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Owing to the fact that the payoff of grand coalition is limited to players’ allocation, what is more, 

other players will not satisfy with the allocation scheme if one of the possible coalitions allocate too 

much. Based on this fact, it is better to pursuit the allocation scheme for all players in coalition are as 

close to the coalition’s payoff as possible. In contrast, if the allocation scheme for all players in 

coalition is far from the coalition’s payoff, this will lead to the instability of the coalition. To address 

this issue, several linear programming models are constructed for taking into account the players’ 

compromise limit constraints. First, the profits allocation model with undominated nonnegative 

excess vector is extended to interval-valued fuzzy environments. Second, several linear programming 

models are constructed respectively considering without and with coalitions’ compromise limit 

constraints. Third, an illustrative example in conjunction with comparative analyses is employed to 

demonstrate the validity and applicability of the proposed models. Finally, the relationship of the 

models is discussed between without and with coalitions’ compromise limit constraints. 

 

Povzetek: Razvitih je več modelov z metodami linearnega programiranja za določanje uspešnih 

skupin predvsem glede časovne opredelitve. 

 

 

1 Introduction 
Faced with information and globalization of integrative 

economy, the cooperation between supply chain 

enterprises becomes more and more important in 

pursuit of more profits. How to reasonable allocate the 

profits that obtain from cooperation is a key 

outstanding issue, which plays a decisive role between 

the supply chain stability and sustainable development. 

For this reason, plenty of researchers focusing on the 

study of profits allocation issues, and making a lot of 

research results [1-8]. Among these studies, several 

researchers tried to solve profits allocation issues with 

game theory [1, 2, 4]. For example, Maafa et al. [1] 

studied algorithms to compute the Shapley value for 

cooperative games based on a lattice. Béal et al. [9] 

studied nonlinear weighted Shapley value for 

cooperative games with transferable utility. Derks [10] 

studied the Shapley value of conjunctive-restricted 

games. Van den Brink et al. [11] introduced the Proper 

Shapley value and Shapley value, and shared rules for 

cooperative ventures. Bilbao et al. [6, 7] developed the  

 

Shapley value for games on matroids respectively in 

view of static and dynamic models. Martino 

developed the probabilistic values and studied the 

properties of face module, efficiency scenarios and 

simplicial complexes [12-15]. From these existing 

researches, it can be observed that most of them 

studied the cooperation profits with real numbers, that 

is to say, the profits obtained from the cooperation 

between supply chain enterprises are determined in 

priori. Such cooperative is called crisp cooperative 

games for short. 

Due to various unpredictable factors, sometimes the 

cooperation profits cannot be determined in priori. In 

this case, it is unsuitable to express cooperation profits 

with real numbers. To address this issue, much research 

work used fuzzy numbers to estimate the cooperation 

profits and established the so-called fuzzy cooperative 

games [16-20]. Actually, there are two cases of 

cooperative games with fuzzy payoffs: one is all the 

players are full take part in cooperative, the coalitions 

are crisp but the payoffs are determined with fuzzy 

numbers [21-23]. For example, Monroy et al. [21] 
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discussed the set valued issues in crisp coalitions and 

fuzzy payoffs. Zou et al. [22] introduced the 

generalized Shapley function for cooperative games 

with fuzzy payoffs. Wu [24] studies the cores and 

dominance cores of cooperative games endowed with 

fuzzy payoffs. The other is some of the players are 

partial take part in cooperative, both the coalitions and 

the payoffs are uncertain [25-27]. Such as, Wu [25] 

discussed the cores and convexity of fuzzy games. Liu 

et al. [26] discussed the average monotonic fuzzy 

cooperative games. Yu et al. [28] developed fuzzy 

Harsanyi solution for a kind of fuzzy coalition games. 

Since the cooperation profits are expressed with fuzzy 

numbers, it can be inferred that the cooperation profits are 

allocated to the players are also fuzzy numbers [29]. With 

the development of research, some scholars suggest using 

specific fuzzy numbers to express cooperation profits and 

establish the corresponding cooperative games. For 

example, cooperation profits are expressed with interval-

valued fuzzy numbers, that is, interval-valued cooperative

games [30]. Cooperation profits are expressed with 

triangular fuzzy numbers, that is, triangular fuzzy 

cooperative games [21]. Review from the cooperative 

fuzzy games, it can be easily found that there is 

increasing research on interval-valued cooperative 

games. Interval-valued cooperative games are the 

simplest and most natural type of uncertainty. Although 

sometimes it is difficult to determine the coalition 

payoffs with real numbers, the lower and upper bounds 

of the coalition payoffs are easily to be determined in 

priori. Therefore, it seems to be suitable to use interval-

valued cooperative games to solve profits allocation 

issues in some game’s environments. 

