
Informatica 29 (2005) 219–226 219

System Resource Utilization Analysis based on Model Checking Method

Ki-Seok Bang, Hyun-Wook Jin, Chuck-Yoo and Jin-Young Choi
Department of Computer Science & Engineering, Korea Univerity
{kbang, choi}@formal.korea.ac.kr
{hwjin, chuck}@os.korea.ac.kr

Keywords: Model Checking, Temporal Logic, Property Specification, SPIN, LTL, Myrinet NIC

Received: July 21, 2004

Model checking method is a widely used formal method for proving whether or not a given model satisfies
properties, and for producing counter examples if the model does not satisfy properties. In this paper, we
show model checking methods can be used for resource utilization analysis of systems. We specify system
utilization properties using temporal logic called LTL, and find a bottleneck of system performance using
model checking.

Povzetek: Analiza uporabe sistemskih virov z metodo preverjanja modelov.

1 Introduction

Formal methods[5] are the most notable efforts to guaran-
tee a correctness of system design and behaviors. Correct-
ness of design is a very important factor of H/W and S/W
systems for preventing an economical and human losses
caused by minor errors. Especially, model checking[5] is
one of the most active research areas because its procedures
are automatic and easy to understand. In model checking,
we model a system as a finite state machine and specify the
properties that must be satisfied by the real system using a
temporal logic[12]. After that, we automatically perform
a model checker whether the system satisfies its properties
or not. In general, properties are mostly describing correct-
ness or safety of the system’s operation. It is very important
to specify the correctness property of system design and
behavior, and an appropriate property must be specified to
represent a correct requirement.

However, in some cases, the correctness property is not
an important factor for system designers. In a small system
such as NIC(Network Interface Card), the correctness can
be ignored by the designer and user. Instead of the safety
characteristic, a system efficiency such as operating speed
or performance of system resource utilization is more im-
portant to evaluate the system’s quality level.

Generally, measurement or simulation is used to show
an efficiency property of a system. A professional ana-
lyst measures responses that occur during an experiment
using a simulator, and compares them to an ideal computed
value[15]. If the two values are similar or equal, then it can
be said the system uses its resources effectively and shows
a high performance. Otherwise, the conclusion is that the
system performs ineffectively. Then a reason of the inef-
fectiveness should be found.

To detect it, they must analyze both H/W and S/W. Es-
pecially, they must inspect the whole source codes for
S/W analysis. However, it is almost impossible to analyze

source codes perfectly, since the codes are too long and co-
operates with other systems in a complicate manner. In ad-
dition, network systems are constructed in a distributed en-
vironment, so error detection is very difficult even if source
codes are instpected.

In this paper, we specify system utilization properties us-
ing temporal logic, and show that model checking methods
can be used for performance analysis. We used the model
checker SPIN[8, 9] and LTL(Linear Temporal Logic)[12]
to perform this research. We analyzed a Myrinet NIC
firmware system[3] and successfully found a reason for in-
effictive behavior of the system.

This paper is composed as follows; Chapter 2 is a brief
introduction to network simulation tools and firmware de-
sign methodologies, and model checking method. We ad-
dress the extension of LTL specification to a quantity char-
acteristic in Chapter 3. In Chapter 4, we explain an over-
head analysis of high speed network card and results of
model checking. We conclude in Chapter 5.

2 Related Works

2.1 Simulation of network status and
firmware desin methods

Currently, certain network simulators like Network Simula-
tor II(NS-II)[15] are used to design network system or anal-
yse their behavior. This simulator performs a simulation
for TCP, routing, and multicast protocols on wire/wireless
network. We can find and fix bugs in the network protocol
and communication software using the simulator.

But, simulators just provide a convenient method for
users or software designers to fix their software codes,
since the system modelled by a simulator is not a real sys-
tem, but an ideal model. And, NS-II has many of its own
bugs and errors. Besides that, users must check whether



220 Informatica 29 (2005) 219–226 Ki-Seok Bang et al.

the errors from a simulation are from simulator itself.
The research to design NIC firmware correctly is pro-

gressing. An improved NIC program for high performance
MPI of INRIA modelled behaviors of NIC firmware using a
state transition diagram[17]. They modelled and analyzed
behaviors of the NIC sender and receiver are working in
parallel using the state transition diagram. In this way, it
can be helpful for analyzing complex send/receive behav-
iors of firmware.

