
Informatica 35 (2011) 101–112 101

Resource Control and Estimation Based Fair Allocation (EBFA) in
Heterogeneous Active Networks

K. Vimala Devi
Department of Computer Science and Engineering
Anna University, Trichirappalli,
Trichirappalli, 620024, India.
E-mail: k_vimadevi@yahoo.co.in

C. Thangaraj
Kalasalingam University,
Krishnankoil – 626190, India.
E-mail: thangaraj@akce.ac.in

K.M. Mehata
Anna University,
Chennai - 600025, India
E-mail: mehata@annauniv.edu

Keywords: active network management, resource control, fair allocation, resource estimation, estimation based
allocation

Received: July 11, 2009

Active networks perform customized computation on the messages flowing through them. Individual
packets carry executable code, or references to executable code. Active networks are changing
considerably the scenery of computer networks and consequently, affect the way network management is
conducted. In a heterogeneous networking environment, each node must understand the varying
resource demands associated with specific network traffic. This paper describes and evaluates an
approach to control the CPU utilization of malicious packets and to estimate the CPU demand for good
packets in a heterogeneous active network environment. We also describe a new approximation for
estimation based fair allocation. The proposed algorithm called Estimation Based Fair Allocation
Algorithm (EBFAA) avoids the ill-behaved flows to utilize more CPU time and achieves perfect fairness
for all flows during allocation.

Povzetek: Prispevek opisuje obravnavo zlonamernih paketov v aktivnih heterogenih mrežah.

1 Introduction
In classical packet-switched communication networks,
when a packet transits through an intermediate node
along the path from source to destination, each
intermediate node has a measured rating for per-message
and per-byte throughput. Thus a linear extrapolation
from packet size and arrival rate should provide the node
a reasonable estimate for the CPU demand associated
with individual packets or with sets of packets.
Unfortunately, this simple approach cannot work for
active networks because individual packets can require
substantially different processing.

In active networks [15], when a packet arrives at an
intermediate node, the data may include program code
that can be accessed, interpreted, and executed by the
node. The code may specify a compression algorithm to
be applied on the data if congestion has been detected in
the area of the node, or may specify which packets to
drop first, or may modify the destination address to route

around congestion. Thus, in active networks, some more
sophisticated technique is needed to estimate CPU
demand associated with active packets.

1.1 Active network architecture
Active networks [15] allow individual user, or groups of
users, to inject customized programs into the nodes of the
network. "Active" architectures enable a massive
increase in the complexity and customization of the
computation that is performed within the network

 Node operating system (node os)
A NodeOS [7,9] is a special-purpose operating system
that runs on the routers of an active network and supports
active network execution environments (A router in an
active network is called an active node, and hence the
name NodeOS). In order to prevent active applications

102 Informatica 35 (2011) 101–112 K.V. Devi et al.

Figure 1: Active-network architecture [3, 5].

from misbehaving, active network execution
environments enforce fine-grained control over the
resources consumed by active applications. For example,
an execution environment may restrict the number of
CPU cycles an active application can consume, or it may
enforce a limit on the number and type of packets an
active application can receive and send. The interface/API
provided by traditional operating systems is inadequate
for such needs of execution environments. For example,
in traditional Unix, where all resources are associated
with a process, it is very difficult to enforce an absolute
limit on resources consumed by an active application if it
is not a process, and active networks would be very slow
if each active application is run in a separate Unix
process. A NodeOS provides the exact interface needed
by active network execution environments. A NodeOS is
also different from a traditional OS in terms of the
overhead it imposes to do its job. Further, a NodeOS
should be capable of handling as many network packets
per second as possible. Therefore, the NodeOS should
impose minimum overhead to perform operating system
functions. The above requirements raise interesting
operating system design issues, primarily in the areas of
API design and effificent resource control.

The Node operating System (NodeOS) provides the
basic functions from which Execution Environments
build the abstractions that make up the network APIs. The
NodeOS isolates EEs from details of resource
management and the existence of other EEs. The EEs in
turn, hide most of the details of their interaction with the
end user from the NodeOS. The NodeOS defines four
primary abstractions: threads pools, memory pools,
channels and flows. The first three encapsulate a system’s
three types of resources: computation, storage and
communication. The fourth is used to aggregate control
and scheduling of the other three in a form that more
closely resembles network application programs[11].

Examples of NodeOS: -Scout and Amp. A number
of other NodeOS implementations, such as xbind and
EROS, are also under development and testing.

 Execution environment (ee)
Active networks rely on the ability to add programs
easily to the network infrastructure, so the choice of the
Execution Environment’s runtime environment and
programming language is critical. Below are some of the
Execution Environments for setting up of Active
Networks.

1. Ants: Active Node Transfer System

The Massachusetts Institute of Technology’s ANTS aims
at standardizing on a communication model rather than
individual communication protocols, such as IP, UDP
etc. The major design goal is to build a system that
allows rapid transfer and deployment of protocol code
across the network. ANTS uses Java as its programming
language, and the Java Virtual Machine as its runtime
environment. Java’s features make ANTS suitable for a
variety of applications [19].

2. Magician

Magician [1], a toolkit for creating a prototype
Active Network was developed at the University of
Kansas. In an Active Network, program code and data is
placed inside specialized packets called SmartPackets.
The nodes of an Active Network are called active nodes
and they are programmable in the sense that when a
SmartPacket reaches an active node, the code inside the
SmartPacket is extracted and executed. Depending on the
nature of the code inside the SmartPacket, the
SmartPacket either modifies the behavior of the active
node or transforms the data it is carrying. The basic
implementation uses UDP/IP combination for transport
and routing.

