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Computer vision, as a part of machine learning, gains significant attention from researches nowadays. 

Aerial scene classification is a prominent chapter of computer vision with a vast application: military, 

surveillance and security, environment monitoring, detection of geospatial objects, etc. There are several 

publicly available remote sensing image datasets, which enable the deployment of various aerial scene 

classification algorithms. In our article, we use transfer learning from pre-trained deep Convolutional 

Neural Networks (CNN) within remote sensing image classification. Neural networks utilized in our 

research are high-dimensional previously trained CNN on ImageNet dataset. Transfer learning can be 

performed through feature extraction or fine-tuning. We proposed a two-stream feature extraction method 

and afterward image classification through a handcrafted classifier. Fine-tuning was performed with 

adaptive learning rates and a regularization method label smoothing. The proposed transfer learning 

techniques were validated on two remote sensing image datasets: WHU RS datasets and AID dataset. Our 

proposed method obtained competitive results compared to state-of-the-art methods. 

Povzetek: Metoda prenesenega učenja je uporabljena za analizo posnetkov iz zraka na nekaj referenčnih 

bazah. 

1 Introduction 
Scene classification is a process of assigning a semantic 

label to remote sensing (RS) images [1, 2]. It is one of the 

crucial tasks in aerial image understanding. Aerial scene 

classification is possible due to the existence of several RS 

images datasets collected from satellites, aerial systems, 

and unmanned aerial vehicles (UAV). Remote sensing 

image classification has located its utilization in many 

fields: military, traffic observation, and disaster 

monitoring [3, 4]. The problem of aerial scene 

classification is complex because the composition of 

remote sensing images is compound, and it is rich in 

features: space and texture. This is the reason for 

developing numerous scene classification methods. 

Remote sensing image classification methods that rely on 

feature extraction can be categorized in one of the 

following groups: methods that use low-level image 

features, methods that use mid-level image features and 

methods that utilize high-level image representation. 

Methods using low-level image features operate on aerial 

scene classification with low-level visual descriptors: 

spectral, textural, structural, etc. Scale Invariant Feature 

Transform (SIFT) is a local descriptor that simulates local 

fluctuation of structures in remote sensing images [5]. 

Statistical and global allocation of certain image 

characteristics: color [6] and texture data [7] are utilized 

by other descriptors. Different color and texture 

descriptors, like color histograms and local binary pattern 

(LBP) descriptors, are comparatively analyzed in [8]. 

Remote sensing classification in [9] is performed by 

compound-feature figures of 6 different types of 

descriptors: SIFT, radiometric features, Grey Level Co-

Occurrence Matrix (GLCM), Gaussian wavelet features, 

shape features, and Gabor filters, with varying spatial 

resolution. Other descriptors used by researches are the 

orientation difference descriptor [10], and the Enhanced 

Gabor Texture Descriptor (EGTD) [11]. For aerial scene 

classification, authors in [12] use completed local binary 

patterns with multi-scales (MS-CLBP) and achieved state-

of-the-art-results compared to other methods based on 

low-level image features.  

Mid-level image features methods try to represent 

aerial images with a statistical representation of a high 

degree obtained from the extracted local image features. 

The first step within these methods is to extract local 

image features from local patches employing descriptors 

like SIFT or color histograms. The second step is to 

encode those features to obtain a mid-level representation 

for remote sensing images. A widely used mid-level 

method is bag-of-visual-words (BoVW) [13]. The first 

step of BoVW is to extract features with SIFT from local 

image patches [14], and afterward, to learn so-called 

visual dictionary or visual codebook, that is a vocabulary 



348 Informatica 45 (2021) 333–344 B. Petrovska et al.  

 

 

of visual words. In aerial scene classification tasks, the 

basic BoVW technique can be combined with various 

local descriptors [14]: GIST, SIFT, color histogram, LBP. 

Another mid-level method relies on a sparse coding 

method [15] where low level extracted features such as 

structural, spectral, and textural are encoded. 