2.2 Model Checking

Model checking[5] is an automatic verification technique
for correctness of finite state systems. That is a process to
prove a correctness of system through logical proving about
system constraints or requirement for safe system behav-
ior. Even model checking has many advantages and disad-
vantages, but can verify a complex system as a hardware
circuit or communication protocol automatically. Because
verification processes are performed automatically, so the
verification results are correct and easy to analysis. In ad-
dition, model checking is performed to whole states of sys-
tem state space, it can conclude yes or no for very large
system.

The process of model checking is as follows : The first
task is to convert a system to a formal model accepted
by a model checker. In practice, this process is not auto-
mated and formal languages defined by formal semantics
must be used to specify a system. Many abstraction tech-
niques are applied to draw a abstract model in this pro-
cess. Abstraction is very important for reducing states of
a system because system space can be exploded during the
model checking process. After modeling, we needs to spec-
ify properties that the system must hold. The specification
usually is given in some logical formalism. Generally, tem-
poral logics are used to represent a temporal characteristic
of systems. The verification is completely automatic with
the abstract model and properties. However, it does need
human assistance to analyze the result of model checking.
The model checker can produce a counterexample for the
checked property, and it can help the designer in tracking
down where the error occurred. In this case, analyzing the
error trace may require a modification to the system and
reapplication of the model checking process. The error can
also result from incorrect modeling of the system or from
an incorrect specification. The error trace can also be use-
ful in identifying and fixing these two problems.

There are many representative model checkers;
SMV[11] and SPIN[8, 9] are two examples. SMV is a
CTL model checker for hardware verification, and SPIN
is an LTL model checker for communication protocol or
concurrent software. In this paper, we specify system
properties using LTL and verify them using SPIN.

SPIN is a representative LTL model checker. SPIN sup-
ports its own tools for LTL specification and verification. A
User can model a system by Promela, an input language of
SPIN, and specify a required property in LTL. Then SPIN

verifies the model and generates verification results, “True”
or counterexample if the result is “false”. SPIN provides
some basic safety and liveness properties such as deadlock,
invalid end state and non-progress cycle. Therefore, we
don’t have to specify those properties. SPIN also has many
optional switches, so we can control search spaces and ver-
ification times. We can simulate the model’s behavior using
SPIN simulator before verification. The simulation facility
can reduce the verification time and human efforts to spec-
ify a complex property.

2.3 Temporal Logics
It is very important to specify system property that certain
system must be satisfied. In general, CTL(Computational
Tree Logic) or LTL(Linear Temporal Logic) is used for
property specification of model checking. Two logics spec-
ify behaviors of a system according to time structure. Time
is assumed to have a branching structure in CTL. That is,
it models system behavior using state graph that represents
a infinite state transition tree from the initial state. LTL
assumes that the time sequence is linear, the system’s be-
havior is represented by one linear sequence[12].

Model checking can be divided into CTL model check-
ing and LTL model checking based on the used temporal
logic. In CTL model checking, we model finite state sys-
tem using Kripke structure and prove the temporal logic
is satisfied on an arbitrary state of this system by fixed
point theory. LTL model checking models systems and
LTL properties using automata, and checks the emptiness
of two automata[5].

3 Extension of property
specification using temporal logic

In general, model checking is used to prove the correctness
or safety of systems, and property specification by tempo-
ral logics represents that kind of requirement. Especially,
deadlock and invalid endstate are the most common safety
properties. so model checkers can check those properties
without temporal logic specifications. For example, it is
very important to verify mutualy exclusive behaviors in the
critical section of operating system design. When two con-
current processes are trying to operate in a critical section,
we can specify their mutual exclusive property as follows;
[] ! (P ∧ Q). This logic can be translated into " Always
P and Q cannot be true at the same time," and means two
processes cannot operate in a critical section at the same
time.

