loss reduction with voltage stability enhancement 

and Voltage deviation minimization. Blue noddy is 

extensively dispersed across the Pacific. They feed 

nearby the shore and capture the fishes and other insects.  

Naturally Blue noddy possesses the Exodus and Preying 

behaviour.  With respect to seasonal variations Blue 

noddy will execute the Exodus actions in exploration of 

food and Blue noddy will apply its intelligence while 

preying.  These two actions has been imitated and 

modelled to solve the problem. Exploration and 

exploitation has been balanced through the phases of 

Exodus and Preying. Preying behaviour of the Blue 

noddy is mathematically formulation based on the line 

and angle of preying. Unsurprisingly the angle, velocity 

will be reformed by the Blue noddy and it will do the 

spiral performance in the air for detention of the prey. 

Then in this paper European Night crawler optimization 

(ENO) algorithm is applied to solve the problem. ENO 

algorithm has been designed based on the normal actions 

of European Night crawler. Reproduction nature of the 

European Night crawler is imitated to design the 

algorithm.   European Night crawler population is created 
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through the off-springs with two different kinds of 

reproduction. The dimension of the adolescent European 

Night crawler is alike to the parent.  In the procedure 

when an individual European Night crawler possess the 

premium fitness then it will pass to the subsequent 

generation without any modification. In the process 

Cauchy mutation has been included in order the evade 

the solution to be trapped under local optima Validity of 

the Proposed Blue noddy optimization (BNO) algorithm 

and European Night crawler optimization (ENO) 

algorithm has been verified in IEEE 30 Bus system by 

considering L-index (Voltage stability). Then both the 

BNO and ENO algorithms are evaluated without 

considering L-index. Power loss reduction has been 

attained with L-index enhancement and voltage deviation 

minimized. Mainly percentage of power loss reduction is 

improved. 

2 Problem formulation  
Power loss minimization is defined by 

𝑀𝑖𝑛 𝑂𝐵�̃�(�̅�, �̅�) (1) 

Subject to 

𝐿(�̅�, �̅�) = 0 (2) 

𝑀(�̅�, �̅�) = 0 (3) 

𝑟 = [𝑉𝐿𝐺1, . . , 𝑉𝐿𝐺𝑁𝑔; 𝑄𝐶1, . . , 𝑄𝐶𝑁𝑐; 𝑇1, . . , 𝑇𝑁𝑇
] (4) 

𝑢

= [𝑃𝐺𝑠𝑙𝑎𝑐𝑘; 𝑉𝐿1, . . , 𝑉𝐿𝑁𝐿𝑜𝑎𝑑
; 𝑄𝐺1, . . , 𝑄𝐺𝑁𝑔; 𝑆𝐿1, . . , 𝑆𝐿𝑁𝑇

] 

  (5) 

The fitness function (𝐹1, 𝐹2, 𝐹3) is designed for power 

loss (MW) reduction, Voltage deviation, voltage stability 

index (L-index) is defined by,  

𝐹1 = 𝑃𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [∑ 𝐺𝑚
𝑁𝑇𝐿
𝑚 [𝑉𝑖

2 + 𝑉𝑗
2 − 2 ∗

𝑉𝑖𝑉𝑗𝑐𝑜𝑠Ø𝑖𝑗]] (6) 

𝐹2 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [∑ |𝑉𝐿𝑘 − 𝑉𝐿𝑘
𝑑𝑒𝑠𝑖𝑟𝑒𝑑|

2
+ ∑ |𝑄𝐺𝐾 −

𝑁𝑔
𝑖=1

𝑁𝐿𝐵
𝑖=1

𝑄𝐾𝐺
𝐿𝑖𝑚|

2
] (7) 

𝐹3 = 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿𝑀𝑎𝑥𝐼𝑚𝑢𝑚 (8) 

𝐿𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚[𝐿𝑗]; 𝑗 = 1; 𝑁𝐿𝐵 (9) 