In order to solve bankruptcy issues, Alparslan-

Gök et al. [31] first extended the classical two-person 

cooperative games to two-person interval-valued 

cooperative games, and studied their related topics. 

Afterwards, Alparslan-Gök et al. [32] studied the 

interval Shapley values and discussed their properties. 

Mallozzi et al. [30] discussed the core-line and 

balanced-like conditions of cooperative games with 

coalition payoffs are represented with interval-valued. 

Alparslan-Gök et al. [33] discussed the interval-valued 

stable sets, the interval-valued core and dominance 

core. Han et al. [34] studied the interval core and 

interval Shapley values. Meng et al. [35] studied the 

interval Shapley with interval characteristic functions. 

Hong et al. [36] based on the proposed satisfactory 

degree introduced a nonlinear programming method for 

n-person interval-valued cooperative games. Li et al. 

[37, 38] developed a direct and effective method for 

solving a special subclass of interval-valued 

cooperative games. And Li et al. [39] discussed n-

person interval-valued cooperative games with 

satisfactory degree constraints. Gallardo et al. [40] 

developed the Shapley value for cooperative games 

with fuzzy characteristic function. 

Previous studies have significantly advanced the 

research on interval-valued cooperative games. 

Nevertheless, there are still some shortcomings that 

needs to be further discussed: (1) Most of the 

aforementioned works used the Moore’s interval 

subtraction [41] or the partial subtraction operator [42], 

which may lead to irrational the computation results. 

This has been pointed out by Li in [43]. (2) In order to 

overcome the shortcoming of the used of Moore’s 

interval subtraction and partial subtraction operator, Li 

[43] constructed several nonlinear programming 

models to obtain interval-valued least square solution. 

For different coalitions may have different compromise 

limit values, this should be taken into account in the 

programming models. However, the models presented in 

Li [43] have ignored this aspect. (3) The method of 

ranking interval-valued displays an important role in 

interval-valued cooperative games. Li [43] defined a 

distance formula for ranking of interval-valued to solve 

interval-valued cooperative games. Unfortunately, the 

distance formula presented in Li [43] has some 

shortcoming, for that the reasonable of profits allocation 

scheme needs further discussing. (4) Since the coalitions’ 

payoffs in interval-valued cooperative games are 

expressed with interval numbers, the allocation sets to the 

players are also interval numbers. Different ranking of 

interval numbers reflects differences between the 

allocation sets, it should be discussed in the games 

process so as to assist the players to choose most stable 

coalition. However, there are few studies discussed this 

aspect. 

To overcome the above mention shortcomings, this 

paper focuses on n-person cooperative games with crisp 

coalitions and coalitions’ payoffs are expressed with 

interval numbers. The main contributions of this work 

are highlighted at three aspects. 

(1) The proposed models taking into account the 

compromise limit of players. For players in different 

coalitions may have different compromise limit values in 

the games process, the proposed methods are applicable 

to different cooperative background. 

(2) To address the coalition’s payoffs are expressed 

with interval numbers, the profits allocation model with 

undominated nonnegative excess vector is extended to 

interval-valued fuzzy environments. 

(3) The differences between the allocation sets are 

discussed in this study, it can assist the players to choose 

most stable coalition if they obtain several allocation sets 

at the same time. 

The remainder of this study unfolds as follows. In 

Section 2, the concepts of undominated nonnegative 

excess vector and n-person interval-valued cooperative 

games are reviewed. Section 3, several linear 

programming models are proposed, which respectively 

without and with compromise limit constraints. In 

Section 4, an illustrative example in conjunction with 

comparative analyses is employed to demonstrate the 

validity and applicability of the proposed methods. And 

the relationship of the models between without and with 

coalitions’ compromise limit constraints is also 

discussed. The study ends with conclusions in Section 5. 
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2 Preliminaries 
 
In this section, the concepts of undominated 

nonnegative excess vector and n-person interval-valued 

cooperative games are reviewed. 

 

 

 

2.1 Undominated nonnegative excess 

vector 

In this subsection, the concepts of excess vector, 

nonnegative excess vector and undominated 

nonnegative excess vector are introduced. 

To measure the dissatisfaction of players with an 

allocation, Schmeidler [44] introduced the concept of 

excess vector. 