Another property, “if one process tries to be in a critical
section, then eventually that process can operate in the criti-
cal section.” can be specified for liveness requirement. This
property can be written: [](P →<> Q). Safety and live-
ness properties are very important to guarantee a system’s
behavior and can find many implicit errors easily. How-
ever, in some cases, the correctness property is not an im-



SYSTEM RESOURCES UTILIZATION. . . Informatica 29 (2005) 219–226 221

portant factor for system designers. In a small system such
as NIC(Network Interface Card), the correctness can be ig-
nored by designer and user. Instead of the safety charac-
teristic, a system efficiency such as operating speed or per-
formance of system resource utilization is more important
to evaluate the system’s quality level. Generally, measure-
ment or simulation is used to show an efficiency property of
system. A professional analyst measures responses that oc-
curr during an experiment using a simulator, and compare
them to an ideal computed value. If two values are similar
or equal, then it can be said the system uses its resources
effectively and shows a high performance. Otherwise, the
conclusion is that the system performs ineffectively. Then
a reason for the ineffectiveness should be found.

To detect it, they must analyze both H/W and S/W. Es-
pecially, they must inspect the whole source codes for
S/W analysis. However, it is almost impossible to analyze
source codes perfectly, since the codes are too long and co-
operates with other systems in a complicate manner . In ad-
dition, network systems are constructed in a distributed en-
vironment, so error detection is very difficult even if source
codes are inspected. However, it is too difficult to find a
reason of error and fix it in the program source code. In
this paper, we show an easy way to analyze source code
using model checking.

In fact, a direct verification of quantitive property is not
so easy. Therefore, simulation or performance measure-
ment must be used with verification to increase the possi-
bility of finding an error.

First, we simulate a target system to measure its perfor-
mance, and analyze its measurements to compare system’s
effectiveness. If it is too low, we can assume the system has
some problems. Then, we model the system using some
abstract techniques, and specify a property which must be
satisfied to the system using a temporal logic. In this case,
the property specification must be concerned with a per-
formance not a safety. For example, we can specify a re-
source sharing characteristic by checking if two processes
can be moved to a specific state simultaneously. That is,
two processes can operate with the same shared resource
at the same time. If the model checking result shows false,
it means resource sharing is impossible and system perfor-
mance can be dropped. Of course, we should guess the
kind of errors. But this method is faster and more correct
than the traditional code inspection. We can find and fix a
problem by a logical proof.

4 Example of system resource
utilization analysis using model
checking

4.1 Performance analysis of high-speed
network card

We performed model checking for performance analysis of
Myrinet NIC(Network Interface Card)[3].

Gigabit network interface cards(NIC) like Myrinet are
becoming popular. In order to achieve the best possible per-
formance out of Myrinet, several user-level communication
primitives have been proposed[4, 7, 16]. Berkeley-VIA[4]
is a well-known implementation of Virtual Interface Ar-
chitecture (VIA)[6] that is an industrial standard for user-
level communication primitives. Therefore, it is generally
expected that VIA can achieve near physical bandwidth
of gigabit networks. However, our research shows that

0


100


200


300


400


500


600


700


800


0
 4096
 8192
 12288
 16384
 20480
 24576
 28672
 32768


Data Size (Byte)


T
hr

ou
gh

pu
t 

(M
bp

s)



Asynchronous UDP


Berkeley-VIA


UDP


Figure 1: Throughput comparison of Asynchronous UDP,
Berkeley-VIA, and UDP

0


200


400


600


800


1000


1200


0
 4096
 8192
 12288
 16384
 20480
 24576
 28672
 32768


Data Size (Byte)


O
ne

-w
ay

 L
at

en
cy

 (
us

)


UDP

Asynchronous UDP


Berkeley-VIA


Figure 2: One-way latency comparison of Asynchronous
UDP, Berkeley-VIA, and UDP

Berkeley-VIA is able to achieve a slightly higher through-
put than UDP on Myrinet as shown in Figure 1. Fur-
thermore, Berkeley-VIA has much less throughput than an
improved UDP named Asynchronous UDP[18]. On the
other hand, we find that Berkeley-VIA has the shortest one-
way latency as shown in Figure 2, which indicates that
Berkeley-VIA has less communication overhead than UDP
and Asynchronous UDP.

So the question is why Berkeley-VIA has a very low
overhead but is not able to achieve the best possible



222 Informatica 29 (2005) 219–226 Ki-Seok Bang et al.

throughput. Our goal is to find the performance bottle-
neck. The firmware of Myrinet NIC needs to be analyzed
to see where the bottleneck is. Because Myrinet NIC has
three DMA engines and separate memory and CPU, the
firmware itself is very complicated. Therefore, the analysis
of the firmware is not an easy task. Also the interaction
between the firmware and the host is very complex so that
the firmware analysis becomes even more complicated.