1.2 Current network management and its
limitations

Currently, networks are monitored and controlled mainly
through SNMP commands that read or set variables in the
MIBs of the elements. Current MIB implementations,
which defined by their manufacturers, have several
significant limitations.

1. A well-known limitation of SNMP is
related to its inability to handle high volumes of
processed network data.
2. Another limitation of the current management

techniques is that all management decisions are
usually made centrally. This approach is
inefficient when the network is congested, or
when a part of it is inefficient when the network
is congested, or when a part of it is unreachable,
since the management commands may arrive
late or get lost. Active nodes can be
programmed to make such decisions, thus
allowing the distribution of the decision centers
across the network [8, 12].

 …

 NodeOS System Calls
 NodeOS Interface Layer

 Mapping of NodeOs to Real OS

EE1

EEn

AA

AA AA

AA

Node OS Layer

Network
device
driver

OS
Scheduler
(Threads)

OS
(Resource

Mgmt)

RESOURCE CONTROL AND ESTIMATION BASED… Informatica 35 (2011) 101–112 103

1.3 Suitability of active networks for
network management

The use of Active Networks technologies to network
management has the following advantages:

 The information returned can be controlled
and managed according to needs.

 The management rules can be shifted from the
management centers to the active nodes.

 The monitoring and control loop is shortened.

Active networks for the functional areas of network
management

The functional areas of Network Management are
Fault Management, Configuration Management,
Accounting Management, Performance Management and
Security Management (FCAPS).

 Fault management
In fault management as well as other areas of

Network Management such as configuration and
performance management, predicting and preventing
undesirable situations is important. Current predictive
algorithms take into consideration only a few parameters.
However active network technologies enable deployment
of efficient predictive management, since the
computations can be distributed to the whole network.
Each node predicts and transmits to its neighbors its
future state and also the prediction of each node depends
on its current state and the predictions of its neighbors.
Congestion can also be predicted with satisfactory
accuracy [12].

 Configuration management
Configuration management techniques may be

enhanced in an AN environment. For instance, MAs can
be used for inventory management. Those MAs can be
used to discover and report changes to the existing
configuration. For example agents could be programmed
to propagate DNS updates to the entire network.

AN can also facilitate VPN deployment. VPNs are
independent private networks built over a shared public
network. Practically this means that network resources
are partitioned and allocated (dynamically or statically)
to each group. In AN access to the resources of active
nodes can be controlled; hence partitioning of resources
can easily be implemented. An attempt in this direction is
Virtual Active Network (VAN) architecture [12].

 Accounting management
One of the important tasks accounting management

tools carry out is monitoring network usage. Most AN
architectures, for security and safety reasons,
authenticate the users before any resources are allocated
to them to access any service. Thus the monitoring of the
resources is integrated to the network architecture, rather
than being an additional function. With AN, all resource
usage, such as bandwidth, CPU, memory, or scheduling
priorities, can be accounted.

 Finally, AN may be manageable even when some
areas cannot be reached by the management stations.
This is crucial for accounting management, because
those situations usually lead to unreported network use,
and therefore loss of profit. Such situations can be
prevented in active environments [12].

 Performance management
With AN, the way devices handle traffic can easily

be customized on a per-device and per-user basis. Hence
scheduling and routing, traffic shaping, admission
control, and priorities can easily be controlled in order to
manipulate traffic. The deployment of QoS services can
easily be achieved in AN, since protocols that perform
the necessary reservations and computation can be
installed on active nodes. AN is also flexible in installing
protocols. Complex QoS protocols, such as Resource
Reservation Protocol (RSVP) or qGSMP, could be
deployed easily too: the reservation of resources and
scheduling algorithms of active nodes can be
manipulated in any desired way. The ability to
implement QoS protocols without relying on legacy and
rigid protocols (e.g., IP) makes those protocols
lightweight and efficient [12, 19].

 Security management
The AN architectures implement modules that relate

to security and safety. These modules authenticate access
to resources hence; several of the current security
management tasks are architecturally integrated in to
these modules. This relieves NM tools from the
enforcement of policies and SLAs. Apart form traditional
policing; intrusion detection can become much easier and
effective by agents that reside on sensitive nodes. Attacks
such as TCP SYN attack can also be effectively detected
and prevented. For instance Phonix framework allows
the existence of MAs that are programmed to perform
specific tasks, such as safeguarding the network. [12]

1.4 The resource demand in active
networks

Performance management aims to keep network
performance within predefined levels. It is strongly
related to resource management and QoS provisioning
[12, 17] and to the parameter, resource utilization.
Performance management tools measure various
parameters, such as network throughput, delays, and
CPU and bandwidth utilization, and attempt to control
them. To use the Active Network technology safely and
efficiently, individual nodes must understand the varying
resource demands associated with specific network
traffic.

Three types of resources in active networks:
Computation, Storage and Communication (Network)

104 Informatica 35 (2011) 101–112 K.V. Devi et al.

Figure 2: Resource management (QoS- parameters).