Definition 1 [44]. For any coalition S N  and 

an allocation x , the excess vector of S  with respect 

to x  is defined as follows: 

( ) ( )
1

,
s

jj
e S x v S x

=
= − ,                            (1) 

where N  is a set of players and ( )v S  is a payoff 

function of coalition S , s  is the number of players in 

coalition S . It can be easily found that when the 

payoff function of coalition ( )v S  is larger than the 

sum of the allocation 
1

s

jj
x

=  to all players in 

coalition S , then the excess vector ( ),e S x  is positive. 

In contrast, the excess vector is respectively zero and 

negative when the payoff function of coalition is equal 

to and smaller than the sum of the allocation. 

For a coalition, it is dissatisfactory if its excess 

vector is positive. Otherwise, it is satisfactory in the 

sense that it will be worse if it leaves the grand 

coalition. That is to say, it may be not reasonable to 

consider negative excess vector if we want to include 

all the allocations acceptable by all players. Based on 

this fact, Chen [45] introduced the notion of 

nonnegative excess vector. 

Definition 2 [45]. For a game ( ),N v , the 

nonnegative excess vector of a coalition S N  with 

respect to an allocation x  is defined as: 

( ) ( ) 1
, max ,0

s

jj
e S x v S x+

=
= −                  .(2) 

Combining the efficient of the allocation, 

nonnegative excess vector satisfies the following 

three constraints, (1) Nonnegative: S N  , 0Se  , 

where 
Se  is the vector of abbreviation nonnegative 

excess vector ( ),e S x+
 of the coalition S ; (2) Excess 

vector of a coalition: S N  , ( )
1

s

j Sj
x v S e

=
 − ; 

(3) The efficient of the allocation: ( )
1

n

jj
x v N

=
= . 

On the basis of nonnegative excess vector, Chen 

[45] developed the concept of undominated  

 

nonnegative excess vector. 

Definition 3 [45]. Let ( ),X v e  denote the set of 

allocations. For a game ( ),N v , a nonnegative excess 

vector e  is called undominated if there is no other 

nonnegative excess vector ( )' ',e X v e  such that 
'e e . 

It can be concluded that the smaller the vector 
Se  is, 

the more stable of the grand coalition N  of the game 

( ),N v . To obtain the undominated nonnegative excess 

vector, Chen [45] developed a linear programming 

model to derive the maximal-stable games whose total 

coalitional is minimized: 

𝑚𝑖𝑛  𝑍 = ∑ 𝑒𝑆
𝑆⊂𝑁

 

𝑠. 𝑡.

{
 
 

 
 ∑ 𝑥𝑗

𝑛
𝑗=1 = 𝑣(𝑁)

∑ 𝑥𝑗
𝑠
𝑗=1 ≥ 𝑣(𝑆) − 𝑒𝑆,  𝑆 ⊂ 𝑁

𝑒𝑆 ≥ 0,  𝑆 ⊂ 𝑁
𝑥𝑗 ≥ 0,  𝑗 = 1,2,⋯ , 𝑛

,           (3) 

where n  and s  are respectively denote the number of 

players in coalition N  and coalition S , and coalition S  

is proper subset of N . 

 

2.2 Interval number and interval-valued 

cooperative games 

In this subsection, we recalled some related concepts of 

interval number and interval-valued cooperative games. 

 

2.2.1 Interval number 

Usually,    
_

, ,L R L Ra a a a a a a a R= =     is called an 

interval number, where R  is the set of real numbers, 

Ra R  and 
La R  are respectively called the upper 

bound and lower bound of the interval 
_

a . To develop the 

used of interval numbers, Moore [46] introduced some 

interval arithmetic operations. 

Definition 4 [46]. Let  
_

,L Ra a a=  and  
_

,L Rb b b=  

are any two interval numbers in the interval numbers set 
_

R . Then interval addition, subtraction and scalar 

multiplication operations are developed as follows: 

 

 

 

_ _

_ _

_

,

,

, , 0

L L R R

L R R L

L R

a b a b a b

a b a b a b

a a a   


+ = + +


− = − −


 = 


.                 (4) 

In generally, the relationship 
_ _ _ _

a b b a− + =  does not 

hold in the subtraction operation presents in Eq. (4), in 

order to overcome this issue, Banks et al. [47] introduced 

the concept of Hukuhara difference. 

Definition 5 [47]. Let  
_

,L Ra a a=  and  
_

,L Rb b b=  

are any two interval numbers, if there exists an interval 
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number 
_

c , such that 
_ _ _

a b c= + , then 
_

c  is called the 

Hukuhara difference between 
_

a  and 
_

b , denoted as: 

 
_ _

,H L L R Ra b a b a b− = − − . 

