
https://doi.org/10.31449/inf.v45i5.3321 Informatica 45 (2021) 675–686 675 

An Improved Pattern Mining Technique For Graph Pattern Analysis 

Using a Novel Behavior of Artificial Bee Colony Algorithm 

Shriya Sahu, Meenu Chawla and Nilay Khare 

Manit, Bhopal, India 

E-mail: s.shriya88@gmail.com, chawlam@manit.ac.in, nilay.khare@rediffmail.com 

Keywords: pattern mining, swarm intelligence, machine learning  

Received: September 28, 2020 

Rising data complexity and volume in the network has attracted researchers towards substructure 

analysis. Subgraph mining is an area that has gained remarkable attention in the last couple of years to 

offer an intelligent analysis of more massive graphs and complicated data structures. It has been observed 

that graph pattern mining faces issues regarding the matching ruleset and complex instruction set 

execution problem. This paper introduces modern-day intelligence architecture based on Swarm 

Intelligence that is cross-validated by supervised machine learning mechanisms. A new behavior 

incorporated with a new inter and intra hive behavior is incorporated in Swarm based Artificial Bee 

Colony. The proposed work model is evaluated over two different datasets with more than 4900 nodes in 

the graph. The proposed framework is evaluated using True Detection Rate, False Detection Rate, 

precision, and F-Measure, demonstrating an average improvement of 9.8%, 8.35%, 8.35% and 9.15% 

against existing GraMi work that represent an enhanced performance of the proposed pattern mining 

technique. 

Povzetek: Uporabljene so raznovrstne metode umetne inteligence in strojnega učenja za iskanje vzorcev, 

tj. podgrafov v grafu. 

 

1 Introduction 
Frequent Subgraph Mining (FSM) plays a central role in 

solving complex problems for various applications such as 

text retrieval, computer vision, social networks, 

computational chemistry, and bioinformatics. 

Additionally, FSM also caters to the graphical problems in 

data mining tasks such as designing database, clustering, 

and classification of graphs. The main objective of the 

mining graphs is to compute the subgraphs whose 

appearances exceeds a certain threshold. Such a 

perspective is quite useful in understanding real-life 

applications. For example, protein-protein structures and 

their interactions easily modeled by labeled graphs. But it 

is a challenging task for uncertain graphs. Therefore, 

researchers focussed on efficient mining of frequent 

patterns on such graphs (Chen et al., 2018). Recently, 

there is a quite interest of the researchers to study the 

relationship between the entities and attributes in a social 

graph. Such a relation widely used in social media 

marketing likewise 90%, 14%, and 60% users said that 

customer’s trust, advertisement, and Twitter respectively 

play a critical role in shopping. Nonetheless, the mining 

subgraph in social graphs is more related than rules in case 

of itemsets. Consequently, the researcher of 

bioinformatics may determine the substructures within 

protein interaction graphs and structures. Such graphs 

have nodes and edges which represent proteins and their 

interactions. In addition, these graphs are updated 

whenever there is a need to represent the interactions of 

new proteins. However, a critical task for the researcher is 

to forecast the working of a newly added protein without 

any experimentation. But it is possible only through 

frequent mining by interacting with the new proteins 

having identical interactions. 

The problem of FSM is categorized into two phases, 

such as determining frequent patterns in either (a) 

graphical database having multiple inputs (Protein 

interaction or chemical compounds) or (b) large graph 

having single input (e.g., social media,) (Elseidy et al., 

2014). The main task of FSM is to calculate all the 

subgraphs having support or frequency exceeds the 

minimum frequency threshold. In the case of multiple 

graphs, frequency is the count of pattern graphs (Ingalalli 

et al., 2018). But it is quite challenging to define the 

support notion in a single large graph. Thus, it is not 

enough to define the pattern that exists in a graph, whether 

it exists or not. Therefore, it is vital to determine all the 

isomorphisms (I) of A, which are distinct in nature from 

the pattern graph (G).  Actually, ‘I’ is the exact match of 

A in the graph, which is used to pair the nodes, and edges 

with their respective labels (Cheng et al., 2014). For 

instance, if we talk about the collaboration graph (G) as 

depicted in Figure 1, subgraph (U1) is having four 

isomorphisms. However, a typical approach to mine 

frequent subgraphs is using grow and store method which 

includes different phases such as (Gu et al., 2016; Yuan et 

al., 2012; Li et al., 2012) (a) Computation of all the nodes 

which exists at least user-defined threshold (£) and load 

their appearances (b) Frequently, extend the loaded 
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appearances to build large, frequent subgraphs and then 

assess their frequency (c) new frequent subgraphs 

appearances storage (d) Repeat the phase 2 until no more 

these subgraphs detected (Rehman et al., 2018; 

Abdelhamid et al., 2017). 