Inability to estimate the CPU demands of active packets
can lead to some significant problems. First, a
maliciously or erroneously programmed active packet
might consume excessive CPU time at a node, causing
the node to deny services to valid active packets.
Alternatively, a node might terminate a valid active
packet prematurely, wasting the CPU time used prior to
termination, and ultimately denying service to a correctly
programmed application. Second, an active node may be
unable to schedule CPU resources to meet the
performance requirements of packets. Third, an active
packet may be unable to discover a path that can meet its
performance requirements. Devising a method for active
packets to specify their CPU demands and fair resource
allocation can help to resolve these problems, and can
open up some new areas of research. Unfortunately, there
exists no well-accepted metric for expressing CPU
demands in a platform independent form. This is the
problem that motivated our research.

The paper is organized as follows: In section 2, the
existing solutions to the problem are presented. Section 3
discusses the problem with the applied models. The
implementation of a heterogeneous active network setup
using Magician, a tool for active networks is discussed in
section 4 and the evaluation and comparison of the
results with various active applications is also presented.
The resource estimation methods are presented in section
5. Section 6 proposes the Estimation Based Fair
Allocation algorithm (EBFAA) and evaluates the
performance of the algorithm. Section 7 draws
conclusions on the effectiveness of our solution and
suggests some possible future work.

2 A survey of existing approaches
While the outlines of our solution appear complex, we
believe that success along these lines will enable more
effective control of CPU usage by mobile programs and
will enable node operating systems to more efficiently
manage CPU resources. Others also see a need to provide
such capabilities. In this section we present the existing
solutions to prevent excessive CPU resource
consumption in active networks and in mobile agent
systems. Next we examine the research conducted
outside of active networks that could help to provide
effective resource management in active-network nodes.

2.1 Existing solutions to control the CPU
usage

In order to prevent malicious or erroneous active packets
from consuming excessive CPU time, most execution
environments implement specific control mechanisms. In
this section, we discuss the most common mechanisms.

Limit fixed by the packet
Some execution environments, such as ANTS [23],
assign a timeto-live (TTL) to each active packet. An
active node decreases this TTL as a packet transits the
node, or whenever the node creates a new packet. In this
way, each active packet can only consume resources on a
limited number of nodes, but individual nodes receive no
protection. The current TTL recommendation for the
Internet protocol (IP) is 64 hops [13], which is supposed
to roughly correspond to the maximum diameter of the
Internet. This value might prove large enough for an
active packet that propagates a configuration from node
to node between two videoconferencing machines. But if
the active packet creates numerous additional packets (to
which it delegates a part of its own TTL), then the
assigned TTL could prove insufficient. And it is usually
difficult to predict how many new packets will be
generated since these predictions might depend on
network parameters, such as congestion and topology,
which can rarely be known in advance. This TTL
mechanism could contribute to protect individual nodes
if the TTL is given in CPU time units instead of hop
count. But the problem remains: how to choose the initial
value for the TTL?

In the related context of mobile agents, Huber and
Toutain [7] propose to enable packets that did not
complete their “mission” to request additional credits.
The decision to grant more credit would be taken by the
originating node for its packets, or by the generating
packet for packets created while moving among nodes.
The decision must be made after examining a mission
report included with the request for more credits. The
proposed solution remains unimplemented, perhaps
because the reports proved difficult to generate and
evaluate.

Limit fixed by the node
In some execution environments (e.g., ANTS), a node
limits the amount of CPU time any one packet can use.
This solution protects the node but does not allow
optimal management of resources. For instance, imagine
that a node limits each packet to 10 CPU time units.
Suppose that a packet requiring 11 CPU time units
arrives when the node is not busy. In this case, the node
will stop the execution of the packet just before it
completes.

Use a restricted language
The SNAP language [10] is designed with limited
expressiveness so that a SNAP program uses CPU in
linear proportion to the packet’s length. While this
approach supports effective management of resource
usage, it could prove too restrictive for expressing
arbitrary processing in active applications. For instance,

Resource

Computation

CPU Special H/W

Storage

Memory

RAM

Disk

SWAP

Network

RESOURCE CONTROL AND ESTIMATION BASED… Informatica 35 (2011) 101–112 105

only forward branches are allowed; as a result, if
repetitive processing is required, the packet must be
resent repeatedly in loop-back mode until the task is
completed.

Market based approach
Yamamoto and Leduc [23] describe a model for trading
resources inside an active-network node, based on the
interaction between a “reactive user agents” included in
the packet and resource manager agents that reside in the
network nodes. The manager agents propose resources
(such as link bandwidth, memory, or CPU cycles) to the
user agents at a price that varies as a function of the
demand for the resource (the higher the demand, the
higher the price). Packets carry a budget that allows them
to afford resources on active nodes. Based on the posted
price of the resources and on its remaining credit, the
user agent of a packet makes decisions about the
processing to apply. For instance, if the CPU is in high
demand and thus expensive to use, then a packet may
decide to apply a simple compression algorithm to its
data, instead of a more efficient but more costly
algorithm, which the packet would have applied if the
resource were more affordable. This approach, which
might prove appropriate for mobile agent platforms,
could increase the packet complexity too much to be
used efficiently in active networks.

The two most common approaches to resource
control in active networks apply a fixed limit on the CPU
time allocated to an active packet. In one approach, each
node applies its own limit to each packet, while in the
other approach each packet carries its own limit, a limit
that might prove insufficient on some nodes a packet
encounters and overly generous on other nodes.