It is noted that, for any two interval numbers 
_

a  

and 
_

b , the Hukuhara difference between them does not 

exist sometimes. For example, let  
_

1,2a =  and 

 
_

3,5b = , according to definition 5, the Hukuhara 

difference between them is  
_ _

2, 3Ha b− = − − . Since 

2 3−  − , then  2, 3− −  is not an interval number, that 

is to say, the Hukuhara difference between them does 

not exist. Moreover, it can be concluded that the 

Hukuhara difference between two interval numbers 

exist if and only if 
L L R Ra b a b−  − . 

Let ( )
_ 1

2
L Rv a a a

 
= + 

 
, ( )

_ 1

2
L Rv b b b

 
= + 

 
, 

_

R Lw a a a
 

= − 
 

 and 
_

R Lw b b b
 

= − 
 

 are respectively 

denoted the middle and wide of interval numbers 
_

a  

and 
_

b , Ishibuchi et al. [48] developed the total order 

between them as follows. 

Definition 6 [48]. Let  
_

,L Ra a a=  and 

 
_

,L Rb b b=  are any two interval numbers, 
_

v a
 
 
 

 and 

_

v b
 
 
 

 are respectively denoted the middle of 
_

a  and 
_

b , 

_

w a
 
 
 

 and 
_

w b
 
 
 

 are respectively denoted their wide, 

then the total order between 
_

a  and 
_

b  is developed as, 

if and only if 
_ _

v a v b
   

   
   

 and 
_ _

w a w b
   

   
   

,                (5) 

then 
_ _

a b . Especially, 𝑎
_
∼ 𝑏

_

 if 
_ _

v a v b
   

=   
   

 and 

_ _

w a w b
   

=   
   

. 

Zhang et al. [49] introduced a new distance 

formula for measuring interval numbers. 

Definition 7 [49]. Let  
_

,L Ra a a=  and 

 
_

,L Rb b b=  are any two interval numbers, 
_

v a
 
 
 

 and 

_

v b
 
 
 

 are respectively denoted the middle of 
_

a  and 
_

b , 

_

w a
 
 
 

 and 
_

w b
 
 
 

 are respectively denoted their wide, 

then the distance between 
_

a  and 
_

b  is developed as 

follows: 
_ _ _ _ _ _1
,

3
D a b v a v b w a w b
         

= − + −         
         

. (6) 

 

2.2.2 Interval-valued cooperative games 

 

An n-person interval-valued cooperative game in 

coalitional form is an ordered pair 
_

,N v
 
 
 

, where 𝑁 =

{1,2,⋯ , 𝑛} is the set of players, the symbol 
_

v  is called 

the characteristic function of game, and 
_

v : 2n R→  is a 

map, allocating to each coalition 2nS   is a closed 

interval ( )
_ _

v S R , such that ( )  
_

0,0v  = . For each 

coalition 2nS  , the payoff value ( )
_

v S  related to the 

coalition S  in the n-person interval-valued cooperative 

game is a closed and bounded interval, which can be 

denoted as ( ) ( ) ( )
_

,L Rv S v S v S=    , where ( )Lv S  and 

( )Rv S  are respectively denoted the lower and upper 

bounds of payoff value ( )
_

v S . Obvious, the difference 

between the n-person interval-valued cooperative game 

and classical cooperative game is that the characteristic 

function are interval numbers in n-person interval-valued 

cooperative game, while the characteristic function are 

real numbers in classical cooperative game. 

 

3 Models for n-person interval-

valued cooperative games 
For any n-person interval-valued cooperative games, since 

payoff values are interval numbers, it can be concluded 

that the allocation vales to each player are also interval 

numbers. Let 
1 1

,
s s

j jL jRj j
x x x
−

= =
 =
    denote the sum of 

interval-valued imputation to all players in coalition S , 

( ) ( ) ( )
_

,L Rv S v S v S=     and ( ) ( ) ( )
_

,L Rv N v N v N=     

respectively denote the interval-valued payoff function of 

coalition S  and grand coalition N . In this section, the 

allocation model with undominated nonnegative excess 

vector presents in section 2 is extended to n-person 

interval-valued cooperative games. There are two types 

are concerned, that is, the allocation models respectively 

without and with compromise limit constraint. 

 

3.1 Model without compromise limit 

constraints 
In this subsection, an allocation model without 

compromise limit constraints is constructed to obtain the 
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allocation scheme. Owing to the fact that the payoff 

value of grand coalition is limited to players’ 

allocation, what is more, other players will not satisfy 

with the allocation scheme if one of the possible 

coalitions allocates too much. Based on this fact, it is 

better to pursuit the allocation scheme of all players in 

coalition S  is as close to the coalitional value as 

possible. Then allocation model presents in Eq. (3) is 

extended to interval-valued as follows: 

( )

( )

_

_ _

1

_ _ _

1

_

_

min

,
. .