Improvement of the classification accuracy can be 

obtained with Principal Component Analysis (PCA) 

which enables dimensionality reduction of extracted 

features before fusing them in compound-representatives, 

or with methods such as the Improved Fisher Vector (IFK) 

[16] and Vectors of Locally Aggregated Tensors (VLAT) 

[17]. In the literature can be found improved models of 

BoVW like spatial pyramid co-occurrence kernel (SPCK) 

[18], which integrates the absolute and relative spatial 

data. This method combines concepts of spatial pyramid 

match kernel (SPM) [19] and spatial co-occurrence kernel 

(SCK) [13]. In [20] pyramid-of-spatial-relations (PSR) 

model is presented, which includes absolute and relative 

spatial connections of local low-level features. 

The third group of feature extraction methods for 

image classification relies on high-level vision 

information. The latest techniques that include high-level 

features based on CNN learning have shown significant 

improvement of classification accuracies compared to 

older low-level and mid-level image features methods. 

High-level methods can acquire more abstract and 

discriminative semantic representations, which guides in 

improved classification performance. Feature extraction 

with deep neural networks, previously trained on 

ImageNet data set [21], results in significant performance 

for aerial scene classification [22]. Remote sensing image 

classification accuracy achieved with GoogleNet [23] can 

be improved with an input strategy of multi-ratio for 

multi-view CNN learning. Multi-scale image features are 

extracted from the last convolutional layer of CNN [24] 

and then encoded with BoVW [25], Vector of Locally 

Aggregated Descriptors (VLAD) [26] and Improved 

Fisher Kernel (IFK) [16] to compose the final image 

representation. Nogueira et al. [27] extracted global 

features from CNN architectures and guided them to a 

classifier. In all of the examples mentioned above, the 

global or local extracted features were obtained from 

CNNs previously trained on massive data sets like 

ImageNet, formed of natural images. Extracted features 

were utilized for remote sensing image classification.  

Another method of transfer learning is the fine-tuning 

of CNN weights. It is a technique where the original 

classification layer of the pre-trained CNN (usually 

softmax layer) is replaced with a new one, which contains 

a number of nodes equal to a number of classes of the 

target dataset. Altered CNN is trained with a random 

initialization of new layers, but the remaining layers begin 

with the pre-trained weights. Compared to a neural 

network training with random weight initialization, fine-

tuning achieves a better minimum of the lost function.  

Authors in [28] achieved significant performance 

improvement by fine-tuning a pre-trained CNN. They 

experimented with AlexNet [29] and obtained a better 

outcome for semantic segmentation. Also, there are 

several papers in the remote sensing community [30], 

[31], that surveyed the benefits of fine-tuning CNNs. A 

comparison between CNN trained from scratch, and fine-

tuned one showed the advantages of using aerial scene 

data [31]. The fine-tuning method could be useful for the 

classification of hyperspectral images [30]. Fine-tuning 

weights of pre-trained CNNs results in the extraction of 

better scene features [32]. This transfer learning 

technique, performed on neural networks previously 

trained on the ImageNet dataset, results in good 

classification accuracy on remote sensing image data sets 

[24], [27]. Our previous work, [53], [54], showed that 

transfer learning techniques, feature extraction as well as 

fine-tuning, are superb methods for aerial scene 

classification. 

Despite the two transfer learning methods described 

above, the other alternative is to train CNN from scratch, 

i.e., with random initialization of network weights. This 

solution shows low classification accuracy for small-scale 

aerial scene datasets [27]. Full network training of 

CaffeNet and GoogLeNet resulted in poor classification 

results for the UC-Merced dataset [13] and the WHU-

RS19 dataset [33]. But, full CNN training using large-

scale datasets like AID [34] and NWPU-RESISC45 [35] 

has obtained good results.  

In this paper, we evaluate miscellaneous CNN models 

on resolving the task of high-resolution aerial scene 

classification. We utilize convolutional neural networks 

pre-trained on ImageNet data set with a twofold purpose: 

like feature extractors and for fine-tuning on particular 

remote sensing datasets. When we use pre-trained CNN as 

feature extractors, we try to form better features for aerial 

imagery. Thus, we acquire activations from different CNN 

layers: the average pooling layer, the last, and one of the 

intermediate convolutional layers. In order to enable the 

fusion of features from convolutional layers with ones 

from average pooling layers, the feature dimensionality 

reduction method is utilized on those from convolutional 

layers. Compound features of the image scenes are 

processed by a linear classifier to determine image classes.  