And{
𝐿𝑗 = 1 − ∑ 𝐹𝑗𝑖

𝑉𝑖

𝑉𝑗

𝑁𝑃𝑉
𝑖=1

𝐹𝑗𝑖 = −[𝑌1]1[𝑌2]
 (10) 

𝐿𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 [1 − [𝑌1]−1[𝑌2] ×
𝑉𝑖

𝑉𝑗
] (11) 

Equality constraints  

0 = 𝑃𝐺𝑖 − 𝑃𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗𝑗∈𝑁𝐵
[𝐺𝑖𝑗𝑐𝑜𝑠[Ø𝑖 − Ø𝑗] +

𝐵𝑖𝑗𝑠𝑖𝑛[Ø𝑖 − Ø𝑗]] (12) 

0 = 𝑄𝐺𝑖 − 𝑄𝐷𝑖 − 𝑉𝑖 ∑ 𝑉𝑗𝑗∈𝑁𝐵
[𝐺𝑖𝑗𝑠𝑖𝑛[Ø𝑖 − Ø𝑗] +

𝐵𝑖𝑗𝑐𝑜𝑠[Ø𝑖 − Ø𝑗]] (13) 

Inequality constraints  

          Pgslack
minimum ≤ Pgslack ≤ Pgslack

maximum (14) 

 

         Qgi
minimum ≤ Qgi ≤ Qgi

maximum  , i ∈ Ng (15) 

 

     VLi
minimum ≤ VLi ≤ VLi

maximum , i ∈ NL (16) 

 

      Ti
minimum ≤ Ti ≤ Ti

maximum , i ∈ NT (17) 

 

          Qc
minimum ≤ Qc ≤ QC

maximum , i ∈ NC (18) 

 |𝑆𝐿𝑖| ≤ 𝑆𝐿𝑖

𝑚𝑎𝑥𝑖𝑚𝑢𝑚  , i ∈ NTL (19) 

      VGi
minimum ≤ VGi ≤ VGi

maximum , i ∈ Ng (20) 

Multi objective fitness (MOF) function has been defined 

by, 

𝑀𝑂𝐹 = 𝐹1 + 𝑟𝑖𝐹2 + 𝑢𝐹3 = 𝐹1 + [∑ 𝑥𝑣[𝑉𝐿𝑖 −𝑁𝐿
𝑖=1

𝑉𝐿𝑖
𝑚𝑖𝑛]

2
+ ∑ 𝑟𝑔[𝑄𝐺𝑖 − 𝑄𝐺𝑖

𝑚𝑖𝑛]
2𝑁𝐺

𝑖=1 ] + 𝑟𝑓𝐹3 (21) 

𝑉𝐿𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = {

𝑉𝐿𝑖
𝑚𝑎𝑥  , 𝑉𝐿𝑖 > 𝑉𝐿𝑖

𝑚𝑎𝑥

𝑉𝐿𝑖
𝑚𝑖𝑛 , 𝑉𝐿𝑖 < 𝑉𝐿𝑖

𝑚𝑖𝑛  (22) 

𝑄𝐺𝑖
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = {

𝑄𝐺𝑖
𝑚𝑎𝑥  , 𝑄𝐺𝑖 > 𝑄𝐺𝑖

𝑚𝑎𝑥

𝑄𝐺𝑖
𝑚𝑖𝑛 , 𝑄𝐺𝑖 < 𝑄𝐺𝑖

𝑚𝑖𝑛  (23) 

3 Blue noddy optimization 

algorithm 
Blue noddy is sea bird and its natural actions are imitated 

to formulate the algorithm. Movement of the Blue noddy 

during Exodus will be in a group mode. Naturally 

collusion will be avoided while their movement and with 

respect to the lead Blue noddy others will adjust the 

position. Direction will be based on the most excellent 

conditions. These behaviors are imitated and modeled in 

the Exodus behavior of the Blue noddy. 