A graph is the simplest form to represent the data by 

modeling relationships between the various objects. The 

interesting problem that comes in concern is pattern 

matching when handling graphical data. This matching 

sorted using the problem of subgraph isomorphism. For 

instance, there are two graphs, Y and Z, the role of 

subgraph isomorphism is to describe whether Z includes a 

subgraph which is isomorphic to Y, and it is an NP-hard 

problem. There are various algorithms proposed in the 

literature to solve this complex problem using genetic 

algorithm, MapReduce and Pregel (Bhuiyan & Hasan, 

2015; Zhao et al., 2016; Choi et al., 2019). Moreover, 

generalized subgraph problem of the isomorphism sorted 

by developing some algorithms but these are limited to 

uncertain graphs which increases complexity, limited 

scalability and work with redundant data having 

supplementary data such as attributes or edge labels. 

Alternatively, researchers rely on metaheuristic 

algorithms such as Genetic algorithms to address the 

consequence of this problem. Most of the algorithms 

provide quality solutions with less time, but these are 

limited to the search capability in case of large space for 

the problem of subgraph isomorphism (Choi et al., 2019). 

Therefore, this paper solves this problem in frequent 

pattern mining using the Cuckoo search algorithm. The 

main advantage of using this algorithm is that it works 

efficiently within a large space in case of an NP-hard 

problem. The leveraged search capability detected the 

frequent patterns in a subgraph and evaluated the problem 

of subgraph isomorphism. 

 

Preliminaries 
A collaborative graph 𝐺 = (𝑆, 𝑇, 𝐾) contains various 

nodes S, edges T with a labeling function K which assigns 

labels to S and T. A subgraph of G consists of Y and Z 

such as 𝑌 ⊆ 𝑆, 𝑇 and 𝑍 ⊆ 𝑆, 𝑇 if  𝑆𝑌𝑎𝑛𝑑 𝑆𝑍 ⊆
𝑆and 𝑇𝑌𝑎𝑛𝑑 𝑇𝑍 ⊆ 𝑇. 

1.1 Subgraph Isomorphism (SI) 

Definition 1: There are two graphs given such as G: Y= 

(SY, TY) and Z = (SZ, TZ), the SI is an injective function 

such as d: 𝑆𝑌 → 𝑆𝑍 such as (m, n) Є 𝑇𝑌 in case of 

(d(m), d(n))Є 𝑇𝑅 where 𝑅 = (𝑆𝑅 , 𝑇𝑅) ⊆ 𝑍. However, d is 

an induced SI in case if (𝑚, 𝑛) ∉ 𝑇𝑌 , then( d(m), d(n)) ∉

𝑇𝑅. 

The basic difference between SI and induced SI is that 

edge absence in Y corresponds to the presence of an edge 

in Z must not present in case of induced SI. This mapping 

preserves the nodes and edges labels. For instance, 

subgraph Y has four isomorphism (𝑚12 𝑚26𝑚310𝑚4) 

with respect to collaborative graph G, and 

(𝑛12 𝑛26 𝑛320𝑛4; 𝑛410𝑛54 𝑛6 𝑎𝑛𝑑 

𝑛010𝑛610 𝑛7 ;  𝑛86 𝑛910𝑛10). But, an intuitive way to 

determine the frequency of a subgraph in a graph is to 

count the number of isomorphism. In a given graph, the SI 

problem is the computation of subgraphs 𝑍 ⊆ 𝑅 such that 

𝑓: 𝑆𝑌 → 𝑆𝑍 is an isomorphism from Y to R. This is rather 

a complex problem. Consequently, it is not an anti-

monotone as the graphical representation shows that 

extension exceeds the subgraphs. For instance, in a given 

graph, node A appears 3 times while its extension (B) 

appears 4 times such that 𝐴 4 𝐵. The graph having such 

anti monotonic nature is of prime importance as it 

provides various methods without avoiding a situation. 

There are several anti-monotone metrics developed in 

literature (Talukder and Zaki, 2016; Elseidy et al., 2014).  

Definition 2: There are two directed graphs such as G: Y= 

(SY, TY) and Z = (SZ, TZ) where ⌈𝑆𝑌 ≤ 𝑆𝑍⌉, the problem of 

SI represented by SI (Y, Z) is to determine an injective 

function 𝑑: 𝑆𝑌 → 𝑆𝑍 that reduces the value of fitness 

function (f). The optimal solution using the Cuckoo search 

having f=0 is the SI from Y to Z.𝑠𝐺(𝑈) = min {𝑡|𝑡 =
⌊𝐹(𝑚)| 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ∈ 𝑌 

The fitness function (f) is defined as edges count, 

which match or may not match during the mapping. This 

 