Neither approach provides a means to establish an
appropriate limit for a variety of active packets,
executing on a variety of nodes. Our research aims to
solve this problem, while at the same time we intend to
develop a solution that does not reduce the
expressiveness of an active packet, nor make a packet too
complex.

2.2 Existing attempts to quantify the CPU
demand units

The survey of research related to quantify the CPU
requirements initiates us to devise an effective solution.
The following sections outline and discuss some of the
ideas we found.

RISC cycles
The active-network architecture documents specify that a
node is responsible to allocate and schedule its resources,
and more particularly CPU time. Calvert [4] emphasizes
the need to quantify the processing demands of an active
application in a context where such demands can vary
greatly from one node to another, and he suggests using
RISC (Reduced Instruction Set Computer) cycles as a
unit to express processing demands. He does not address
two crucial questions. First, for a given active
application, how can a programmer evaluate the number
of RISC cycles required to execute a packet on a given

node? Second, how can this number be converted into a
meaningful unit for non-RISC machines?

Extra information provided by the programmer
In the AppLeS (application-level scheduling) project [3],
the programmer provides information about the
application that she wishes to execute on a distributed
system. She must indicate for instance whether the
application is more communication oriented or
computation-oriented or balanced, the type of
communication (e.g., multicast or point-to-point), and the
number of floating-point operations (in millions)
performed on each data structure. Using this information,
a scheduling program produces a schedule expected to
lead to the best performance for the application. This
method can yield acceptable predictions only if the
programmer is both willing and able to provide the
required characteristics of the program. Discussions with
software performance experts led us to think this is rarely
the case.

Combined node-program characterization
Saavedra-Barrera and colleagues [14] attempted to
predict the execution time of a given program on various
computers. To describe a specific computer, they used a
vector to indicate the CPU time needed to execute 102
well-defined FORTRAN operations. In addition, they
provided a means to analyze a FORTRAN program,
reducing it to the set of well-defined operations. The
program execution time can then be predicted by
combining the computer model with the program model.
The approach yielded good results for predicting the
CPU time needed to execute one specific run of a
program on different computer nodes. These results
encouraged us to model platforms separately from
applications; however, we need to capture multiple
execution paths through each application, rather than a
single path. We are pursuing a separate thread of
research, discussed under future work, which aims to
apply insights from Saavedra-Barrera to the active-
network environment.

Use acyclic path models
To measure, explain, or improve program performance, a
common technique is to collect profile information
summarizing how many times each instruction was
executed during a run. Compact and inexpensive to
collect, this information can be used to identify
frequently executed code portions. Unfortunately, such
profiles provide no detail on the dynamic behavior of the
program (for instance, these techniques do not capture
and report iterations). To solve this problem a detailed
execution trace must be produced, listing all instructions
as they are executed. But as program runs become
longer, the trace becomes larger and more difficult to
manipulate. Ball and Larus [2] propose an intermediate
solution: to list only loop-free paths, along with their
number of occurrences. Among other things, the authors
demonstrate how the use of these acyclic paths can
improve the performance of branch predictors. We might
be able to exploit such algorithms to efficiently capture
looping behaviors; however, to collect acyclic path

106 Informatica 35 (2011) 101–112 K.V. Devi et al.

information we would need to instrument the program
code for each application to be modeled. Given the
variety of execution environments and active
applications being devised by researchers, we decided to
first evaluate some simpler approaches.

3 CPU control and demand
prediction models

Any effective model of CPU demand by a mobile
program, which we call an active-application model,
seems likely to require delineating the processing paths
through the program in terms of elements of a platform
independent abstraction that the program will invoke on
every node. We refer to such platform-independent
abstractions as node models. In the context of active
networks, two types of node model seem feasible: (1)
white-box models and (2) black-box models. White-box
models specify the functions offered to active
applications by a specific execution environment. Black-
box models specify the system calls offered to execution
environments by a standard node operating system
interface. While we are investigating both approaches, in
this paper we focus mainly on a white-box model
because, if successful, such models can be developed for
each execution environment that a node intends to
support. In addition to seeking techniques to improve
black-box models, we have begun to investigate white-
box models as an alternative approach. In our
conception, white-box models represent the processing
logic within an active application as it invokes services
offered by an execution environment.

3.1 Proposed approach and significance
Now, we illustrate how our CPU demand models can be
used in two sample applications. In one application, we
decide when to terminate an active packet based on its
consumption of CPU time. In a second application, we
predict the CPU demand for nodes in an active network.
In both applications, we compare results obtained using
our white-box models (without considering the system
calls) against results obtained using CPU control and
estimation techniques typically available in execution
environments. As active packets traverse a series of nodes
along a path from source to destination, each active node
will wish to enforce CPU usage limits on each packet.
This permits a node to protect itself from malicious or
erroneously programmed active packets.

While innovative and radical when considered for
use inside networks, active-network execution
environments share much in common with virtual
machines used in Internet-based software architectures,
and active applications appear quite similar to other
forms of dynamically injected software, such as applets,
scripts, servlets, and dynamically linked libraries. These
similarities encourage us to believe that our model can be
applied generally to the problem of specifying CPU
demand in distributed applications that rely on the use of
mobile code.

4 Implementation of white-box
model

4.1 A heterogeneous active network setup
For the test setup, a three node heterogeneous active
network is constructed: the machine "AH-1” is the
sending node and "AN-1" is the destination. The
following figure (Figure 3) represents this topology:

 Requests SmartPacket

Response (Topology infn)

Figure 3: Test network setup.