During the Exodus, Collusion will be evaded 

between them and it has been mathematically formulated 

as follows, 

𝐶𝑜𝑙𝑙𝑢𝑠𝑖𝑜𝑛 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑔𝑒𝑛𝑡(𝐶𝑛𝑒𝑎) =

𝐵𝑙𝑢𝑒 𝑛𝑜𝑑𝑑𝑦𝑎𝑔𝑒𝑛𝑡(𝐵𝑛𝑎) ×

𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑒𝑟𝑎𝑐ℎ 𝑎𝑔𝑒𝑛𝑡  (𝐶𝑝𝑠𝑎) ∙

(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝐶𝑖)) (24) 

Then the movement of the 𝐵𝑛𝑎 in the exploration 

phase is given by, 

𝐵𝑛𝑎 = 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝐷𝑣𝑓) − (𝐶𝑖 ×

(𝐷𝑣𝑓/𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)) (25) 

Naturally the blue noddy will converge in the 

direction of most excellent companion Blue noddy and it 

has been mathematically formulated as follows, 

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑔𝑒𝑛𝑡 (𝐷𝑙𝑒𝑎) =
𝑅𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑅𝑣𝑒𝑙) ×

(𝑚𝑜𝑠𝑡 𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡 (𝐶𝑝𝑚𝑠𝑎) ∙

(𝐶𝑖) − 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑠𝑒𝑟𝑎𝑐ℎ 𝑎𝑔𝑒𝑛𝑡  (𝐶𝑝𝑠𝑎) ∙

(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝐶𝑖)) (26) 

In the above equation 𝑅𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑅𝑣𝑒𝑙) is 

accountable for enhanced exploration.  

𝑅𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑅𝑣𝑒𝑙) = 0.50 ×
𝑅𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 (𝑅𝑛𝑟); 𝑅𝑛𝑟 ∈ [0,1]  (27) 

Blue noddy will update its Position based on the 

most excellent explore agent and it mathematically 

formulated as follows, 

𝑆𝑝𝑎𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑔𝑒𝑛𝑡 𝑎𝑛𝑑  
𝑚𝑜𝑠𝑡 𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑔𝑒𝑛𝑡(𝑆𝑠𝑎)

= 𝐶𝑜𝑙𝑙𝑢𝑠𝑖𝑜𝑛 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑔𝑒𝑛𝑡(𝐶𝑛𝑒𝑎)

+ 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑜𝑓  
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𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑔𝑒𝑛𝑡 (𝐷𝑙𝑒𝑎) (28) 

Preying behaviour of the Blue noddy is 

mathematically formulation based on the line and angle 

of preying. Naturally the angle, velocity will be altered 

by the Blue noddy and it will do spiral performance in 

the air to capture the prey. This preying behaviour will 

amplify the Exploitation behaviour of the algorithm and 

it mathematically formulated as follows,  

𝑋 = 𝐴𝑥𝑖𝑠 × 𝑆𝑖𝑛 (𝑖)  (29) 

𝑌 = 𝐴𝑥𝑖𝑠 × 𝐶𝑜𝑠 (𝑖) (30) 

𝑍 = 𝐴𝑥𝑖𝑠 × 𝑖  (31) 

𝑎 = 𝑝 × 𝑒𝑘𝑞 (32) 

Where axis indicates the every shot of the spiral 

performance, “i” indicates the variables in the range of 

0 ≤ 𝑘 ≤ 2𝜋 with p and q (constants).  

Then the position of the other explore agents are 

defined as follows, 

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑜𝑡ℎ𝑒𝑟 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑔𝑒𝑛𝑡𝑠 (𝑃𝑜𝑒𝑎)  
∙ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝐶𝑖)

= (

𝑝𝑎𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑔𝑒𝑛𝑡 
𝑎𝑛𝑑 𝑚𝑜𝑠𝑡 𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 

𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑔𝑒𝑛𝑡(𝑆𝑠𝑎) × (𝑋 + 𝑌 + 𝑍)
)  

× 𝑚𝑜𝑠𝑡 𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡 𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ  
𝑎𝑔𝑒𝑛𝑡 (𝐶𝑝𝑚𝑠𝑎) ∙ 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝐶𝑖) (33) 

a. Start  

b. Engender the population  

c. Initialization of parameters  

d. Compute the fitness value for every explore 

agent 

e. 𝐶𝑝𝑚𝑠𝑎 ← 𝑏𝑒𝑠𝑡 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑔𝑒𝑛𝑡  

f. 𝑊ℎ𝑖𝑙𝑒 (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝐶𝑖) <
𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠  𝑑𝑜)  

g. 𝐹𝑜𝑟 𝑣𝑒𝑟𝑦 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑔𝑒𝑛𝑡 𝑑𝑜  

h. 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑒𝑣𝑒𝑟𝑦 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 