Figure 1: Directed Graphs with their isomorphism (a) Collaborative Graph (b) Subgraph 1 with four 

extensions (c) Subgraph 2 with three isomorphisms (d) Subgraph 3 with their appendices. 
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function is used to solve the real-world problems by 

constructing into SI problem and then solved it using the 

metaheuristic approach. For instance, subgraph U1 in 

Figure 1b and the graph G given in Figure 1(a) 

have 𝐹(𝑚2) = {𝑛2, 𝑛6, 𝑛7}; 𝐹(𝑚1) =
{𝑛4, 𝑛5, 𝑛0}; 𝐹(𝑚3) = {𝑛4, 𝑛5, 𝑛9}; 𝐹(𝑚4) =
{𝑛0, 𝑛9, 𝑛10}. Thus, 𝑠𝐺(𝑈1) = 4. In order to compare, the 

respective minimum support function is 2 

𝑛24𝑛410 𝑛5 𝑎𝑛𝑑 𝑛64𝑛510𝑛0as its isomorphism overlap 

and minimum support function regarded as unity. So, the 

main problem of FSM is given as follows: 

Problem 1: In Figure 1, graph G is given with a minimum 

threshold (£), so the frequent subgraph mining problem is 

to compute all the subgraphs (U) in Graph G, such as 

𝑠𝐺(𝑈) ≥ (£). 
Actual appearances which exceed the (£) does not 

compute in the given problem. This is quite impressive, 

and it is useful for many applications, but some prefer 

actual appearances such as graph indexing. Definition 1 

relies on matching the labels of edges and nodes. For 

instance, subgraph U2 has only a single isomorphism 

constructed by nodes 𝑛2, 𝑛3, 𝑛4. However, research argues 

that developed matching is restrictive in nature and 

maintained by developing indirect relationships and 

differences of edges graphs and subgraphs. Such matching 

may also be possible for  𝑛74𝑛96 𝑛8, as seen in subgraph 

U3. Rather, there is an indirect relation between A and C. 

This match often recognized as a pattern. For frequent 

mining patterns in this document, we use the definition 

from past research (Cheng et al., 2014).   

Specifically, a distance matric has been employed, 

which computes the distance between two nodes, as given 

in the graph. In Figure 2 for graph G, a distance function 

that connects the m and n has been defined as ∆ℎ(𝑚, 𝑛). 

The solid lines represent the relation using graph edges 

while dotted lines depict the transition.  Let us consider 

that ∆ℎ(𝑛0, 𝑛3) =4, then it is easy to use ∆𝑝(𝑚, 𝑛) as the 

minimum sum of inversely proportional to the edge 

weights between the paths m and n. For instance, 

∆𝑝(𝑛7, 𝑛8) =
1

4
+

1

6
= 0.4. Thus, a shorter distance 

belongs to robust collaboration. 

Definition 3: In a pattern graph, 𝑄 =  (𝑆𝑄 , 𝑇𝑄 , 𝐾𝑄) of a 

graph G (S,T,K) if 𝑆𝑄 ⊆ 𝑆, 𝐾𝑄(𝑚) = 𝐾(𝑚)𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ∈

𝑆𝑄  𝑎𝑛𝑑 𝐾𝑄(𝑒𝑑𝑔𝑒𝑠) =∝ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑒𝑑𝑔𝑒𝑠 ∈ 𝑇𝑄 . 

In Figure 2, a pattern corresponds to a subgraph 

without any edge labels. However, Figure 2 (b) shows a 

pattern graph of a G. 

Definition 4: Let us consider a pattern graph 𝑄 =

 (𝑆𝑄 , 𝑇𝑄 , 𝐾𝑄)of a graph G =
(S, T, K), and ∆ is a distance metric with a user −
defined threshold (£). An injective function (𝜑)from 

pattern Q to G is 𝑆𝑄 → 𝑆 𝑜𝑛𝑙𝑦 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝑓𝑜𝑟 𝐾𝑄(𝑚) =

𝐾(𝜑(𝑚)) for all nodes 𝑚 ∈ 𝑆𝑄and ∆( 𝜑(𝑛), 𝜑(𝑚))  ≤ £. 

The frequency and minimum support function of a 

pattern graph denoted by 

𝜕𝐺(𝑄)𝑐𝑎𝑛 𝑏𝑒 𝑒𝑎𝑠𝑖𝑙𝑦 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑑𝑒𝑓𝑖𝑛𝑖𝑡𝑖𝑜𝑛 2. 

Let us consider a threshold value £ = 0.3 then we get 

𝜕𝐺(𝑄) = 2. Notify that there are only two constraints 

satisfy through this pattern graph such as 

∆( 𝜑(𝑛), 𝜑(𝑚))  ≤ £. 

In this paper, the GRAMI approach used in 

conjunction with the optimization technique to address the 

frequent mining problem in graphs.  Additionally, 

GRAMI is a novel approach that solves the frequent 

mining problem by satisfying the constraints without 

affecting isomorphism in the graph. 

This paper introduces a new algorithmic structure for 

the identification of the isomorphic patterns through the 

Cuckoo search algorithm. The rest of the paper is 

organized in the following manner. Section 3 represents 

the related work section, whereas section 4 represents the 

issue and solution as the proposed methodology of this 

paper. 