The Smartpacket is transmitted from the Sender AH-1 to
the Destination AN-1.

Network setup using MAGICIAN:
MAGICIAN was loaded in Linux environment. The tool
provides an additional Execution Environment for setting
up the Active Network and for sending the active packets
using ANEP (Active Network Encapsulation Protocol).
A Network Environment was created by giving specific
host names to the machines forming the network.

One server (Four11) and two nodes have been setup:

Host name IP address
magicserver 192.168.1.60 - Server
magicclient1 192.168.1.168 – (AN-1)
magicclient2 192.168.1.169 – (AH-1)

The tool was installed in all nodes. A network
configuration (topology) file was created with the
filename as similar to netname:magicserver

magicserver.conf consists of the following topology
information:

(net:magicserver
(node: AN-1
host:magicserver
IP:192.168.1.60
gateway: (AN-2)
ports: (3325 3322 3324)

nbors; ((AN-2 192.168.1.168 3325 10000))

node: AN-2
host:magicclient1
IP:192.168.1.168
gateway: (AN-2)
ports: (3323 3324)
nbors: ((AN-1 192.168.1.60 3324 10000))
……………..

A configuration file is created for Four11 server which is
to be read by all the clients to know where the server is

Fo
ur11Se
rver

AH-
1
(Sender)

AN-
1
(Destinat
ion)

RESOURCE CONTROL AND ESTIMATION BASED… Informatica 35 (2011) 101–112 107

running and to setup a connection from the client side to
the server.

Four11.conf consists of:
host: magicserver port: 9411

Starting and testing the active network:

Starting the Four11 server:

The server has to be started from the directory where the
tool has been stored

Java magician.Four11.Four11 magicserver
arguments:
magicserver - the netname-which in turn the name of the
network config file-magicserver.conf

Starting the active node from the magicclient1 (host
m/c):
The Node has also to be started from the directory where
the tool has been stored in client machine.
Java magician.Node.NetworkNode magicclient1
magicserver log.txt

arguments:
magicclient1- host name where the node has to be setup
– must be present in the n/w config file
magicserver - netname
log.txt - trace filename is the name of some file where we
want the results to be stored

4.2 Evaluations and comparison
The white box model is implemented over Magician, a
tool for implementing the Active networks. Magician is
modified in order to incorporate CPU usage control. The
CPU time needed for the execution of each packet in the
first node is found out and stored. Here, the execution
time of each packet in the first node is taken as the
predicted value. SmartPing and SmartRoute are the
applications which send the active packets. One
malicious packet is intruded in between 5 good packets.
Each malicious packet is programmed to consume as
much CPU time as possible on each node. The EE
monitors the execution of each active packet, interrupting
them on a regular basis to query their execution time. If
this execution time is below the predicted, then the
packet continues its execution. Otherwise the EE kills it.
Once the packet completes its execution, or when it's
killed, the EE writes the information about the packet in
the MIB (trace file): increments the number of packets
killed or completed, and modifies the average CPU time
used (computed over the last 20 packets) and all these
information about the packet are stored. The average
CPU time, the mean time and the variance CPU time are
calculated and also stored in the trace file. The
percentage of error, (i.e) the difference between the
predicted time and the executed time is found out. The
CPU time wasted for identifying and killing the
malicious packet is also stored in MIB.

The characteristics of the heterogeneous platform
selected for the control demo is presented in TABLE I.

Characteristics of three computer platform selected:

Table 1: CPU control and prediction demo-platform.

The results from the control demo and prediction are
again analyzed and compared against two applications
and two nodes. TABLE II gives the node-wise CPU
utilization between two applications. The time taken for
executing the two applications like Smartping and
SmartRoute are given in the table II. The CPU time spent
in Node1 and Node2 resembles the predicted value,
which is shown in Table III. CPU predicted timings-
report is presented in TABLE III. The predicted value is
the time taken for executing the packet in the first node.
If any packet with the active application executes beyond
the predicted time in other nodes, the packet is identified
as the malicious packet and it is killed. The average
CPU time and variance in CPU time, calculated and
stored in a log file by the Execution Environment is
presented in TABLE III. The average CPU time and the
variance in CPU time almost resembles the predicted
time.

Comparison between applications

Table 2: CPU time usage-node wise report.

Table 3: CPU predicted timings-report (instruction
cycles).

The percentage of error is presented in TABLE IV
and the wasted CPU time for identifying and killing the
malicious packets is also found. Percentage error is
calculated as: Percentage Error = 100 * (prediction –
actual) / actual. The actual CPU time is the one measured

Platform Description

Node Name Server Node1 – AN-1 Node2 – AH-1

Processor Speed 3 GHz 2.4 GHz 1.2 GHz
Processor
Architecture

Pentium IV Pentium III Celeron

O.S / Version
Red hat Linux /
7.0

Red hat
Linux / 7.0

Red hat
Linux / 7.0

Java Virtual
Machine /
Version

Jdk1.3.1_02 Jdk1.3.1_02 Jdk1.3.1_02

Memory
size(Mega bytes)

512 MB 256 MB 128 MB

CPU time Used (instruction cycles)

Application In Source
During Transition

Node1 Node2

SmartPing 13,500 13,700 13,740

SmartRoute 65,084 65,110 65,169

EE
EE

AA
Predicted
value

Avg CPU
Time

Var CPU
time

Magician

SmartPing 113,750 13,587 13,587

SmartRoute 65,200 65,104 65,104

108 Informatica 35 (2011) 101–112 K.V. Devi et al.

in the first node. The percentage error between the
predicted and actual CPU time is presented in TABLE
IV. The variation is minimum between the predicted and
actual timings.