In the second experimental setup, we explore the fine-

tuning of network weights on the remote sensing imagery. 

We trained CNNs with adaptive learning rates: linear 

decay schedule and cyclical learning rates and assessed if 

they are appropriate for fine-tuning of pre-trained CNN on 

aerial scene imagery. In order to achieve classification 

accuracy comparable to state-of-the-art methods, we 

included label smoothing as a regularization technique and 

assessed its impact on the experimental results.  

The main contributions of this paper are (1) 

evaluation of transfer learning techniques with various 

CNN models on two remote sensing image datasets, (2) 

analysis of the impact of fused features obtained by 

concatenation of activations from different pre-trained 

CNN layers on classification accuracy, (3) assessment of 

the influence of adaptive learning rates at the fine-tuning 

method from the aspect of classification accuracy, and (4) 

the proposed transfer learning techniques are compared to 

state-of-the-art methods and provide a baseline for aerial 

imagery classification. 

The remainder of this article is organized as follows. 

In Section 2, the methodologies used for transfer learning 
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from CNN are presented. Experimental results obtained 

from the examined remote sensing images classification 

methods are presented in Section 3. Discussion of impact 

factors on our method’s results, as well as summarization 

and conclusion of the paper, is given in Section 4. 

2 Materials and methods 
This section of the article gives a short description of the 

pre-trained CNNs used for transfer learning: InceptionV3, 

ResNet50, Xception, and DenseNet121. Following that, 

we introduce the PCA for dimensionality reduction, linear 

decay scheduler, and cyclical learning rates as methods for 

transfer learning. Next, we present the two publicly 

available data sets: WHU-RS19 and AID included in our 

experiments. Finally, the utilized experimental setup and 

the evaluation metrics are given. 

2.1 Convolutional neural networks 

ResNet won the classification task part of ILSVRC-2015. 

ResNet is a deep CNN that can have up to 152 layers [49]. 

It is similar to the VGG model because it contains mostly 

3x3 filters, but the number of filters is smaller, and CNN 

is simpler [49]. Deep learning architectures can have high 

training error and vanishing gradient problem. The 

solution to the vanishing gradient problem is including a 

residual module in the neural network. The deep learning 

residual module, as shown in Figure.1, has a short 

connection between the input and the output. 

The first inception based network was named 

Inception-v1 or GoogleNet [50]. 

In GoogleNet architecture, inception modules are 

included, and thus the number of learning parameters is 

decreased. The original inception module, Figure.2, has a 

pooling layer and convolutional layers with dimensions 

1x1, 3x3, and 5x5. Module output is got by concatenating 

the outputs of these layers. Inception based networks relay 

on the detail that the correlation within the image pixels is 

local. The number of learning parameters is reduced based 

on the local correlations. Inception-v3 [37] is the third 

iteration of inception based networks. It contains three 

different types of inception modules: type 1, got by 

dividing into smaller convolutions; type 2, got by dividing 

into asymmetric convolutions; and type 3, that was 

included to improve representations with high dimensions. 

Another deep CNN, which is similar to Inception, is 

Xception. In the Xception, the inception module is 

replaced with depth-wise separable convolutional layers 

[51]. This CNN is a cluster of depth-wise separable 

convolutional layers with shortcut connections. A 

depthwise separable convolution is separated into two 

phases. The first phase is a spatial convolution applied 

separately on each input channel, so-called depthwise 

convolution. After that, pointwise convolution follows, 

which is 1x1 convolution for conveying the output of 

depthwise convolution output channels to a new channel 

space. 

Dense Convolutional Network (DenseNet) [52], 

enables highest data flow between network layers, by 

attaching layers to each other in a feed-forward manner. 