0,

0, 1,2, ,

S
S N

n

j Ij

s

j SI Ij

S

j

z e

x v N

x v S e S N
s t

e S N

x j n



=

=

=


=


  − 



 


 =





 ,     (7) 

where  
_

,S SL SRe e e=  is an interval-valued 

undominated nonnegative excess vector, 

,j jL jRx x x
−

 =    is the interval-valued allocation to 

player j  and is the decision variable of the model. The 

symbol “
I= ”, “

I ” and “
I− ” are respectively denoted 

the arithmetic operations of two interval numbers “ = ”, 

“  ” and “ − ”. Noting that ( )
_ _

1

n

j Ij
x v N

=
=  is 

equivalent to ( )
1

n

jL Lj
x v N

=
=  and 

( )
1

n

jR Rj
x v N

=
= , which are described as the 

efficiency condition and showed the sum of all player’s 

allocation should be equal to the payoff value of grand 

coalition N . 
_

0Se   is equivalent to 0SLe   and 

SL SRe e . Similar, 
_

0jx   is equivalent to 0jLx   and 

jL jRx x . Objective function 
_

min S
S N

z e


=  is 

equivalent to ( )min SL SRS N
z e e


= + . Replacing 

above mention equivalence conditions into Eq. (7), we 

have: 

 

( )

( )

( )

( )

1

1

_ _ _

1

min

,

. . ,

, 1, 2, ,

0,

0, 1,2, ,

SL SRS N

n

jL Lj

n

jR Rj

s

j SI Ij

SL SR

jL jR

SL

jL

z e e

x v N

x v N

x v S e S N

s t e e S N

x x j n

e S N

x j n



=

=

=

= +

 =

 =


  − 


 


 =
  


 =










.     (8) 

In Eq. (8), according to Definition 5, the constraint 

condition ( )
_ _

SIv S e−  is equal to 

( ) ( ),L SL R SRv S e v S e− −    and ( ) ( )L SL R SRv S e v S e−  − . 

Replacing these equivalence conditions into Eq. (8), we 

have: 

( )

( )

( )

( ) ( )

( ) ( )

1

1

_

1

min

,

. . ,

,

, 1, 2, ,

0,

0, 1, 2, ,

SL SRS N

n

jL Lj

n

jR Rj

s

j I L SL R SRj

L SL R SR

SL SR

jL jR

SL

jL

z e e

x v N

x v N

x v S e v S e

S N

s t v S e v S e S N

e e S N

x x j n

e S N

x j n



=

=

=

= +

 =

 =


  − −  





−  − 


 
  =

  


 =











. (9) 

 

In Eq. (9), according to Eq. (5), the constraint 

condition ( ) ( )
_

1
,

s

j I L SL R SRj
x v S e v S e

=
 − −    is equal 

to ( ) ( )
1 1

s s

jL jR L R SL SRj j
x x v S v S e e

= =
+  + − −   and 

( ) ( )
1 1

s s

jR jL R L SL SRj j
x x v S v S e e

= =
−  − + −  . 

Replacing these equivalence conditions into Eq. (9), we 

have: 

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )

1

1

1 1

1 1

min

,

. . ,

,

,

, 1, 2, ,

0,

0, 1,2, ,

SL SRS N

n

jL Lj

n

jR Rj

s s

jL jRj j

L R SL SR

s s

jR jLj j

R L SL SR

L SL R SR

SL SR

jL jR

SL

jL

z e e

x v N

x v N

x x

v S v S e e S N

x x

s t v S v S e e S N

v S e v S e S N

e e S N

x x j n

e S N

x j n



=

=

= =

= =

= +

 =

 =



+ 


+ − − 


− 

 − + − 

−  − 

 

 =

 

 =







 

 














.    (10) 

 

Similar to Eq. (10), the optimal solution of Eq. (13) 

can be easily obtained by utilizing the programming 

software. The difference between Eq. (13) and Eq. (10) is 

that, the compromise limit constrains 
_

S Se  , S N  

are taken into account in Eq. (13), while Eq. (10) fail to 



66   Informatica 46 (2022) 61-72                                                                                                                         J. Li et al. 

this. The players choose different allocation models 

according to different game environments. If the 

players have very strongly willing to cooperate, they 

can accept the situation that the payoff values of the 

coalitions are greater than the allocation values 

obtained by the players participating in the coalitions. 