𝑎𝑔𝑒𝑛𝑡 𝑖𝑠 𝑢𝑝𝑑𝑎𝑡𝑒𝑑   

𝑃𝑜𝑒𝑎 ∙ 𝐶𝑖 = ((𝑆𝑠𝑎) × (𝑋 + 𝑌 + 𝑍))  (𝐶𝑝𝑚𝑠𝑎) ∙
(𝐶𝑖)  

i. End for  
j. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 

𝐶𝑜𝑙𝑙𝑢𝑠𝑖𝑜𝑛 𝑒𝑥𝑝𝑙𝑜𝑟𝑒 𝑎𝑔𝑒𝑛𝑡(𝐶𝑛𝑒𝑎)   

𝑎𝑛𝑑 𝑅𝑎𝑛𝑑𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑅𝑣𝑒𝑙)  
k. Compute the fitness value for every explore 

agent 
l. 𝐼𝑓 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑠  

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑡ℎ𝑒𝑛 𝑢𝑝𝑑𝑎𝑡𝑒   
𝑚𝑜𝑠𝑡 𝑒𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡  
𝑓𝑖𝑡𝑡𝑒𝑠𝑡 𝑠𝑒𝑎𝑟𝑐ℎ 𝑎𝑔𝑒𝑛𝑡 (𝐶𝑝𝑚𝑠𝑎)  

m. 𝐶𝑖 ← 𝐶𝑖 + 1  

n. End while  

o. Yield the 𝐶𝑝𝑚𝑠𝑎 

p. End  

4 European night crawler 

optimization algorithm 
European Night crawler optimization (ENO) algorithm 

has been designed based on the natural actions of 

European Night crawler. Reproduction nature of the 

European Night crawler is imitated to model the 

algorithm.   Population generation of the European Night 

crawler is through the off-springs with two different 

kinds of reproduction. The length of the adolescent 

European Night crawler is similar to the parent.  In the 

process- when an individual European Night crawler 

possess the most excellent fitness then it will pass to the 

subsequent generation without any alteration. 

Generally European Night crawler possesses both 

male and female sex organs and it can produce the 

adolescent European Night crawler by itself. 

Mathematical formulation of the above approach can be 

defined as, 

𝐸𝑛𝑖1,𝑗 = 𝐸𝑛𝑚𝑎𝑥𝑖𝑚𝑢𝑚,𝑗 + 𝐸𝑚𝑖𝑛𝑖𝑚𝑢𝑚,𝑗 − 𝛼𝐸𝑛𝑖,𝑗  ;  𝛼 ∈
[0,1] (34) 

Where 𝐸𝑛𝑖1,𝑗the jth element of the European Night 

crawler and factor is 𝛼 determines the distance between 

the parent and offspring 

Cross over operation has been implemented by 

considering the parent European Night crawler as 𝑃𝐸𝑛 =
2 and adolescent European Night crawler as 𝐴𝐸𝑛 = 1.  

Then two parent European Night crawler 

𝑃𝐸𝑛 1 𝑎𝑛𝑑 𝑃𝐸𝑛 2 are chosen by roulette wheel selection 

method and it mathematically expressed as, 

𝑃𝐸𝑛 = [
𝑃𝐸𝑛1

𝑃𝐸𝑛2

] (35) 

Then “2” off-springs 𝐸𝑛12 𝑎𝑛𝑑 𝐸𝑛22 are produced 

from the “2” parents and it defined as, 

𝐼𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 > 0.50 ,  𝐸𝑛12,𝑗 = 𝑃𝐸𝑛1,𝑗
 𝑎𝑛𝑑  𝐸𝑛22,𝑗 =