Table 4: Error report.

Control demo – results: - 30 packets were sent and out of
which 6 malicious packets were identified between 5
good packets and discarded.

The malicious packets were distinguished by
evaluating their execution time, which goes beyond the
estimated. It was found that the avg-wasted time for
identifying and killing the malicious packets is 8.29 ms
per packet. The total time taken per node is 49.74 ms.
The CPU demand is calculated and reported for a
heterogeneous setup.

5 Estimation of CPU time
The simplest estimation scheme is to measure the actual
computation time offline as done in the above models,
and include this value in all packets. The Estimation
Based Fair Allocation algorithm can use this value for
the estimation. This scheme has some drawbacks. The
execution time of a program is dependent of the data and
also dependent on the particular machine where it is
executed. Different cache sizes, for example, can cause a
program to take different amount of times, although the
same sequence of instructions is executed. Additionally,
a protocol is required to include the estimates in the
packets, which is a considerable overhead. To avoid
these problems, we have focused on estimation schemes
[16, 18] that use local results to predict the next packet’s
execution time. We identified the estimation techniques
for CPU estimation:

Constant

The constant estimate is the simplest estimator. The
estimated computation time for queue i in round n,
estimate i n, is always the same for all packets. If queues
correspond to different traffic classes, this information
can be used to select the constant.

estimate i,n = estimatei,n-1 = const.

Exponential average

The exponential average is a common method for an
adaptive estimation [15, 18] that combines the most
current execution time, actualn , with the previous results.
It is defined as:

estimate i,n = α . actual i,n + (1- α) . estimate i,n-1

The parameter α specifies how much of the previous
history is preserved. This scheme is used in many of
practical applications, e.g TCP round-trip delay
estimation.

Packet size dependent estimate

While the exponential average works well in practice, it
ignores the size of the packet [14] that is going to be
processed. The packet size dependent estimate is defined
as:

estimate i,n = fn (size(Pn));

where the function fn maps the packet size pn, to a
processing time. The function fn is adopted by the
estimator E as

fn = E (fn-1 , actuali,n)

The estimator E maps a packet size dependent estimation
function to a new estimation function under
consideration of the actual processing time. Any function
can be used for estimation but polynomial functions
seem to be most suitable, especially since a polynomial
of order 0 can be represented with 0+1 variables.
Depending on the precision of the required estimation,
higher or lower order polynomials can be used.

6 Estimation based fair allocation

6.1 Estimation based fair allocation
algorithm

We propose an allocation algorithm based on
Adaptive estimations and DRR for servicing flows
(queues) in an active node. For each queue, a deficit
counter and an estimate is maintained. The deficit
represents the amount of processing that this queue can
use. The estimate represents the amount of processing
that is expected for the next packet of this queue. The
scheduler forwards the packets of a queue to the
processor as long as the deficit is larger than the estimate
of the next packet. When a packet uses excessive
processing, the packet is interrupted by the timer. When
the processing is finished or terminated, the actual
processing time is used to adjust the deficit, as well as
the estimate that is used for the next packet. The
architecture is shown in Figure 4.

Figure 4: Estimation based fair allocation architecture.

Each network node stores packets coming from
different flows in different queues. There are n queues.
Each queue has initially no deficit and the estimated

EE AA Node
Percentage
Error

Magician

SmartPing

Source 1.85

Node1 0.36

Node2 0.07

SmartRoute

Source 0.18

Node1 0.14

Node2 0.05

que
ues

interrupt

 adjusted
deficit

 adjusted
estimate

 actual
time

packet

d
eficitdefi

cit

esti
defi

cit

esti
Estima

Packet
Scheduler

Proces
sor

Time

RESOURCE CONTROL AND ESTIMATION BASED… Informatica 35 (2011) 101–112 109

processing time set to a default. The calculation of the
estimation time is done using the exponential average
method given under section V. The scheduling algorithm
at the node selects a packet from the input queue, assigns
it to CPU and runs the program associated with it until
completion and then deposits it in the output queue. The
algorithm (Figure 5) defines round to be a state in which
the maximum number of packets allowable has been
processed from all flows. The algorithm associates
Quantum units with each flow i in each round. Each flow
maintains a state variable deficit that is initialized to
Quantum before the start of each round of processing.
The variable cpu_estimate maintains the number of CPU
cycles required for a packet p in a flow during a round.

The main loop checks whether the deficit is positive,
the deficit and the estimated processing time for the next
packet is compared. If the cpu_estimate is less than the
deficit, the packet is processed by process_packet_p. If
the current packet was previously interrupted, the old
state is restored. A timer is also set to the deficit and
started. The processing ends by means of two
possibilities:

 If the packet used more time than it was
permitted (the timer expires), the processing is
preempted. The state of the processing is saved
and the packet is pushed back into the head of
the queue. The processing can then continue
with that packet in the next round.

 If the processing is finished before the time
expires, the packet is sent on and the next packet
in the queue is considered.