In this case, the optimal solution of Eq. (10) is 

applicable. In contrast, if the cooperation willing of 

players is not very strong, they cannot accept the 

situation that the payoff values of the coalitions are 

greater than the distribution values obtained by the 

players participating in the coalitions. In this case, the 

optimal solution of Eq. (13) is applicable. 

Given that Eq. (10) presents a linear programming 

model, , 0jL jRx x  , 1,2, ,j n=  are 2n  

nonnegative decision variables, and 0SLe  , S N  

are 2 2n −  undominated nonnegative excess variables. 

It is easily to demonstrate that the set of feasible 

solutions to Eq. (10) is nonempty. Facilitated by the 

well-established theory of linear programming, it is 

convenient to solve Eq. (10) by many available 

optimization software packages, such as MATLAB, 

LINGO or CPLEX. 

 

3.2 Model with compromise limit 

constraints 
 
For different coalitions have different advantages, the 

allocation to all players in coalition S  should be as 

much as possible. In contrast, if the allocation to all 

players in coalition S  is far from the coalition’s payoff 

value, this will lead to the instability of the coalition. In 

some cases, the players only accept the allocations 

within established boundaries, that is, the players in the 

coalition with compromise limit constraints of the 

allocations. It is more reasonable that the compromise 

limits of the coalition should be taken into account in 

the allocation process. However, the model shows in 

Eq. (10) may fail to this. In order to overcome this 

shortcoming, a programming model is constructed for 

solving interval-valued undominated nonnegative 

excess vector with compromise limit constraints. 

As mention above, it is better to pursuit the 

allocations to all players in coalition S  are as close to 

the coalition payoff value as possible, and the 

allocation results are acceptable if the allocation within 

certain established compromise limit 
S . Based on this 

consideration, the allocation model is constructed as 

follows. 

( )

( )

_

_ _

1

_

_ _ _

1

_

_

min

,

. . ,

0,

0, 1, 2, ,

S
S N

n

j Ij

S S

s

j SI Ij

S

j

z e

x v N

e S N

s t x v S e S N

e S N

x j n





=

=

=


=


  



 − 

  



 =








.  (11) 

 

 

Apparently, the difference between Eq. (11) and Eq. 

(7) is that, the compromise limit constrains 
_

S Se  , 

S N  are taken into account in Eq. (11), while Eq. (7) 

fail to this. Suppose the compromise limit constrain 

values 
S  provides by the coalition with the equal 

significance, that is, S = , for all S N , in this case, 

the mathematical programming model can be further 

simplified to: 
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( )
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_ _
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_

_ _ _

1

_

_
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0, 1, 2, ,

S
S N
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S

j

z e

x v N

e S N

s t x v S e S N

e S N
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



=

=

=


=


  



 − 

  



 =







.  (12) 

 

Moreover, the compromise limit constraints 
_

Se  , 

S N  are equal to 
SL SRe e +  , S N , After a 

similar simplification presents in section 3.1, we obtain 

the following linear programming model: 

 



Programming Models-Based Method for Deriving Profits…                                    Informatica 46 (2022) 61–72   67 

( )

( )

( )

( ) ( )

( ) ( )

( ) ( )
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1

1 1

1 1
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− 

− + − 
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 

 =







 

 

, n

























.  (13) 

 

 

Similar to Eq. (10), the optimal solution of Eq. 

(13) can be easily obtained by utilizing the 

programming software. The difference between Eq. 

(13) and Eq. (10) is that, the compromise limit 

constrains 
_

S Se  , S N  are taken into account in 

Eq. (13), while Eq. (10) fail to this. The players choose 

different allocation models according to different game 

environments. If the players have very strongly willing 

to cooperate, they can accept the situation that the 

payoff values of the coalitions are greater than the 

allocation values obtained by the players participating 

in the coalitions. In this case, the optimal solution of 

Eq. (10) is applicable. In contrast, if the cooperation 

willing of players is not very strong, they cannot accept 

the situation that the payoff values of the coalitions are 

greater than the distribution values obtained by the 

players participating in the coalitions. In this case, the 

optimal solution of Eq. (13) is applicable. 

 

4 Models for n-person interval-

valued cooperative games 
In this section, three new energy factories cooperative 

problem (adapted from [43]) is used to demonstrate the 

applicability of the proposed methods. 