 

Figure 2: (a) Computation of distance for Graph G, as given in Figure 1. (b) Pattern graph. 
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2 Related work 
In today's era, graph pattern mining is a frequent problem 

that comes in concern due to wide applications across 

various domains. In the literature, various approaches 

developed to address this problem, but still, there are 

enough gaps related to the isomorphism problem. For 

instance, Zhao had developed the Pregel based frequent 

subgraph mining approach to improve the scalability. 

Pregel is a computational model used to process the vertex 

graphs. A modern, distributed framework developed using 

this model to overcome the mining problem. The robust 

results obtained, but this approach still does not solve the 

constrained subgraph patterns on massive pattern graphs 

(Zhao et al., 2016). Aridhi and Nguifo had presented a 

study that summarized the existing data mining and graph 

processing techniques that could address the challenges 

faced by big graphs. Further, they provided a detailed 

classification of various graph processing designs along 

with vivid large-scale patterns or subgraph mining 

approaches (Aridhi and Nguifo, 2016). Moussaoui et al. 

had addressed the problem faced when subgraphs 

similarity could not be established. In this regard, 

researchers had proposed a flexible approach based on 

probabilistic graph mining to identify similar subgraphs. 

In this approach, probabilistic matching was implemented 

in comparison to the traditional exact similarity check. 

Experimentation against a real dataset of vivid domains 

had established that the proposed probabilistic model 

demonstrated better performance in terms of time 

processing and similar subgraph mining (Moussaoui et al., 

2018). It has been observed that the structure and shape of 

the graph vary with respect to their applications. In this 

context, Jena et al. had introduced the SparkFSM 

approach that was proficient in dealing with isomorphism 

as well as directed and undirected graphs related to Spark 

or Scala technologies (Jena et al., 2018). Islam group had 

proposed WFSM-MaxPWS as an effective approach for 

subgraph mining based on weighted graphs. The mining 

approach proved to be very efficient in subgraph pruning. 

The approach was evaluated against different graph 

datasets representing normal and negative exponential 

weight distributions. Results had demonstrated that the 

runtime has significantly improved in comparison to the 

MaxW pattern mining approach (Islam et al., 2018). Iyer 

et al. had presented ASAP as an approximation-based 

subgraph and pattern mining technique. The authors also 

constructed an Error Latency Profile to specify the 

fluctuations observed for accuracy and current state in 

addition to approximating the graph patterns. 

Experimentation demonstrated that ASAP could 

successfully handle higher degree graphs comprising of 

billions of edges (Iyer et al., 2018). Researchers developed 

the metaheuristic-based algorithm to solve the 

isomorphism problem. The design issues have been 

considered to address the problem, which helps to 

decompose the consequences of a problem into the 

substructure. The optimal structure obtained using the 

hybrid genetic algorithm, which shows better results, but 

this approach has limited scalability and works in a 

concise search space (Choi et al., 2019). Preti et al. 

addressed the issue of pattern mining in large graphs 

representing multiple weight patterns. In the study, a 

scoring function-based pruning strategy was proposed that 

exemplified approximate as well as exact results to present 

subgraph mining (Preti et al., 2019). Detection strategies 

related to graphs were considered to be a very challenging 

task by Rao and Mishra. They had implemented pattern 

mining based on Edge Weight Detection (EdWePat) 

approach for identifying the subgraph patterns present in 

a weighted graph (Rao and Mishra, 2019). Li et al. had 

addressed the complex relationships existing in big graphs 

by introducing a fuzzy approach to traditional graph and 

pattern mining strategies. Authors had presented a multi-

fuzzy based optimization using the Genetic Algorithm 

(GA) and Particle Swarm Optimization (PSO). The 

experimental evaluation demonstrated the effectiveness of 

the proposed strategy over the existing approaches (Li et 

al., 2019). Ray et al. had addressed the issue faced by 

subgraph mining that needs to be repeated frequently with 

respect to streaming larger graphs. In the process, they had 

developed a sampling design that could successfully mine 

out the subgraphs that represent the latest modification in 

the larger graph. Authors had involved 5 large graph 

datasets and a network motif mining algorithm to evaluate 

the proposed design. The results demonstrated that the 

proposed design could speedily identify the changing 

patterns (Ray et al. 2019). Priyadarshini and Rodda had 

proposed a Geometric Multi-Way Frequent Subgraph 

Mining (GMFSM) method. This method took advantage 

of the Frequent Subgraph Mining and filtration technique 

to shortlist the subgraphs from a single large database. The 

approach proved to be very effective and robust in 

achieving the required results and reduced the mining time 

from 1 3⁄ rd to 1 2⁄  in comparison to the existing approaches 

(Priyadarshini and Rodda, 2020). Le and his group had 

postulated a Weighted Graph Mining (WeGraMi) 

algorithm as an effective approach for subgraph pruning. 