The only condition for such connections is the layers to 

have corresponding dimensions of feature maps. The input 

for each layer are the feature maps of the preceding layers, 

and its own feature maps are carried into all layers ahead, 

as their input. Opposite to ResNets, here the authors [52] 

fuse features with concatenation, but don’t add together 

the features to lead them afterward into the following 

layer. This neural network got its name after the dense 

connectivity pattern, Dense Convolutional Network 

(DenseNet). The dense pattern suggests that there is no 

need to relearn redundant feature maps, which leads 

DenseNet to have a smaller number of parameters than 

other deep CNN. 

 

Figure 1: Residual block (left) and “bottleneck” block 

(right) of ResNet. 

 

Figure 2: The architecture of a basic inception module. 
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2.2 Principal Component Analysis 

In our experiments, we used Principal Component 

Analysis (PCA) as a dimensionality-reduction technique. 

It establishes a new group of the basis of view, and then 

project the data from the original representation to a 

representation with fewer dimensions. The new 

dimensions are orthogonal to each other, independent and 

ordered, depending on the variance of data they contain. 

The first principal component is the one with the highest 

variance. The new data matrix consists of n data points 

with k features for each of them: 

[𝑛𝑒𝑤 𝑑𝑎𝑡𝑎]𝑘∗𝑛 = [𝑡𝑜𝑝 𝑘 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠]𝑘∗𝑚[𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎]𝑚∗𝑛 (1) 

The covariance matrix is symmetric. The variance of 

every dimension is on the main diagonal, and the 

covariances of dimensions are placed elsewhere. PCA is a 

dimensionality reduction method that spreads out data to 

have high variance within a fewer number of dimensions. 

2.3 Adaptive learning rates 

The most crucial hyperparameters for CNN training are 

initial learning rate, number of training epochs, learning 

rate schedule, and regularization method (L2, dropout). 

The invariable learning rate for network training might be 

a reasonable choice in some instances, but more often, an 

adaptive learning rate is more beneficial. When training 

CNN, we are trying to find global, local minima, or only a 

part of the loss surface with adequate low loss. If we train 

the network with a constant but large learning rate, we 

can’t reach the desired valley of loss terrain. But if we 

adapt (decrease) our learning rate, the neural network can 

descend into more optimal parts of the loss landscape.  

In our proposed fine-tuning method, we use a linear decay 

schedule, which decays our learning rate to zero at the end 

of the network training. The learning rate α in every 

training epoch is given with: 

𝛼 = 𝛼𝐼 ∗ (1 −
𝐸

𝐸𝑚𝑎𝑥
) (2) 

where αI is the learning rate at the beginning of training, 

E is the number of the current epoch, and Emax is the 

overall number of epochs. 

Cyclical Learning Rates (CLR) are another form of 

adaptive learning rates. In this case, there is no need to 

determine the optimal initial learning rate and schedule for 

the learning rate when we train CNN [36]. When the 

network is trained with learning rate schedules, the 

learning rate is being continuously reduced, but CLR 

allows the learning rate to oscillate among pre-defined 

limits. The network training with CLR convergences 

faster with fewer hyperparameter updates. 

Authors in [36] define a few CLR policies:  triangular 

shown in Figure 3, triangular2, and exponential range 

policy. The triangular policy, as can be seen in Figure 3, 

is a triangular pattern: the learning rate oscillates linearly 

between the fixed lower limit and the upper limit. 

Triangular2 policy looks similar to triangular policy, 

except that the upper limit of a learning rate is twice lower 

after every cycle. As a result of this, triangular2 policy 

training is more stable. The exponential range policy 

encompasses exponential declination of a maximum 

learning rate. 

2.4 Remote sensing datasets 

We test our proposed transfer learning techniques on two 

common aerial scene data sets; the WHU RS data set [43] 

and the aerial image dataset (AID) [34].  

The WHU-RS data set [43] is selected from Google 

Earth imagery, and the images are collected from all over 

the world. There are 19 image classes, with at least 50 

images per class, entirely 1005 images. Image dimensions 

are 600x600 pixels. WHU-RS data set has been 

extensively used in experimental studies of remote sensing 

classification tasks. Image classes in the WHU-RS data set 

are airport, beach, bridge, commercial, desert, farmland, 

football field, forest, industrial, meadow, mountain, park, 

parking, pond, port, railway station, residential, river, and 

viaduct. 