 

4.1 Problem description 
Suppose that there are three new energy factories, 

denoted as players 1, 2, and 3, who have the ability to 

produce new energy separately. Three factories denoted 

the set of players by  1,2,3N = . In order to pursuit of 

more profits, three factories plan to work together for 

manufacturing a better new energy. Due to the 

uncertain and incomplete information, they cannot 

precisely forecast the profits obtain from the new 

energy. Generally, they only can estimate the ranges of 

their profits. Namely, the profit of a coalition S N  of 

the factories may be expressed with an interval number  

 

( ) ( ) ( )
_ _ _

,L Rv S v S v S
 

=  
 

. In this case, the optimal 

allocation problem of profits for the factories may be 

regarded as an three person interval-valued cooperative 

game 
_

v  in which the interval-valued characteristic 

function is equal to ( )
_

v S  for any coalition S N . Thus, 

if the factories manufacture the new energy by 

themselves, according to the information they have, they 

only can estimate the lower and upper limits of their 

profits, then the profits are expressed with the interval  

 

numbers ( )  
_

1 0,2v = , ( )
_ 1 3

2 ,
2 2

v
 

=  
 

, and ( )  
_

3 1,2v = ,  

 

respectively. Similarly, if any two factories cooperatively 

manufacture the new energy, then their profits are  

expressed with the interval numbers ( )  
_

1,2 2,3v = ,  

( )  
_

2,3 4,4v = , and ( )  
_

1,3 3,4v = , respectively. If all  

 

three factories, that is, the grand coalition N , 

cooperatively manufacture the new energy, then the profit 

is expressed with an interval number ( )  
_

1,2,3 6,7v = . 

 

For this example, the factories try to determine the 

range of the expected allocation from the grand coalition. 

In other words, the lower and upper bounds of the 

interval-valued allocation sets need to be determined. 

 

 

4.2 Illustration of the proposed models 

Let  
_

1 1 1,L Rx x x= ,  
_

2 2 2,L Rx x x=  and  
_

3 3 3,L Rx x x=  are 

respectively denote the allocation sets for three factories. 

In the following section, two linear programming models 

respectively without and with compromise limit 

constraints are constructed to obtain the allocation sets. 

 

 

Case 1: Model without compromise limit 

constraints 

 

If the players accept their allocation results without 

compromise limit constraints, according to Eq. (10), the 

linear programming model can be constructed as follows. 
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Solving above model by utilizing the software 

LINGO 11.0, we obtain the optimal solution and 

optimal decision variables as follows: 0z = ; 

1 3.5Lx = , 
1 4.5Rx = ; 

2 1Lx = , 
2 1Rx =  and 

3 1.5Lx = , 

3 1.5Rx = . Then the optimal allocation sets for players 

1, 2, and 3 as follows:  
_

1 3.5,4.5x = ,  
_

2 1,1x =  and 

 
_

3 1.5,1.5x = . 

 

 

Case 2: Model with compromise limit 

constraints 

 

If the players accept their allocation with 

compromise limit constraints, and suppose the 

compromise limit constraint values are equal, that is 

2S = = ,  1,2,3,12,13,23S  , according to 

Eq.(13), the programming model can be constructed as 

follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solving above model by utilizing the software 

LINGO 11.0, we obtain the optimal solution and optimal 

decision variables as follows: 0z = ; 
1 3.5Lx = , 

1 4.5Rx = ; 
2 1Lx = , 

2 1Rx =  and 
3 1.5Lx = , 

3 1.5Rx = . 

Then the optimal allocation sets for players 1, 2, and 3 as 

follows:  
_

1 3.5,4.5x = ,  
_

2 1,1x =  and  
_

3 1.5,1.5x = . 

 

4.3 Computational results and discussion 
To validate the feasibility of the proposed models, we 

conducted a comparative study with other methods based 

on the same illustrative example. 

Li [43] based on the proposed distance formula of 

interval numbers, developing quadratic programming 

models respectively consider without and with the 

efficiency constraint for solving above illustrative 

example. The interval-valued least square solution is 

derived by using Lagrange multiplier method. For a better 

comparison, the optimal solutions and optimal decision 

variables of Li [43]’s methods and the proposed methods  
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are showed in Table 1.For simplicity, the model 

without efficiency and compromise limit constrains is 

denoted Method 1, the model with efficiency but 

without compromise limit constrains is denoted 

Method 2, the model with efficiency but without 

compromise limit constrains is named Method 3 and 

the model with efficiency and compromise limit 

constrains is named Method 4. 

 

Table 1: Optimal allocation scheme obtained from 

different methods. 