The design first calculated the weights of the pruned 

subgraphs, followed by applying search space analytics 

for subgraph pruning. The subgraph mining approach, 

based on the weighted threshold, had effectively 

addressed the issues concerning storage space and 

processing time (Le et al., 2020). Consequently, the 

probabilistic approach was investigated for frequent 

mining patterns on the uncertain graphs. An enumeration 

evaluation algorithm was proposed to address the 

semantic problem. Additionally, the computation sharing 

approach was used to obtain better performance.  

The issue of mining and proposed solution  

2.1 Dataset  

The dataset is gathered from the following data sources. 

a) http://data-mining.philippe-fournier-

viger.com/subgraph-mining-datasets/ (dataset-1) 

b) http://www.kaggle.com (dataset-2) 

Both the dataset links have more than 5000 data 

elements and are open for download and processing. 

The dataset-1 contains two standard subgraph mining 

data, which is provided for a small graph dataset. The file 

http://data-mining.philippe-fournier-viger.com/subgraph-mining-datasets/
http://data-mining.philippe-fournier-viger.com/subgraph-mining-datasets/
http://www.kaggle.com/


An Improved Pattern Mining Technique For Graph... Informatica 45 (2021) 675–686 679 

is available in the form of text, which composed of one or 

more graph. The graph is available in different format such 

as t≠ 𝑁, vML, ePQL. 

t≠ 𝑁→ It represents the first line and is the Nth graph 

in the file. 

vML→ It represents the Mth vertex of the recent graph 

with a label L 

ePQL→ This attribute represents an edge with Pth and 

Qth vertex for L number of labels. 

Dataset-2 has been collected from Kaggle site. 

Comma-separated list is the simplest and supported file 

type available in Kaggle. Kaggle-loaded CSV’s must have 

a header column with field names which can be easily read 

by human. The CSV file composed of two columns each 

contains metadata and description of data. 

2.2 Issue and solution  

Big graphs have always been an era of interest for different 

research world field experts. In order to understand the 

exact laying pattern of the big graphs, the normal mapping 

will result in a faulty rate of classification architecture. As 

the false placement of the pattern value can be done 

smartly and hence the standard mining architecture is not 

suitable enough for such kind of processing. This paper 

presents an improved behavior of the Artificial Bee 

Colony (ABC) algorithm to identify the pattern of the 

graphs. The general architecture of artificial bee colony 

has three kinds of bees as follows  

a) The employed bee  

b) The onlooker bee 

c) The scout bee 

The employed bee is the one who is responsible for 

the food collection, onlooker bee is for the monitoring 

purpose, and scout bee is searching for food sources 

randomly. This paper presents a new behavioral 

architecture of the artificial bee colony. At the initial 

phase, the entire graph is divided into 4 subsequent parts 

taking the initial point to be random, as shown in Figure 

3(a) and (b). 

As shown in Figure 3(b), the entire graph is divided 

into 4 different populations as Area 1, 2, 3, and 4. Now the 

bee colony algorithm will form 4 hives in each section, 

and the inter, as well as intra mining, will be formed. There 

is a semi queen for each population area, which determines 

the threshold of the mapped graph in each section, 

proceeded by the 20% selection rule. Apart from this inter 

clustering mechanism for bees, there is an intra 

mechanism as well. Pseudo Code 1 illustrates the working 

of ABC for the intracluster region.  

PSEUDO CODE 1:  

𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝑝𝑝𝑙𝑦𝐴𝐵𝐶  

1. 𝐼𝑛𝑝𝑢𝑡𝑠: 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ  𝑁𝑜𝑑𝑒𝑠, 𝑂𝑢𝑡𝑝𝑢𝑡: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛  

2. 𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝑛𝑜𝑑𝑒 𝑖𝑛 𝑆𝑢𝑏𝐺𝑟𝑎𝑝ℎ// For every node in 

Node List 
3. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑁𝑒𝑐𝑡𝑎𝑟𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  𝑅𝑎𝑛𝑑𝑜𝑚𝑆𝑎𝑚𝑝𝑙𝑒 // 

Initializing the Nectar 
4. 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑑𝐵𝑒𝑒 = 𝑛𝑜𝑑𝑒. 𝐸𝑑𝑔𝑒𝑊𝑒𝑖𝑔ℎ𝑡   // The 

employed bee will be the edge weight of containing 

nectar  
5. 𝐹𝑖𝑛𝑑 𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 ;   // Find inputs to the containing 

vertex 
6. 𝐹𝑖𝑛𝑑 𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 ; // Find outs to the containing 

vertex 
7. 𝑇𝑜𝑡𝑎𝑙𝐹𝑜𝑜𝑑𝑃𝑒𝑟𝑁𝑒𝑐𝑡𝑎𝑟

=  𝐼𝑛𝐷𝑒𝑔𝑟𝑒𝑒 . 𝐸𝑑𝑔𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 +

𝑂𝑢𝑡𝐷𝑒𝑔𝑟𝑒𝑒 . 𝐸𝑑𝑔𝑒 𝑊𝑒𝑖𝑔ℎ𝑡  // Total food in the hive 

will be equal to the edge weight of inward degree 

and the outward degree 
8. 𝑆𝑡𝑜𝑟𝑒 𝑡𝑜 𝐹𝑜𝑜𝑑𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟   // Add the calculated 

value to the Food Container  
9. 𝐸𝑛𝑑 
10. 𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝐵𝑒𝑒𝐹𝑜𝑜𝑑  𝑖𝑛 𝑇𝑜𝑡𝑎𝑙𝐹𝑜𝑜𝑑𝑃𝑒𝑟𝑁𝑒𝑐𝑡𝑎𝑟