Therefore, we first build state transition diagrams of
the firmware in order to analyze the firmware of Myrinet
NIC. Second, we translate the state transition diagrams
into specifications written in PROMELA (PROcess MEta
LAnguage)[8]. Third, we derive verification formulas, and
then the formulas are verified with SPIN.

4.2 Myrinet Network Interface Card
Myrinet is a gigabit Local Area Network(LAN), which sup-
ports full-duplex 1.28+1.28 Gbps bandwidth[1, 2]. In this
section, we describe the hardware components of Myrinet
NIC based on LANai-4[13]. Myrinet NIC consists of
a RISC processor named LANai, Static Random Access
Memory (SRAM), and three DMA engines. As shown in
Figure 3, LANai executes the firmware, and SRAM stores
the data for sending or receiving. Each DMA engine works
as follows.

Myrinet 


LAN


LANai


SRAM
DMA

engine


DMA

engine


DMA

engine


Main


Memory


EBUS
-
LBUS


DMA


send


DMA


receive


DMA
Myrinet 
NIC


Myrinet 


LAN


LANai


SRAM
DMA

engine


DMA

engine


DMA

engine


Main


Memory


EBUS
-
LBUS


DMA


send


DMA


receive


DMA
Myrinet 
NIC


Figure 3: Hardware feature of Myrinet NIC

The EBUS-LBUS DMA engine is responsible for the
data movement between the main memory and the SRAM.
The send-DMA engine moves the data in SRAM to the
Myrinet physical network.The receive-DMA engine re-
ceives data from Myrinet LAN into the SRAM. The
firmware initiates the DMA operations by setting the
proper registers of each DMA engine and notices the com-
pletion of corresponding DMA operation via the 32-bit In-
terrupt Status Register (ISR) on LANai processor[3].

4.3 Modeling of firmware
In this section, we discuss the modeling of LCP and MCP.
We construct the state transition diagrams for concerned
modules based on their source codes and specify them with
PROMELA.

4.3.1 LCP

LCP is the firmware for Berkeley-VIA. LCP consists of
four modules: hostDma, lcpTx, lcpRx, and main. Fig-
ures 4and 5 show the state transition diagrams of former
three modules. The hostDma module is responsible for

HostDmaIdle


HostDmaBusy


HostDmaRequest
?

(
dma
_
int
==1)


-
> 
HostDmaDone
!


HostDmaIdle


HostDmaBusy


HostDmaRequest
?

(
dma
_
int
==1)


-
> 
HostDmaDone
!


Figure 4: State transition diagram of the hostDma module

EBUS-LBUS DMA. The initial state of the hostDma mod-
ule is HostDmaIdle. The lcpTx and lcpRx modules invoke
the method of the hostDma module. Then, the hostDma
module initializes the EBUS-LBUS DMA operation, and
its state moves to HostDmaBusy. When the EBUS-LBUS
DMA operation is done, the state of the hostDma mod-
ule moves from HostDmaBusy to HostDmaIdle, and the
method returns to its invoker.

The lcpTx module sends data and lcpRx receives data.
Their initial state is LcpTxIdle and LcpRxReady. Each
module invokes a method of HostDma at the initial state.
If data is received from the network during the send-DMA
operation, the lcpTx module invokes the method of the
lcpRx module and moves to the LcpTxInvokeRx state.
When the lcpRx module has received a data completely,
its method returns to the lcpTx module, and the state of the
lcpTx module moves to LcpTxSendDma again.

Note that the entry point of the hostDma, lcpTx, and
lcpRx modules is the initial state of each module. We will
discuss the entry point in the next section, compared it with

LpcTxHostDma


LcpTxSendDma


LpcTxGotASend


GotASend
?


HostDmaRequest
!

HostDmaDone
?


(
sned
_
int 
==1)


LpcTxIdle


LcpTxInvokeRx


(
recv
_
int 
== 1)


LcpRxDone
?

LpcTxHostDma


LcpTxSendDma


LpcTxGotASend


GotASend
?