The processing function returns the actual time that
was used by the packet. The actual time is subtracted
from the deficit. The estimator uses the actual time in
adjust_estimate(), to adjust the estimation for the queue.
If there is remaining deficit for the computation, then the
next packet is considered for processing, otherwise the
next queue is considered.

The total number of CPU cycles consumed by a flow
in a round is maintained in a variable total_cpu_con.
During each round, after a packet is processed from each
flow, cpu_estimate is added to total_cpu_con. The
number of packets processed from each flow in a round
is within the restriction that deficit > total_cpu_con. At
the start of every new round, deficit of the previous round
is added to quantum. The ratio of quantum given to any
flows i, j is equal to the ratio of resource allocations for
flows i, j. Also the algorithm only examines non-empty
and backlogged flows.

6.2 Fairness
The algorithm is fair based on the following

properties:
 The deficit counter is increased only once per

round by the allotted quantum.
 If a queue does not make use of its entire share

in a round, the amount is carried over to the next
round in the deficit counter.

 The difference in total number of CPU cycles
consumed between any two backlogged flows is
bounded by a small constant.

 No queue receives more processor time than the
deficit counter indicates. If the processing is
interrupted by the timer, then the queue used its
whole deficit and has to wait for the next round
to receive more. If the processing terminates
earlier, the deficit was not exceeded either.

 The deficit is charged only for the actual time
that the processor was used.

For each flow i, get quantum
Assign Deficit for flow i as Quantum of i + Deficitof i
Calculate cpu_estimatei

While (deficiti >0 && deficit > total_cpu_coni)
 If (deficiti >=cpu_estimatei),
 Start_timer(deficiti);
 P = head(queue);
 If (is_interrupted_packet(p)) then
 Restore_state(i);
 end if;
 Start_timer(deficit);
 actual_time = process_packet_p;
 if (process_interrupted) then
 save_state(i);
 enqueue_at_head(p,queue);
 end if;
 deficiti = deficiti - actual_time;
 Cpu_estimate =
 adjust_estimate(estimate,actual_time);
 else
 break;
 end if;
end while;
if (empty(queue)) then

 deficiti = 0;
end if;
total_cpu_con[i]= cpu_estimate+total_cpu_con[i];
increment totalround with total_cpu_con[i]
increment the round by one
assign prevround as totalround
end For

Figure 5: Estiamtion based fair allocation algorithm.

6.3 Results of EBFAA
To find out the performance of the EBFAA, we

implemented the algorithm. In Figure 6, we used a
single active node and one host configuration with
twenty flows sending packets. The only exception is that
Flow 10 is a misbehaving flow. While the ill behaved
flow grabs an arbitrary share of bandwidth when the
EBFAA is not used. While in EBFAA, there is nearly
perfect fairness.

The quantum / timeslice ranges from .1 times to 100
times the average processing time of a packet. The
algorithm is implemented using three estimates ‘e’ (e =
.1, e = 1 or e = 10 times the average actual processing
time). Here ‘e’ is the scalar constant chosen as the

110 Informatica 35 (2011) 101–112 K.V. Devi et al.

estimates. The estimation time is closer to actual
processing time when e = 1. The algorithm incurs fewer
context switches for quantum sizes in the range of the
actual processing time.

Figure 6: Control of the malicious flow.

We measured the delay rates for 20 flows. Each
flow reserves the same processing rate, and sends packets
randomly at specified average time intervals to just
saturate its share. The sum of average processing rates of
all flows is just under the processor capacity. Therefore,
the delays measured are mainly due to scheduling not
due to queuing backlog. The results in Figure 7 show that
EBFAA provides lower maximum delays to all flows,
when compared with WFQ, SFQ and SWFQ. EBFAA
also gives smaller delay standard deviations than SFQ
and SWFQ for all flows. Reduction in delay standard
deviations would reduce the delay jitters. We expect that
EBFAA would give better delay behavior due to its more
accurate system virtual time, especially, where variations
in processing requirements of packets are large. Figure 6
shows that WFQ provide smaller maximum delays than
SWFQ, SFQ and EBFAA for application flows that have
low processing time per packet to reserved rate ratio.
However, EBFAA can provide lower maximum delays
for all packets in flows when compared with WFQ. We
propose to use EBFAA for processing resource
scheduling in programmable networks to support QoS in
two categories: processing resource reservation, and best-
effort. We believe that EBFAA is also applicable for
processor scheduling in operating systems in general.

Figure 7: Delay measures

7 Conclusion and future work
This paper examines a way to analyze the CPU resource
control and Fair Resource Allocation to improve the
Quality of Service (QoS) in a heterogeneous active
network environment. It is discussed that some means are
needed to accurately specify the CPU demand in order to
safely and efficiently deploy mobile code among
heterogeneous platforms in a network. This paper has
described an approach (White Box model) and an
algorithm (EBFAA) to control the CPU utilization of
malicious packets and to estimate the CPU demand for
good packets in a heterogeneous active network
environment and evaluated the approach. In the control
application, it is demonstrated to identify the malicious
packets, when malicious or erroneous code is injected in
to a node and that the amount of CPU time stolen or
wasted has been found out and can be reduced. The
results from the control demo and prediction model are
again analyzed and compared against various
applications and nodes. The percentage error between the
predicted and the actual CPU time is also less for this
prediction model. The algorithm (EBFAA) also provides
near-perfect fairness during resource control and
allocation. Thus using this resource control model, the
network management systems can allocate the capacity
better by anticipating varying demands and the network
operators can better estimate the quality of service (QoS)
that customers can expect.