  // Two 

different ranges are created  
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Figure 3: (a). Normal Pattern which has subsequent sections. 
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11. 𝑅𝑎𝑛𝑔𝑒1 =  𝐵𝑒𝑒𝐹𝑜𝑜𝑑 + 𝐵𝑒𝑒𝐹𝑜𝑜𝑑 ∗ .20   // The first 

is 20 % above the provided belt 
12. 𝑅𝑎𝑛𝑔𝑒2 = 𝐵𝑒𝑒𝐹𝑜𝑜𝑑  –  𝐵𝑒𝑒𝐹𝑜𝑜𝑑 ∗ .20 // Second is 

20 % below the provided belt 
13. 𝑆𝑒𝑎𝑟𝑐ℎ𝑅𝑒𝑠𝑢𝑙𝑡𝑅𝑎𝑛𝑔𝑒1 <= 𝐷𝑎𝑡𝑎𝑉𝑎𝑙𝑢𝑒 <=

𝑅𝑎𝑛𝑔𝑒2  // Searching any other value in the same 

range 
14. 𝐹𝑜𝑟𝑒𝑎𝑐ℎ 𝑆𝑅 𝑖𝑛 𝑆𝑒𝑎𝑟𝑐ℎ_𝑅𝑒𝑠𝑢𝑙𝑡 
15. 𝑆𝑢𝑠𝑝𝑒𝑐𝑡𝑀𝑎𝑡𝑐ℎ + +  // This could be a suspect 

similar graph pattern  
16. 𝐸𝑛𝑑𝐹𝑜𝑟 

The artificial bee colony creates a random population for 

the processing of the graph pattern. Each edge weight 

value will act as food to the nectar. The food calculation 

is done by summing up the edge weights of the in-degree 

and the out-degree of the nectar. The in-degree is 

increased by one if any node gets an edge from any other 

node in the graph. The out-degree is then incremented by 

one if the current node has an edge for any other node in 

the graph. Two range belts are created out of which the 

first proposed belt is 20% above and the second belt is 

20% below the given belt. The search is done on the base 

of the calculated two new belts. The working is also 

represented by the flowchart, which is illustrated in Figure 

4.  

The found architectures could be a match of graph 

pattern, but it can't be termed as a final match. To find 

whether it is an exact match or not, the connecting edge 

value is passed to neural network. The ordinal measures 

of neural are defined in Table 1. 

The pseudo-code for the architecture of neural 

network is given by Pseudo Code 2. 

PSEUDO CODE 2  

1. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐴𝑝𝑝𝑙𝑦 𝑁𝑒𝑢𝑟𝑎𝑙 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑠 
2. 𝐼𝑛𝑝𝑢𝑡: 𝑆𝑢𝑠𝑝𝑒𝑐𝑡 𝑁𝑜𝑑𝑒𝑠 𝑂𝑢𝑡𝑝𝑢𝑡: 𝑀𝑎𝑡𝑐ℎ𝑒𝑑 

𝐺𝑟𝑎𝑝ℎ 𝑉𝑎𝑙𝑢𝑒 
3. 𝑆𝑒𝑡 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒  𝑡𝑜 𝐸𝑚𝑝𝑡𝑦   // Initialize the 

Training Value to Empty, the matched 

architecture's edge weight will be passed as the 

training value 
4. 𝑆𝑒𝑡 𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒  𝑡𝑜 𝐸𝑚𝑝𝑡𝑦  // The associated 

target value will be initialized to null 
5. 𝐴𝑠𝑠𝑖𝑔𝑛 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒  𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 𝑤𝑖𝑡ℎ 𝑆𝑢𝑠𝑝𝑒𝑐𝑡 𝑁𝑜𝑑𝑒𝑠 
6. 𝐹𝑜𝑟𝑒𝑎𝑐ℎ  𝑠𝑝 𝑖𝑛 𝑆𝑢𝑠𝑝𝑒𝑐𝑡𝐿𝑖𝑠𝑡 
7. 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑉𝑎𝑙𝑢𝑒 . 𝐴𝑝𝑝𝑒𝑛𝑑 𝑆𝑒𝑡. 𝐸𝑑𝑔𝑒𝑉𝑎𝑙𝑢𝑒  // 