𝑃𝐸𝑛2,𝑗
 (36) 

Or else  

 𝐸𝑛12,𝑗 = 𝑃𝐸𝑛2,𝑗
 𝑎𝑛𝑑  𝐸𝑛22,𝑗 = 𝑃𝐸𝑛1,𝑗

 (37) 

Then  𝐸𝑛𝑖2 is defined as, 

 𝐸𝑛𝑖2 = {
𝐸𝑛12 𝑓𝑜𝑟 𝑟𝑎𝑛𝑑𝑜𝑚1 < 0.50

𝐸𝑛22      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (38) 

The next generation European Night crawler (𝐸𝑛𝑖
′) is 

defined after the generation of  𝐸𝑛𝑖1 𝑎𝑛𝑑 𝐸𝑛𝑖2  
𝐸𝑛𝑖

′ = 𝛽𝐸𝑛𝑖1 + (1 − 𝛽)𝐸𝑛𝑖2 (39) 

Through the factor ′𝛽′ proportion between 

 𝐸𝑛𝑖1 𝑎𝑛𝑑 𝐸𝑛𝑖2 is adjusted by balancing the global and 

local search effectively.  

𝛽𝑐𝑡+1 = 𝛾 ∙ 𝛽𝑐𝑡  (40) 

Where “ct” is the existing generation and in the 

preliminary stage 𝑐𝑡 = 0 𝑎𝑛𝑑 𝛽 = 1  

In the procedure Cauchy mutation has been included 

in order to avoid the solution to be trapped under local 

optima and it has been defined as, 

𝑤𝑒𝑖𝑔ℎ𝑡𝑗 = (∑ 𝐸𝑛𝑖,𝑗
𝑁 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑖=1 ) 𝑁 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛⁄

 (41) 

Then the jth element of the last European Night 

crawler is defined as  

𝐸𝑛𝑖,𝑗
′′ = 𝐸𝑛𝑖,𝑗

′ + (𝑤𝑒𝑖𝑔ℎ𝑡𝑗 =

(∑ 𝐸𝑛𝑖,𝑗
𝑁 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
𝑖=1 ) 𝑁 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛⁄ ) ∗ 𝐺 (42) 

Where “G” is the random number and it haggard 

from the Cauchy distribution 𝜏 =
1 𝑤ℎ𝑒𝑟𝑒 𝜏 𝑠𝑐𝑎𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 

a. Start  

b. Initialization of parameters  

c. Engender the population of European Night 

crawler 
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d. Feasibility and Deception of the European Night 

crawler population to be checked  

e. Compute the value of the objective function  

f. Arrange the obtained values of objective 

function in ascending order  

g. Find the most excellent population  

h. Save the most excellent population (‘N’) 

i. Engender the offs-springs through reproduction 

j. Produce the off-springs by including the cross 

over operation  

k. Obtain the New-fangled   European Night 

crawler by the weighted summation of two off-

springs  

l. Apply Cauchy mutation to the New-fangled   

European Night crawler to acquire the last 

European Night crawler for subsequent 

generation  

m. New-fangled population’s feasibility is checked  

n. Repeat the steps “I” to “m” until  definite 

number of population reached  

o. Repeat the step “f’ 

p. Poor population are replaced by most excellent 

population  

q. Repeat the steps “d”, “e” and “f” 

r. Repeat  the steps form “g” to “h” until finest 

solution obtained  

s. End  

5 Simulation study  
Projected Blue noddy optimization (BNO) algorithm and 

European Night crawler optimization (ENO) algorithm 

has been tested in standard IEEE 30 bus system [20].  In 

Table 1 shows the loss comparison, Table 2 shows the 

voltage deviation comparison and Table 3 gives the L-

index comparison.  Figures – 1to 3 gives the graphical 

comparison between the methodologies with reference to 

power loss, voltage stability improvement, voltage 

deviation. 

Then Projected Blue noddy optimization (BNO) 

algorithm and European Night crawler optimization 

(ENO) algorithm verified in IEEE 30 bus test system 

[19] without considering voltage stability (L- index). 