This work can be extended and can be compared
with different Execution environments. White-box
models could be combined with histograms and Monte-
Carlo simulations to yield reasonably accurate estimates.
In the case of white-box models, the histograms would
represent the CPU usage observed during calibration for
each primitive provided by the execution environment.
We have future plans to investigate these ideas in the
context of resource management for mobile code loaded
into call-processing servers. The issue of determining the
CPU requirement for active packet can also be resolved
by introducing a policy base [6, 18] at the active node.
Combined scheduling algorithms which could schedule
both CPU and bandwidth resources adaptively and fairly
among all the competing flows can be applied. This work
can also be extended for the prediction of the resources
in wireless and sensor networks.

Acknowledgment
This work is supported by Technology Information
Forecasting and Assessment Council (TIFAC) under the
Department of Science and Technology (DST),
Government of India and the Centre of Relevance and
Excellence (CORE) in Network Engineering at
Kalasalingam University, Krishnankoil-626190, Tamil
Nadu, India.

References
[1] Amit. B. Kulkarni, “Magician–An Active

NetworkingToolkit”, http://ittc.ukans.edu/projects/-
Magician, 2000.

Delay Measures

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Flow Numbers

D
el

ay
 (

m
s)

WFQ

SFQ

SWFQ

EBFAA

0

500

1000

1500

2000

2500

3000

1 3 5 7 9 11 13 15 17 19

T
h

ro
u

g
h

p
u

t
(K

b
p

s)

Flow numbers

with
EBFAA

without
EBFAA

ill behaved flow

RESOURCE CONTROL AND ESTIMATION BASED… Informatica 35 (2011) 101–112 111

[2] Ball. T and Larus. J.R, “Using paths to measure,
explain, and enhance program behavior”, IEEE
Computer, July 2000.

[3] Berman. F, Wolski. R., Figueira. S, Schopf. J, and
Shao. G, “Application-level scheduling on
distributed heterogeneous networks”, in
Supercomputing ’96, September, 1996.

[4] Calvert K. L., Griffioen J., Mullins B., Sehgal A.
and Wen S., “Concast: “Design and Implementation
of an Active Network Service”, IEEE Journal on
Selected Area in Communications (JSAC), Volume
19, Issue 3, 2001.

[5] Calvert. K. L., “Architectural Framework for
Active Networks”, Version 1.0 Draft July 27, 1999.

[6] Christos Tsarouchis et.al. , “A Policy-Based
Management Architecture for Active and
Programmable Networks”, IEEE Network,
May/June 2003.

[7] Huber O.r J. and Toutain. L, "Mobile Agents in
Active Networks", ECOOP'97, Workshop on
Mobile Object Systems, June 1997.

[8] Rohan De Silva, ,” A Security Architecture for
Active Networks”, Proceedings of the 4th ACM
WSEAS International Conference on Applied
Informatics and Communications, 2004.

[9] Larry Peterson and AN Node OS Working Group,
“NodeOS Interface Specification”, January 2000.

[10] Moore J.T., Hicks M., and Nettles S. “Practical
programmable packets”, In IEEE InfoCom 2001.

[11] Peterson. L, Gottlieb. Y, Schwab. S, Rho. S, Hibler.
M, Tullmann. P, Lepreau. J, and Hartman. J, “An
OS Interface for Active Routers”, IEEE Journal on
Selected Areas in Communications, 2001.

[12] Rauf Bautaba, University of Waterloo, Andreas
Polyrakis, University of Toronto, “Projecting
Advanced Enterprise Network and Service
Management to Active Networks”, IEEE Network,
Jan/Feb 2002.

[13] Reynolds. J and Postel. J. “RFC 1700 Assigned
Numbers”, October 1994.

[14] Saavedra-Barrera R. H. Smith A. J., and Miya. E.,
“Machine characterization based on an abstract
high-level language machine”. IEEE Transactions
on Computers, December 1989.

[15] Sohil Munir, ”A survey of Active Network
Research”, IEEE Communications Magazine: vol.
35, no.1, pp 80-86, Jan 1997.

[16] VimalaDevi K. & Mehata K.M., “Resource
Estimation and Policy Based Allocation for
Qualityof Service in Active Networks”, IEEE
workshop on Coordinated Quality of Service in
Distributed Systems (COQODS-II), held in
conjunction with 14th IEEE ICON2006, in
Singapore from September 13 to 15, 2006.

[17] VimalaDevi K. &. Mehata, K.M “Advancing
Performance Management using Active Network
Technology”, NCCN’03, S.R.M.Engg.
College, Chennai, India, Feb 2003.

[18] Cen, et al. “A distributed real-time MPEG video
audio player”, In Proceedings of Internal Workshop
on Network and Operating System support for

Digital and video (NOSSDAV), Lecture Notes in
Computer Science, pages 151-162, Durham, New
Hampshire, April 1995, Springer.

[19] Wetherall,. D, Guttag. J and Tennenhouse. D,
"ANTS: Network Services without the Red Tape",
IEEE Computer, pp. 42-48. (8), April 1999.

[20] Yamamoto. L and Leduc. G, “An agent-inspired
active network resource-trading model applied to
congestion control”. In MATA 2000, pages 151–
169, Sep 2000.

112 Informatica 35 (2011) 101–112 K.V. Devi et al.