Assigning Edge Value  
8. 𝐴𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑𝑇𝑎𝑟𝑔𝑒𝑡𝑉𝑎𝑙𝑢𝑒

 𝑆𝑒𝑡. 𝑠𝑝. 𝐼𝑑  

9. // Setting the target value as the edge value 
10. 𝑆𝑡𝑎𝑟𝑡 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒   // Starting the 

training architecture as per Ordinal Measures of 

Table 1 
11. 𝐼𝑓 𝑖𝑠 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒  // Check 

whether the gradient is satisfied or not   
12. 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒  // If the gradient is satisfied, 

the training is complete   
13. 𝐸𝑛𝑑  
14. 𝑆𝑡𝑜𝑟𝑒 𝑇𝑟𝑎𝑖𝑛𝑒𝑑 𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒 𝑎𝑠 𝑝𝑒𝑟 𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 

// Applying Machine Learning as per  
15. 𝑈𝑝𝑙𝑜𝑎𝑑 𝑎𝑙𝑙 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 𝑎𝑠 𝑇𝑒𝑠𝑡 𝐷𝑎𝑡𝑎   // 

Uploading the test data  
16. 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑦 𝑢𝑠𝑖𝑛𝑔 𝑇𝑟𝑎𝑖𝑛𝑒𝑑𝐴𝑟𝑐ℎ𝑖𝑡𝑒𝑐𝑡𝑢𝑟𝑒// Classify 

the test data as per stored trained value 
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Figure 3: (b). Initially divided sections. 

Propagation Iterations  100-500 

Hidden Neuron Count  20-100 

Hidden Layer Count  2 

Back Propagation 

Architecture  

Levenberg 

Satisfaction Criteria  Gradient 

Back Propagation 

Parameter 

Mean Squared Error  

Table 1: Ordinal Measures of Neural Network. 
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17. 𝐼𝑓 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝐿𝑎𝑏𝑒𝑙 𝑖𝑠 𝑛𝑜𝑡 𝑠𝑖𝑚𝑖𝑙𝑎𝑟 𝑡𝑜 𝑡ℎ𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑙𝑎𝑏𝑒𝑙  
// If the classified value is not similar to trained 

label 
18. 𝑀𝑎𝑡𝑐ℎ𝑒𝑑𝑃𝑎𝑡𝑡𝑒𝑟𝑛  + +  // The architecture is 

similar to other architecture  
19. 𝐸𝑛𝑑 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  

The learning and classification mechanism is represented 

in Figure 5. The flow chart is labeled from 1-10 as per its 

process occurrence.  

Based on the proposed algorithm, the evaluated 

results are discussed in Section 5. 

3 Results  
The performance of the proposed subgraph mining 

approach is evaluated in terms of time performance, 

memory overhead and number of subgraphs pruned with 

variation in the supported threshold frequency. The 

supported threshold is varied to investigate its effect in 

returning a non-empty set of patterns or subgraphs. 

Time performance of the proposed work is evaluated 

against the four existing studies namely, Ingalalli et al., 

2018, Qiao et al., 2018, Abdelhamid et al., 2017, Elseidy 

et al.,2014 and Le et al., 2020. The considered studies have 

proposed subgraph pruning strategies inspired by Elseidy 

et al., 2014 work, who had proposed GraMi for subgraph 

from larger complex graphs based on the supported 

threshold frequency. Ingalalli et al., 2018 had proposed 

MuGraM as an algorithm to identify frequent subgraph 

patterns from multigraph structure. Qiao et al., 2018 has 

proposed SSiGraM as a parallel subgraph mining 

algorithm that was based on Apache Spark framework. 

Abdelhamid et al., 2017 proposed IncGM+ as a fast 

incremental system for frequent subgraph mining to 

resolve the challenges of evolving graphs. Le et al., 2020 

developed a Weighted Graph Mining algorithm for 

subgraph pruning that was named as WeGraMi. In this 

approach, the weighted graph mining was followed by 

search space analytics for subgraph pruning. 

The experiments are conducted for 10 frequency 

thresholds that are plotted on X-axis against the running 

time on Y-axis to evaluate the effectiveness of the 

proposed work as shown in Figure 6. It is observed that 

original GraMi required highest running time; however, 

MuGraM, SSiGraM, IncGM+, WeGraMi including 

proposed work involved lower running time over different 

supported thresholds. Further it is also established that the 

proposed work exhibited the lowest time for subgraph 

mining on the threshold values under study. This 

establishes the fact that the proposed work not only 

outperformed the GraMi but also proved to be better than 

most of the existing works that were inspired by GraMi. 