HostDmaRequest
!

HostDmaDone
?


(
sned
_
int 
==1)


LpcTxIdle


LcpTxInvokeRx


(
recv
_
int 
== 1)


LcpRxDone
?


Figure 5: State transition diagram of the lcpTx module



SYSTEM RESOURCES UTILIZATION. . . Informatica 29 (2005) 219–226 223

MCP.
We specify the modules as processes in PROMELA.

All invocations between modules are performed in a syn-
chronous manner.

4.3.2 MCP

MCP is included in the Myrinet Software package[1] While
Berkeley-VIA supports only VIA protocol, Myrinet Soft-
ware supports TCP/IP protocol suite. MCP consists of five
modules: hostSend, netSend, hostReceive, netReceive, and
main. The hostSend module moves data from main mem-
ory to SRAM, and the netSend module sends the data in
SRAM to the network. The netReceive module receives the
data from the network to SRAM. The hostReceive module
moves the received data to the main memory. The state
transition diagrams of four modules are shown in Figures
6,7,8 and 9.

HostSendIdle


HostSendFull


HostSendDmaBusy


HostSendDma


GotASend
?


NetSendQueueNotFull
?


SendDmaFree
?


HostSendGotASend


HostSendNotFull


(
NetSendQueue
.full)


(

D
m
a
I
n
U
s
e

=
=
1
)



(
DmaInUse
==1)


(
DmaInUse
==0)
 
 DmaInUse
= 1


(
Dm
aI
nU
se

==
0)



 
 D
ma
In
Us
e
=

 1



SendDmaDone
?


DmaInUse
=0


ReceiveDmaFree
!


NetSendQueueNotEmpty
!


HostSendIdle


HostSendFull


HostSendDmaBusy


HostSendDma


GotASend
?


NetSendQueueNotFull
?


SendDmaFree
?


HostSendGotASend


HostSendNotFull


(
NetSendQueue
.full)


(

D
m
a
I
n
U
s
e

=
=
1
)



(
DmaInUse
==1)


(
DmaInUse
==0)
 
 DmaInUse
= 1


(
Dm
aI
nU
se

==
0)



 
 D
ma
In
Us
e
=

 1



SendDmaDone
?


DmaInUse
=0


ReceiveDmaFree
!


NetSendQueueNotEmpty
!


Figure 6: State transition diagram of the hostSend module

NetSendBusy


NetSendSendDone
?


NetSendQueueNotFull
!


NetSendQueueNotEmpty
?


NetSendIdle
 NetSendBusy


NetSendSendDone
?


NetSendQueueNotFull
!


NetSendQueueNotEmpty
?


NetSendIdle


Figure 7: State transition diagram of the netSend module

Compared with modules of LCP, the notable difference
is that each module of MCP has plural entry points. This
means that the method of each module is invoked from an
entry point and returns when it moves to another entry point
without waiting for the next event. Therefore, the method
invoked in the next time starts from the state in which the
method returns right before. On the other hand, in the case
of LCP, a method is invoked when the module is in the
initial state and returns only when it goes back to the initial
state. we implement an invocation by using two rendezvous
communication channels of PROMELA. For more details,
refer [10].

HostReceiveIdle


HostReceiveDmaBusy
HostReceiveDma


HostReceiveGotAReceive


NetReceiveQueueNotEmpty
?


(
DmaInUse
==1)


(
D
ma
In
Us
e

==
0)



 

Dm
aI
nU
se

=
1


ReceiveDmaFree
?


ReceiveDmaDone
?


DmaInUse
=0


SendDmaFree
!


NetReceiveQueueNotFull
!


HostReceiveIdle


HostReceiveDmaBusy
HostReceiveDma


HostReceiveGotAReceive


NetReceiveQueueNotEmpty
?


(
DmaInUse
==1)


(
D
ma
In
Us
e

==
0)



 

Dm
aI
nU
se

=
1


ReceiveDmaFree
?


ReceiveDmaDone
?


DmaInUse
=0


SendDmaFree
!


NetReceiveQueueNotFull
!


Figure 8: State transition diagram of the hostReceive mod-
ule

NetReceiveFull


NetReceiveDma


N
e
t
R
e
c
e
i
v
e
Q
u
e
u
e
N
o
t
F
u
l
l



?