The aerial image dataset (AID) has approximately 

10,000 remote sensing images assigned to 30 classes: 

airport, bare land, baseball field, beach, bridge, center, 

church, commercial, dense residential, desert, farmland, 

forest, industrial, meadow, medium residential, mountain, 

park, parking, playground, pond, port, railway station, 

resort, river, school, sparse residential, square, stadium, 

storage tanks, and viaduct. Image dimensions are 600×600 

pixels with a pixel resolution of half a meter. Images are 

obtained from Google Earth imagery. They are picked 

from various world regions at different times of the year 

and climate conditions: mostly from China, Japan, 

Europe, and the United States. 

Figure 3: Cyclical learning rate with a triangular policy 

model. 

(i)  

(ii)  

Figure 4: Some images of different classes from (i) 

WHU RS and (ii) AID data set. 
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2.5 Experimental setup and evaluation 

metrics 

The first proposed transfer learning method was based on 

feature extraction. We involved four different pre-trained 

CNNs and extracted features from three various layers of 

each of them. For ResNet50 the layers were: 

bn4f_branch2c, the last convolutional layer, and average 

pooling layer; for InceptionV3: mixed_8, mixed_10 and 

average pooling layer; for Xception: 

block14_sepconv1_act, block14_sepconv2_act, and 

average pooling layer; and for DenseNet121 the layers 

were: conv4_block24_concat, the last convolutional layer, 

and average pooling layer. Before feature extraction, data 

set images were resized and pre-processed according to 

the demands of each pre-trained CNN. Data augmentation 

was applied to the images of the training set. Five patches 

of each training image were made with rotation, shifting, 

shearing, zooming, and flipping. The feature extraction 

was performed for the WHU-RS data set, for 60%/40% 

and 40%/60% training/test split ratio. The splits are 

random and without stratification. We included feature 

fusion to improve the classification performance of the 

proposed method. At first, image features were extracted 

from two various layers of two CNNs, so that one layer 

was the average pooling layer, and the other was some of 

the aforementioned convolutional layers. Then, we 

applied PCA transformation on convolutional layer 

features. Before the features are concatenated, we 

performed L2 normalization on PCA transformed 

convolutional layer features and the average pooling layer 

features. After the features fusion, a linear Support Vector 

Machine SVM classifier is trained with compound 

features. 

The SVM is a classifier described by a separating 

hyperplane. SVM model has four hyperparameters: type 

of kernel, the influence of regularization, gamma, and 

margin. The kernel can be linear, exponential, polynomial, 

etc. We used a linear kernel in our experimental setup. The 

prediction of a classifier for linear kernel is given with 

f(x) = B(0) + sum(𝑎𝑖 ∗ (x, x𝑖)) (3) 

The output of the classifier is acquired with the dot 

product of the input (x) and each of the support vectors 

(xi). The model computes the inner products of each input 

vector (x) with all support vectors in training images. The 

learning algorithm determines coefficients B(0) and ai 

from the training data.  

In our proposed feature extraction method, we tuned 

the regularization parameter. During SVM optimization, 

the regularization parameter regulates to what extent to 

take into consideration the misclassification of each 

training image. 

Our proposed fine-tuning method for aerial scene 

classification, as a form of transfer learning, is carried out 

with adaptive learning rates, as well as label smoothing. 

Label smoothing is a regularization method that fights 

against overfitting and leads to a better generalization of 

the CNN model. It is expectable our model to overfit 

because we use pre-trained CNN with high dimensionality 

and fine-tune them with a data set that has only a couple 

of thousands of images. Label smoothing [37] magnifies 

classification accuracy evaluating the cost function with 

“soft” labels from the data set (weighted sum of the labels 

with equal distribution) instead of “hard” labels. When we 

apply label smoothing with parameter α, we reduce the 

cost function between the ‘smoothed’ labels y_k^LS and 

the network outcome pk, smoothed labels are as follows: 

yk
LS = y𝑘 (1 − α) + α/K  (4) 

where the real labels are yk, and K is the number of classes. 