In addition to running time, memory consumption is 

another important parameter that decides the feasibility of 

the proposed technique. Figure 7 compares the memory 

overhead of the proposed work with IncGM+ and 

WeGraMi over the supported threshold frequency. It is 

observed that with decrease in the threshold, the memory 

consumption rises for all the works. However, this trend is 

very gradual in case of proposed work. Overall, minimum 

memory usage is found for the proposed work in 

comparison to IncGM+ and WeGrami. 
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Figure 4: The working architecture of Proposed ABC. 
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Figure 8 compares the number of subgraphs pruned 

using various approaches. In addition to above 

evaluations, the performance of the proposed work is also 

estimated using quality parameters in terms of True 

Detection Rate (TDR), False Detection Rate (FDR) and F-

Measure in comparison to GraMi. The parametric values 

are calculated using as follows: 

𝑇𝐷𝑅 =
𝑇𝑜𝑡𝑎𝑙𝑡𝑟𝑢𝑒𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 
  (1) 

Where, 𝑇𝐷𝑅 is the ratio of the total number of true 

matchings to the total number of detections. 

𝐹𝐷𝑅 =
𝑇𝑜𝑡𝑎𝑙𝐹𝑎𝑙𝑠𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑠 
  (2) 

Where, 𝐹𝐷𝑅 is the total number of false detections 

observed to the total number of detections. 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2∗𝑇𝐷𝑅∗𝐹𝐷𝑅

𝑇𝐷𝑅+𝐹𝐷𝑅
   (3) 

Where, 𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 is twice the product of 𝑇𝐷𝑅 

and 𝐹𝐷𝑅 to the summed-up value of  𝑇𝐷𝑅 and 𝐹𝐷𝑅. 

Table 2 and Table 3 summarises the analysis of the 

data for precision, TDR, FDR, and f-measure. Precision 

and f-measure values observed for both GraMi and 

proposed work are listed in Table 2. The range of nodes 

for evaluation lies from 100 to 5000.The parametric values 

observed for precision calculation are plotted in Figure 9. 

The parametric values of precision are plotted against a 

number of nodes from 100 to 5000. It is observed that 

GraMi achieved an average precision of 66.76%, whereas 

the average precision of the proposed work is 75.11%. 

Overall, the proposed work achieved an enhanced 

precision of 8.35%. F-measure values are compared in 

Figure 10. It is observed that f-measure for GraMi lies in 

the range of 0.633 to 0.645, and for proposed work, it lies 

in the range of 0.721 to 0.751. An average f-measure 

observed for GraMi and proposed work is 0.65 and 0.74 

respectively. 
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Figure 5: Process Diagram of Neural Networks. 
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F-measure can be understood in terms of the harmonic 

mean of precision and TDR. It is observed that both values 

are higher for the proposed work as compared to the 

GraMi. Therefore f-measure is also higher for the 

proposed work. On average, there are 0.0915 differences 

in the f-measure values between the two works. True 

Detection Rates and False Detection Rates for GraMi and 

Proposed work are summarized in Table 3. TDR values 

for GraMi and proposed work are listed in columns 2 and 

3 while FDR values of GraMi and proposed work are 

listed in column 4 and column 5. The numbers of nodes 

are in the range from 100 to 5000. 

TDR of the GraMi and proposed work are compared 

in Figure 11. The parametric values of TDR are plotted on 

Y-axis against the number of nodes plotted on the X-axis. 

GraMi achieved an average TDR of 0.624 as compared to 

an average TDR of 0.722 for the proposed work. On 

average, it is concluded that the proposed work had 9% 

better TDR as compared to the GraMi. 

FDR observed for GraMi and proposed work are 

comparatively plotted in Figure 12. The graph shows that 

the proposed work demonstrates comparatively low FDR 

as compared to GraMi. On average, FDR of 0.3324 and 

0.2488 is observed for GraMi and proposed work 

respectively. In other words, the proposed work achieved 

an average lower FDR of 8.35%. 

4 Conclusion 
The paper has addressed the challenges faced by subgraph 

pattern mining of larger network graphs. The authors had 

designed and evaluated the performance of the proposed 

 

Figure 6: Comparison of Time Performance. 

 

Figure 7: Comparison of Memory Overhead. 
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structure, which is a combination of Swarm Intelligence 

and Machine Learning for pattern mining. A new fitness 

function and a inter and intra hive behavior are introduced 

for Artificial bee Colony and are cross-validated by 

Machine learning based Feed Forward Back Propagation 

Neural Network. The performance of the proposed work 

is evaluated in terms of TDR, FDR, precision, and f-

measure. A range from 100 to 5000 nodes are being 

analyzed for both proposed and GraMi. It is observed that 

both proposed work and GraMi achieve an average 

precision of 75.114% and 66.76%, TDR of 0.7215 and 

0.6225, FDR of 0.2488 and 0.3324, and f-measure of 

0.736 and 0.645. It is observed that an improved average 

precision, TDR, FDR, and f-measure of 8.35%, 9.8%, 

8.35%, and 9.15% have been demonstrated by the 

proposed work in comparison to the GraMi. Hence, it is 

concluded that the proposed work outperformed the 

existing work. 
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Figure 9: F-measure. 
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Figure 11: True Detection Rate 
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Figure 10: False Detection Rate. 
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