R
e
c
e
i
v
e
D
o
n
e

?


NetReceiveDmaDone


(
NetReceiveQueue
.full)


NetReceiveQueueNotEmpty
!


(
!

Ne
t
R
e
c
e
i
v
e
Q
u
e
u
e


.
f
u
l
l
)



N
e
t
R
e
c
e
i
v
e
Q
u
e
u
e
N
o
t
E
m
p
t
y



!



NetReceiveFull


NetReceiveDma


N
e
t
R
e
c
e
i
v
e
Q
u
e
u
e
N
o
t
F
u
l
l



?



R
e
c
e
i
v
e
D
o
n
e

?


NetReceiveDmaDone


(
NetReceiveQueue
.full)


NetReceiveQueueNotEmpty
!


(
!

Ne
t
R
e
c
e
i
v
e
Q
u
e
u
e


.
f
u
l
l
)



N
e
t
R
e
c
e
i
v
e
Q
u
e
u
e
N
o
t
E
m
p
t
y



!



Figure 9: State transition diagram of the netReceive mod-
ule

4.4 Formal verification of firmware
behaviors

First, we verified the correctness of each firmware using
SPIN. The correctness means only one module should oc-
cupy the EBUS-LBUS DMA engine at a time. The EBUS-
LBUS DMA engine moves data not only from main mem-
ory to SRAM for sending, but also from SRAM to main
memory for receiving. Therefore, if the other module al-
ready occupies the DMA engine, a module should wait un-
til the DMA engine becomes idle. The formulas used are
as follows:

1. LCP

[] ! (LTHD && LRHD)

The lcpTx module cannot use the EBUS-LBUS
DMA engine while the lcpRx module occupies
it.

2. MCP

[] ! (HSD && HRD)

The hostSend module cannot use the EBUS-
LBUS DMA engine during the hostReceive
module occupies it.

The hostSend module cannot use the EBUS-LBUS DMA
engine while the hostReceive module occupies it.



224 Informatica 29 (2005) 219–226 Ki-Seok Bang et al.

The verification results show that both LCP and MCP
satisfy the above correctness property.

Full statespace search for:
never-claim +
assertion violations + (if within scope of claim)
acceptance cycles - (not selected)
invalid endstates - (disabled by never-claim)

State-vector 492 byte, depth reached 472,
errors: 0

Table 1: Formal verification result of NIC - Safety property

However, we can find a significant difference between
two firmwares when analyze the behaviors of LCP and
MCP from the viewpoint of throughput. The key factor
that determines the throughput of NIC is how well the
DMA engines are utilized. The maximum throughput can
be achieved when the EBUS-LBUS DMA engine performs
in parallel with the send-DMA and receive-DMA engine.

For example, let DMAEBUS−LBUS be the throughput of
the EBUS-LBUS DMA and DMAsend be the throughput
of the send-DMA. DMAEBUS−LBUS is determined by the
bandwidth of the I/O bus (e.g. PCI) that connects the main
memory and SRAM of NIC. On the other hand, DMAsend

is determined by the network physical media. When DMA
engines perform in parallel, the throughput is evaluated as
follows:

Throughput =
MIN(DMAEBUS−LBUS , DMAsend)

However, if DMA engines perform sequentially, the
throughput is limited as follows:

Throughput = DMAEBUS−LBUS

/(1 + DMAEBUS−LBUS/DMAsend)

If DMAEBUS−LBUS and DMAsend are the
same, the throughput achieved is reduced to 1/2 of
DMAEBUS−LBUS. The next step of the analysis is to
derive verification formulas. Because the verification
formulas need to reflect the utilization of DMA engines,
we use the following formulas written in LTL:

1. LCP

A. ¦ (LTIR && HDB && ! LRHD)
Can the lcpTx module initiate send-DMA while
the hostDma module is using EBUS-LBUS
DMA that moves data from main memory to
SRAM?

B. ¦ (LRR && HDB && ! LTHD)
Can the lcpRx module initiate receive-DMA
while the hostDma module is using EBUS-
LBUS DMA that moves data from SRAM to
main memory?

– LTIR : The state of lcpTx is LcpTxInvok-
eRx.

– LTHD : The state of lcpTx is LcpTxHost-
Dma.