Label smoothing was applied only to the training images. 

In-place data augmentation was used for training images 

as well. In the simulation scenario, we included four pre-

trained CNN: ResNet50, InceptionV3, Xception, and 

DenseNet121, and images of the target data set were 

resized according to the requirements of each CNN. The 

fine-tuning method was applied to the AID data set, and 

the experiments were performed with 50%/50% and 

20%/80% train/test data split ratios. To prepare pre-

trained CNN for fine-tuning, we removed from each 

network the layers after the average pooling layer. On top 

of this, a new CNN head was constructed by adding a fully 

connected layer, dropout layer, and softmax classifier.  

We started fine-tuning with warming-up the new 

CNN head. We warmed new network layers with an 

RMSprop optimizer and a constant learning rate. The fine-

tuning continued with Stochastic Gradient Descent 

(SGD), and training was performed on all network layers.  

Different simulations scenarios were carried out with a 

linear decay schedule and cyclical learning rates with 

triangular policy. When it comes to the linear decay 

learning rate, the initial learning rate was selected 

relatively small, 1-2 orders of magnitudes lower than the 

initial learning rate of the originally trained CNN. Cyclical 

learning rates oscillated between the maximum and 

minimum bound with the optimal learning rate somewhere 

in between. The step size is equal to 4 or 8 times the 

number of training iterations in the epoch, and the number 

of epochs is chosen to contain integer of cycles. 

In our paper, we use the following evaluation metrics: 

Overall Accuracy OA (classification accuracy) and 

confusion matrix. OA is the ratio between the number of 

correctly classified test images and the total number of test 

images. It is always lower than 1 (lower than 100%).  The 

confusion matrix is a table that represents the partial 

accuracy of each image class. This graphical display 

shows the errors of every single different class and 

confusion between the classes. Here the columns appear 

for the predicted classes, and the rows appear for the real 

classes. Better classification accuracy leads to higher 

values of the main diagonal of the confusion matrix and 

lower values for other entries. To check the reliability of 

the results, all cases are repeated ten times (five times for 

fine-tuning method). After that, the mean value and the 

standard deviation (SD) for each experiment are 

calculated. 
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3 Results 

3.1 Classification of WHU-RS dataset 

The feature extraction transfer learning method was 

evaluated on the WHU-RS data set. Accuracy of SVM 

classification of compound features from the average 

pooling layer and PCA transformed convolutional layer 

features is shown in Table 1. 

Table 2 presents a comparative analysis of the 

proposed feature extraction method to competitive 

classification methods. It can be concluded that feature 

fusion with PCA transformation is a technique that 

achieves state-of-the-art classification accuracies. Under a 

training ratio of 40% of the WHU-RS data set, this method 

outperforms all the other classification methods. 

Figure 5 and Figure 6 show the confusion matrices 

without normalization obtained from the classification of 

WHU-RS data set under 60% training data with 

InceptionV3 mixed_8 (PCA) and ResNet50 average 

pooling, and under 40% training data with DenseNet121 

conv5_block16_concat (PCA) and ResNet50 average 

pooling. 

3.2 Classification of AID dataset 

The experimental results of the fine-tuning method for 

classification of the AID dataset are displayed in Table 3. 

As can be seen from Table 3, the linear decay scheduler 

gives better classification results for a 50%/50% train/test 

split ratio for ResNet50 and InceptionV3. Cyclical 

learning rate works better for Xception and DenseNet121. 

For 20%/80% train/test split ratio linear decay scheduler 

is a better option for ResNet50, Xception and 

DenseNet121, and cyclical learning rates for InceptionV3. 