Loss comparison is shown in Table 4. Figure 4 gives 

graphical comparison between the methodologies with 

reference to power loss. 

Table 5 shows the convergence characteristics of the 

Blue noddy optimization (BNO) algorithm and European 

Night crawler optimization (ENO) algorithm. Figure 5 

shows the graphical representation of the characteristics. 

Blue noddy optimization (BNO) algorithm and European 

Night crawler optimization (ENO) algorithm reduced the 

power loss efficiently. Comparison of loss has been done 

with PSO, modified PSO, improved PSO, comprehensive 

learning PSO, Adaptive genetic algorithm, Canonical 

genetic algorithm, enhanced genetic algorithm, Hybrid 

PSO-Tabu search (PSO-TS), Ant lion (ALO), quasi-

oppositional teaching learning based (QOTBO), 

improved stochastic fractal search optimization algorithm 

(ISFS), harmony search (HS), improved pseudo-gradient 

search particle swarm optimization and cuckoo search 

Method  Power loss (MW) 

BPSO-TS [10] 4.5213 

TS   [10] 4.6862 

BPSO [10] 4.6862 

ALO [11] 4.5900 

QO-TLBO [12] 4.5594 

TLBO [12] 4.5629 

SGA [13] 4.9408 

BPSO [13] 4.9239 

HAS [13] 4.9059 

S-FS [14] 4.5777 

IS-FS [14] 4.5142 

SFS  [16] 4.5275 

BNO 4.5012 

ENO 4.5010 

Table 1: Comparison of Real power loss for 

IEEE 30 bus system. 

Method  Voltage deviation (PU) 

BPSO-TVIW [15] 0.1038 

BPSO-TVAC  [15] 0.2064 

SPSO-TVAC [15] 0.1354 

BPSO-CF   [15] 0.1287 

PG-PSO  [15] 0.1202 

SWT-PSO  [15] 0.1614 

PGSWT-PSO  [15] 0.1539 

MPG-PSO  [15] 0.0892 

QO-TLBO     [12] 0.0856 

TLBO       [12] 0.0913 

S-FS    [14] 0.1220 

ISFS  [14] 0.0890 

SFS [16] 0.0877 

BNO 0.0865 

ENO 0.0863 

Table 2: Comparison of voltage deviation for 

IEEE 30 bus system. 

Method   L-index (PU) 

BPSO-TVIW [15] 0.1258 

BPSO-TVAC  [15] 0.1499 

SPSO-TVAC [15] 0.1271 

BPSO-CF   [15] 0.1261 

PG-PSO  [15] 0.1264 

SWT-PSO  [15] 0.1488 

PGSWT-PSO  [15] 0.1394 

MPG-PSO  [15] 0.1241 

QO-TLBO     [12] 0.1191 

TLBO       [12] 0.1180 

ALO [11] 0.1161 

ABC [11] 0.1161 

GWO [11] 0.1242 

BA [11] 0.1252 

S-FS    [14] 0.1252 

IS-FS  [14] 0.1245 

SFS [16] 0.1007 

BNO 0.1002 

ENO 0.1000 

Table 3: Comparison of Voltage stability index 

for IEEE 30 bus system. 
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algorithm. Power loss reduced efficiently and percentage 

of the power loss reduction has been improved. Mainly 

voltage stability enhancement achieved with minimized 

voltage deviation.  

 

 

 

 

 

Figure 1: Comparison of real power loss. 

 

Figure 2: Comparison of voltage stability index. 

 

Figure 3: Comparison of Voltage deviation. 
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6 Conclusion 
Blue noddy optimization (BNO) algorithm and European 

Night crawler optimization (ENO) algorithm condensed 

the power loss with escalation of voltage stability.  In 

BNO Exodus and Preying behavior of blue noddy has 

been imitated to formulate the algorithm. Blue noddy 

congregated in the direction of most excellent companion 

and Position updating is done based on the most 

excellent explore agent. In preying behaviour angle, 

velocity is altered by the Blue noddy and spiral 

performance done in the air to confiscation of the prey. 