– LRR : The state of lcpRx is LcpRxReady.
– LRHD : The state of lcpRx is LcpRxHost-

Dma.
– HDB : The state of hostDma is Host-

DmaBusy.

2. MCP

A. ¦ (HSD && NSB)

Can the netSend module initiate send-DMA
while the hostSend module occupies the EBUS-
LBUS DMA engine?

B. ¦ (HRD && NRD)

Can the netReceive module initiate receive-
DMA while the hostReceive module occupies
EBUS-LBUS DMA engine?

– HSD : The state of hostSend is HostSend-
Dma.

– NSB : The state of netSend is NetSendBusy.
– HRD : The state of hostReceive is HostRe-

ceiveDma.
– NRD : The state of netReceive is NetRe-

ceiveDma.

If DMA engines perform in parallel, each verification
formula should result in “True.” When we run SPIN with
the above formulas, the verification formulas of MCP are
“True.” However, the formulas for LCP result in “False.”
That is, LCP cannot perform the send-DMA during the
EBUS-LBUS DMA that moves data from main memory
to SRAM (formula 1-A).

Full statespace search for:
never-claim +
assertion violations + (if within scope of claim)
acceptance cycles - (not selected)
invalid endstates - (disabled by never-claim)

State-vector 492 byte, depth reached 472,
errors: 1

Table 2: Formal verification result of LCP - Reource Uti-
lization property

In order to quantify the parallelism of each firmware, we
measure the DMA overheads. Figures 10 and 11 are the
time charts. The x-axis indicates the time, and the y-axis
represents the DMA engine that each packet goes through
in order to be processed. A rectangle in a DMA engine is
the time spent in the DMA engine to process a packet. A
rectangle starts at the time when the corresponding rectan-
gle in upper DMA finishes. Figure 9 shows that the DMA
overheads of MCP are fully overlapped, while the over-
heads of LCP cannot be pipelined at all, as shown in Fig-
ure 11. Also LCP cannot perform the receive-DMA as



SYSTEM RESOURCES UTILIZATION. . . Informatica 29 (2005) 219–226 225

well during the EBUS-LBUS DMA that moves data from
SRAM to main memory (formula 1-B). This result explains
why the performance of Berkeley-VIA is limited. The sim-
ulation results also show that LCP performs DMA sequen-
tially but MCP performs DMA in parallel. We have run
random and interactive simulations and confirmed the same
results.

We could prove the safetiness of NIC firmware and find a
reason which causes a problem in the performance of NIC.
If we perform a simulation to find performance problems, it
is easy to show a falling-off in performance. However, we
must analyze the source code of firmware to find the reason.
The real source code of NIC is very complex, as well as too
long to analyze. Therefore, we can perform performance
analysis and find a reason of performance dropping using
model checking.

5 Conclusions

This paper explains a way to identify the problems which
caused system performance drop using model checking.

Generally, logical formula used in model checking is re-
lated to system correctness or safety. It is important that

0
 1000
 2000
 3000
 4000
 5000
 6000


EBUS-LBUS


DMA


send-DMA


time (us)


Figure 10: DMA overheads of LCP

0
 500
 1000
 1500
 2000
 2500
 3000
 3500


EBUS-LBUS


DMA


send-DMA


time (us)


Figure 11: DMA overheads of MCP

systems have to be designed accurately for system safety,
since system’s error affects not only the system but its envi-
ronment. But as shown in this paper, even already verified
systems showed the lower processing rate. In that case, we
can conclude that system resources are used ineffectively.

Usually, the quantitative analysis such as performance of
system and usability of resources is done by simulation or
measurement. As a result, it is very difficult to analyze the
cause of performance drop.

In other words, the source code must be analyzed di-
rectly to find the major factor. However, as systems get
complicated and interactions with other systems increase,
it is impossible to directly analyze the source code. In this
case, we propose to adapt a model checking for quantita-
tive analysis like resource utilization. If quantitative prop-
erty can be specified by temporal logic, then quantitative
analysis as performance analysis could be performed eas-
ily. Also, if a reason for performance drop could be found
easily in an abstract model, applying it with the actual code
to fix the source code would be an easy task.