Table 4 is a comparative display of our fine-tuning 

method with other state-of-the-art techniques. Our method 

achieved the best classification results on the AID dataset 

Method 
60% training 

ratio 

40% training 

ratio 

ResNet50 last conv layer (PCA) and 

InceptionV3 average pool 
98.26 95.02 

ResNet50 last conv layer (PCA) and 

Xception average pool 
97.62 96.52 

InceptionV3 mixed_10 (PCA) and 

ResNet50 average pool 
96.27 95.85 

InceptionV3 mixed_8 (PCA) and 

ResNet50 average pool 
98.01 98.67 

InceptionV3 mixed_10 (PCA) and 

Xception average pool 
96.77 96.02 

InceptionV3 mixed_8 (PCA) and 

Xception average pool 
98.01 96.35 

DenseNet121 conv5_block16_concat 

(PCA) and ResNet50 average pool 
98.76 98.34 

DenseNet121 conv4_block24_concat 

(PCA) and ResNet50 average pool 
96.77 96.52 

Table 1: Classification accuracy of feature extraction method with WHU-RS data set. 

Method 

60% of WHU-

RS data set as a 

training set 

40% of WHU-

RS data set as 

a training set 

Bag of SIFT [20] 85.52 ± 1.23 / 

Multi Scale Completed LBP + BoVW 

[44] 
89.29 ± 1.30 / 

GoogLeNet [34] 94.71 ± 1.33 93.12 ± 0.82 

VGG-VD-16 [34] 96.05 ± 0.91 95.44 ± 0.60 

CaffeNet [34] 96.24 ± 0.56 95.11 ± 1.20 

salM3LBP-CLM [45] 96.38 ± 0.82 95.35 ± 0.76 

TEX-Network-LF [46] 96.62 ± 0.49 95.89 ± 0.37 

InceptionV3 mixed_8 (PCA) and 

ResNet50 average pool (Ours) 
98.13 ± 0.51 / 

DCA by concatenation [47] 98.70 ± 0.22 97.61 ± 0.36 

Addition with saliency detection [48] 98.92 ± 0.52 98.23 ± 0.56 

DenseNet121 conv5_block16_concat 

(PCA) and ResNet50 average pool 

(Ours) 

/ 98.26 ± 0.40 

Table 2: Classification accuracy (%) and standard deviation of the state-of-the-art methods with WHU-RS data set. 
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for InceptionV3, under 50% training data with a linear 

decay scheduler, and under 20% training data with 

cyclical learning rates. As can be concluded from Table 4, 

some methods outperformed the proposed fine-tuning 

technique, like EfficientNet-B3-aux [38]. Authors in [38] 

used the fine-tuning of the EfficientNet-B3 network with 

auxiliary classifier. The explanation for better 

classification results might be that the network mentioned 

above has achieved better top-1 classification accuracy on 

ImageNet data set than CNNs we utilized in our 

experimental setup. 

Figure 7 displays the confusion matrix of the AID 

dataset classification for the proposed fine-tuning method 

with a 20%/80% train/test split ratio for ResNet50, 

cyclical learning rates, and softmax classifier. The main 

diagonal shows the number of properly predicted test 

images; the other elements give misclassified test images. 

 

Figure 5: Confusion matrix of the feature extraction method under 60% training data of WHU-RS data set. 

 
Figure 6: Confusion matrix of the feature extraction method under 40% training data of WHU-RS data set. 
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In Figure 8, we present fine-tuning of InceptionV3 

Method 
50% training ratio 20% training ratio 

ResNet50 
  

Linear decay scheduler 
95.62±0.15 93.06±0.16 

Cyclical learning rate 
95.52±0.28 92.91±0.35 

InceptionV3 
  

Linear decay scheduler 
96.41±0.23 93.7±0.33 

Cyclical learning rate 
95.95±0.2 93.79±0.24 

Xception 
  

Linear decay scheduler 
96.14±0.12 93.67±0.18 

Cyclical learning rate 
96.15±0.17 93.44±0.10 

DenseNet121 
  

Linear decay scheduler 
96.03±0.16 93.74±0.24 

Cyclical learning rate 
96.21±0.19 93.54±0.15 

Table 3: Overall accuracy (%) and standard deviation of the fine-tuning method with the AID data set. 