Both Exodus and Preying phases will amplify the 

exploration and exploitation in the procedure of the 

algorithm.  In ENO algorithm population generation of 

the European Night crawler is through the off-springs 

with two different kinds of reproduction. The length of 

the young European Night crawler is analogous to the 

parent.  In the process - when an individual European 

Night crawler possess the most excellent fitness then it 

passed to the successive generation without any 

 

Figure 5: Comparison of Real Power Loss between methodologies (Tested in IEEE 30 bus system). 

IEEE 

30 Bus 

system 

Real power 

Loss in MW 

(With L-index) 

Real power Loss 

in MW (without 

L-index) 

Time in Sec 

(with L-index) 

Time in sec 

(without L-

index) 

Number of 

iterations 

(with L-index) 

Number of 

iterations (without 

L-index) 

BNO 4.5012 14.01 18.09 16.16 19 16 

ENO 4.5010 13.989 17.99 15.91 17 15 

Table 4: Convergence characteristics. 
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Figure 4: Convergence characteristics. 

0 10 20

BNO

ENO

Number of
iterations
(without L-
index)

Number of
iterations
(with L-index)

Parameter Real Power Loss 

in MW 

Percentage of  

Reduction in 

Power Loss 

Base case value  

[24] 

17.5500 0.0000 

M-PSO[24] 16.0700 8.40000 

Basic -PSO [23] 16.2500 7.4000 

EP  [21] 16.3800 6.60000 

S -GA [22] 16.0900 8.30000 

PSO [25] 17.5246 0.14472 

DEPSO [25] 17.52 0.17094 

JAYA [25] 17.536 0.07977 

BNO 14.01 20.17 

ENO 13.989 20.29 

Table 5: Comparison of loss with reference to IEEE −30 

system. 
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variation.  Blue noddy optimization (BNO) algorithm 

and European Night crawler optimization (ENO) 

algorithm is verified in IEEE 30- bus test system with L- 

index and devoid of L-index.  Both algorithms 

commendably reduced the power loss and percentage of 

real power loss lessening has been improved. 

Convergence characteristics show the better performance 

of the proposed BNO and ENO optimization algorithms. 

Comparison of power loss has been done with other 

standard reported algorithms.  Percentage of real power 

loss reduction of BNO and ENO is 20.17, 20.29.  

Scope of future work  

In future proposed Blue noddy optimization (BNO) 

algorithm and European Night crawler optimization 

(ENO) algorithm can be applied to other problems in 

Power system optimization and control.  Then the 

validity of the algorithms can be tested in large systems 

and sequentially it can be applied to practical systems.  

Nomenclature 
OBF- Minimization of the Objective function. 

L and M- control and dependent variables of the optimal 

reactive power problem 

 r- Consist of control variables  
(𝑄𝑐) - Reactive power compensators  

T- Dynamic tap setting of transformers  

(𝑉𝑔)- Level of the voltage in the generation units  

u-consist of dependent variables  

𝑃𝐺𝑠𝑙𝑎𝑐𝑘  - Slack generator 

𝑉𝐿 - Voltage on transmission lines 

𝑄𝐺  - Generation unit’s reactive power 

 𝑆𝐿 . Apparent power  

NTL- Number of transmission line indicated by 

conductance of the transmission line between the 

𝑖𝑡ℎ 𝑎𝑛𝑑 𝑗𝑡ℎ buses, Ø𝑖𝑗 . Phase angle between buses i and j  

𝑉𝐿𝑘 −Load voltage in 𝑘𝑡ℎ load bus  

𝑉𝐿𝑘
𝑑𝑒𝑠𝑖𝑟𝑒𝑑 −Voltage desired at the 𝑘𝑡ℎ load bus, 

𝑄𝐺𝐾 − Reactive power generated at 𝑘𝑡ℎ load bus 

generators,  

𝑄𝐾𝐺
𝐿𝑖𝑚 − Reactive power limitation,  

𝑁𝐿𝐵 and 𝑁𝑔 - number load and generating units  

Tt – Transformer tap  
Gen volt- Generator Voltage  
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