Still, there are a few obstacles to adapting the model
checking to performance analysis. First, the model check-
ing can express finite systems like hardware controller or
communication protocol as a finite state machine, but other
systems can have infinite states, so they have to be mod-
elled by special abstract methods. During the abstraction
process, there could be many new and potential errors. The
most obvious problem to perform the model checking is
the state space explosion problem. Though this method can
search every possible state in finite state system, the states
can be exploded when the system is performing. Therefore,
it is impossible to search all possible state space. Thus
depending on the capability of computer which performs
model checking and verification algorithm, the number of
states that can be verified is limited. To solve this weak-
ness of model checking, there are many attempts and much
research to formally verify the finite states of the compli-
cated system and automation of abstraction process to ana-
lyzation of source code. If more effective model checking
methods could be developed by this research, verification
of safety and analyzation of performance of large and com-
plicated systems can be performed easily.

In this study, we performed a performance analysis using
SPIN. In the future, there are plans to test the effectiveness
with more model checkers. Also, based on the example of
NIC, there should be similar research done with bigger and
more performance sensiteve systems, for example, embed-
ded systems.

References

[1] D. Anderson, J. Chase, S. Gadde, A. Gallatin, K.
Yocum, and M. Feeley, Cheating the I/O Bottleneck:
Network Storage with Trapeze/Myrinet, Proceedings
of the 1998 USENIX Technical Conference, June
1998.



226 Informatica 29 (2005) 219–226 Ki-Seok Bang et al.

[2] T. E. Anderson, D. E. Culler, D. A. Patterson, and the
NOW Team, A Case for Networks of Workstations:
NOW, IEEE Micro, February 1995.

[3] N. J. Boden, D. Cohen, R. E. Felderman, A. E.
Kulawik, C. L. Seitz, J. N. Seizovic, and W. -K.
Su, Myrinet – A Gigabit-per-Second Local-Area Net-
work, IEEE-Micro, Vol. 15, No. 1, pp. 29-36, Febru-
ary 1995.

[4] P. Buonadonna, A. Geweke, and D. Culler, An Imple-
mentation and Analysis of the Virtual Interface Ar-
chitecture, Proceedings of SC’98, November 1998.

[5] E. M. Clarke, O. Grumberg, D. A. Peled, Model
Checking, MIT Press, 1999.

[6] D. Dunning, G. Regnier, G. McAlpine, D. Cameron,
B. Shubert, A. M. Berry, E. Gronke, and C. Dodd,
The Virtual Interface Architecture, IEEE Micro, Vol.
8, pp. 66-76, March-April 1998.

[7] T. V. Eicken, A. Basu, V. Buch, and W. Vogels, U-Net:
A User-Level Network Interface for Parallel and Dis-
tributed Computing, Proceedings of 15th ACM SOSP,
pp. 40-53, December 1995.

[8] G. J. Holzmann, Design and Validation of Computer
Protocols, Prentice Hall, 1991.

[9] G. J. Holzmann, The Model Checker SPIN, IEEE
Transactions on Software Engineering, May 1997.

[10] H. W. Jin, K. S. Bang, J. Y. Choi, C. Yoo, Bottle-
neck Analysis of a Gigabit Network Interface Card,
Proceedings of 9th International SPIN Workshop, pp.
170-185, May 2002.

[11] K. L. Macmillan, Symbolic Model Checking, Kluwer
Academic Publishers, 1993.

[12] Z. Manna, A. Pnueli, The Temporal Logic of Reactive
and Concurrent Systems, Springer-Verlag, 1992.

[13] Myricom Inc., LANai 4, http://www.myri.com,
February 1999.

[14] Myricom Inc., Myrinet User’s Guide,
http://www.myri.com, 1996.

[15] The Network Simulator,
http://www.isi.edu/nsnam/ns.

[16] L. Prylli and B. Tourancheau, BIP: a new protocol de-
signed for high performance networking on myrinet,
Proceedings of IPPS/SPDP98, 1998.

[17] L. Prylli and B. Tourancheau, R. Westrelin, An Im-
proved NIC Program for High-Performance MPI,
Proceedings of Workshop on Cluster-Based Comput-
ing, 1999.

[18] C. Yoo, H. -W. Jin, and S. -C. Kwon, Asyn-
chronous UDP, IEICE Transactions on Communica-
tions, Vol.E84-B, No.12, December 2001.