Method 
50% training ratio 20% training ratio  

CaffeNet [34] 
89.53±0.31 86.86±0.46 

MCNNs [55] 
91.80±0.22 / 

Fusion by concatenation [39] 
91.87±0.36 / 

TEX-Net-LF [46] 
92.96±0.18 90.87±0.11 

VGG-16 (fine-tuning) [40] 
93.60±0.64 89.49±0.34 

Multilevel fusion [56] 
95.36±0.22 / 

GBNet +global Feature [40] 
95.48±0.25 92.20±0.23 

InceptionV3-CapsNet [41] 
96.32±0.12 93.79±0.13 

InceptionV3 with linear 

decay scheduler (ours) 
96.41±0.23 93.7±0.33 

InceptionV3 with cyclical 

learning rate (ours) 
95.95±0.2 93.79±0.24 

EfficientNet-B3-aux [38] 
96.56±0.14 94.19±0.15 

GCFs + LOFs [42] 
96.85±0.23 92.48±0.38 

Table 4: Overall accuracy (%) and standard deviation of the fine-tuning method compared to state-of-the-art methods 

for the AID data set. 
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with a 50%/50% train/test split ratio of AID data set with 

cyclical learning rates and softmax classifier. The plot 

shows the fine-tuning when all layers are “trainable” with 

an SGD optimizer. The plot has a characteristic shape for 

training with cyclical learning rates; the form of training 

and validation loss lines is “wavy.” Because we fine-tuned 

the network with smoothed train labels, the training loss is 

higher than validation loss. 

4 Discussion and conclusion 
From the completed simulations and obtain results, the 

following valuable concepts can be summed up: 

- When it comes to feature extraction method, 

Inception V3, and DenseNet121 are the pre-trained 

CNN that give the highest classification accuracies. 

As it is presented in Table 1, the best experimental 

 

Figure 7: Confusion matrix of the fine-tuning technique under 20% training data of AID dataset for ResNet50, 

cyclical learning rates, and softmax classifier. 

 

Figure 8: Training plot of the fine-tuning technique under 50% training data of AID data set for InceptionV3, cyclical 

learning rate, and softmax classifier. 
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results on the WHU-RS dataset are obtained when 

features from these networks’ layers are fused. From 

Table 3 it is evident that InceptionV3 outperforms 

other pre-trained CNNs in transfer learning through 

fine-tuning for the AID data set; 

- The most suitable layer for feature extraction is 

mixed_8 from Inception V3. It gives good 

classification results with ResNet50, as well as 

DenseNet121 average pooling layer. ResNet50 

average pooling layer also gives significant 

classification results when it is combined with 

DenseNet121 convolutional layers, the last or the 

intermediate ones; 

- For the fine-tuning method, under 50% training data 

ratio linear learning rate decay scheduler gives better 

classification results for ResNet50 and Inception V3 

pre-trained networks, and cyclical learning rates are a 

better choice for Xception and DenseNet121. Under 

20% training data ratio, learning rate decay scheduler 

works better for Xception and DenseNet121, and 

cyclical learning rates are a better choice for 

ResNet50 and Inception V3; 

- Our proposed transfer learning methods give 

classification accuracies comparable to state-of-the-

art techniques. The feature fusion method with PCA 

transformation gives the classification accuracy of 

98.26 ± 0.40 under a 40% training ratio of the WHU-

RS dataset, which outperforms other methods in the 

literature. For the fine-tuning method applied to the 

AID dataset, some methods obtain better 

experimental results compared to ours, like 

EfficientNet-B3-aux [38], and the reason for better 

classification accuracy might be the type of pre-

trained CNN utilized in the scenario. 

In our paper, we proposed two distinct transfer learning 

techniques for remote sensing image classification. The 

feature extraction method utilizes the concatenation of 

extracted features from different CNNs’ layers with prior 

PCA transformation. The fine-tuning method includes 

adaptive learning rates and label smoothing. With both 

transfer learning methods, we have achieved significant 

classification results on the two datasets. The proposed 

feature extraction technique can be further explored with 

feature extraction from lower layers of pre-trained CNN, 

as well as with stratification of train/test data split. For 

future development of the fine-tuning method, we suggest 

including different types of pre-trained CNNs apart from 

the ones used in this article, like EfficientNets, and 

involving of learning rate finder [36] to discover optimal 

values for initial learning rate or limits for cyclical 

learning rates. 
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