 
Methods Optimal 

solution 

Optimal decision variables 

_

1x  
_

2x  
_

3x  

Li 

[43]’s 

metho

ds 

Method 

1 

7.06 13
,

16

31

16

 
 
 
 
  

 

25
,

16

27

16

 
 
 
 
  

 

37
,

16

39

16

 
 
 
 
  

 

Method 

2 

14 5
,

4

9

4

 
 
 
 
  

 

2,

2

 
 
 

 
11

,
4

11

4

 
 
 
 
  

 

Propo

sed 

metho

ds 

Method 

3 

0 3.5,

4.5

 
 
 

 
2.5,

2.5

 
 
 

 
1.5,

1.5

 
 
 

 

Method 

4 

0 3.5,

4.5

 
 
 

 
2.5,

2.5

 
 
 

 
1.5,

1.5

 
 
 

 

 

For the convenience of following discussion, the 

model without efficiency and compromise limit 

constrains in Li [43]’s methods is named Method 1. 

Other entries, that is, Methods 2 to 4, in Table 1 are 

similarly explained. Review from the Table 1, it can be 

easily found that, the optimal solutions and optimal 

decision variables obtained from Li [43]’s methods are 

different from the proposed methods, and they are also 

different from Method 1 and Method 2. The optimal 

solution obtained from Method 2 is the maximum. In 

contrast, the minimum is obtained from the proposed 

methods. Among the optimal decision variables, the 

optimal decision variables obtained from Method 1 

does not satisfy the individual rationality, that is  

 
3

1

13 25 37 75
6

16 16 16 16
iL

i

x
=

= + + =  , and  

 
3

1

31 27 39 97
7

16 16 16 16
iR

i

x
=

= + + =  .  

Obviously, the optimal decision variables obtained 

from other methods satisfy the individual rationality. 

The reason for the differences among Li [43]’s 

methods and the proposed methods is explained as 

follows: the quadratic programming models presented in 

Li [43]’s methods are based on the distance formula of 

proposed interval numbers, while the proposed 

programming model based on undominated nonnegative 

excess vector whose total coalitional is minimized. The 

different perspectives for solving the problems lead to 

different decision-making results. Since the distance 

formula used in Li [43]’s methods has some shortcoming, 

that is, the distance formula does not satisfy triangle 

inequality. But the proposed methods do not use the 

distance formula of interval numbers. Based on this fact, 

the optimal solutions and optimal decision variables 

obtained from the proposed methods seem more 

convincing. In addition, the models with different limit 

constrains also lead to different optimal solutions and 

optimal decision variables, the proposed methods 

respectively considering without and with compromise 

limit constrains, these methods are applicable to different 

cooperative background, while Li [43]’s methods do not 

consider this aspect. 

Moreover, from the objective functions presented in 

Li [43]’s methods and the proposed methods, we find that 

the smaller the objective function value, the better the 

imputation result. Based on this fact, the results obtain 

from the proposed methods are the most optimal. In 

addition, the optimal decision variables sets not only 

demonstrate the ranking of the players’ expected 

allocation, but also the differences between the allocation 

sets. For a better comparison, the ranking of allocation 

sets and differences between the allocation sets obtained 

from Li [43]’s methods and the proposed methods are 

showed in Table 2. 

 

Table 2: Differences between the allocation sets obtained 

from different methods. 

 

Methods  The ranking of 

allocation sets 

Differences 

between the 

allocation sets 

Li [43]’s 

methods 

Method 1 _ _ _

3 1 2x x x  
3.6667 

 Method 2 _ _ _

3 1 2x x x  
5 

Proposed 

methods 

Method 3 _ _ _

1 3 2x x x  
6.58 

Method 4 _ _ _

1 3 2x x x  
6.58 

 

Take the values of ranking of allocation sets and the 

differences between the allocation sets in Method 1 for 

example, according to Eq. (6), we have: 
_

1,0 1.75D x
 

= 
 

, 

_

2 ,0 1.6667D x
 

= 
 

 and 
_

3 ,0 2.4167D x
 

= 
 

. Since 

_ _ _

3 1 2,0 ,0 ,0D x D x D x
     

      
     

, then we have 
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_ _ _

3 1 2x x x . Moreover, since 
_ _

1 2, 0.5833D x x
 

= 
 

, 

_ _

1 3, 1.3333D x x
 

= 
 

 and 
_ _

2 3, 1.7500D x x
 

= 
 

, then the 

differences between the allocation sets is 
_ _ _ _ _ _

1 2 1 3 2 3, , , 3.6667D x x D x x D x x
     

+ + =     
     

. Other  

 

values can be obtained in a similar way. Review from 

the computational results in table 2, we find that, the 

ranking of the allocation sets and the differences 

between the allocation sets obtained from different 

methods are different. The ranking of allocation sets 

obtain from Li [43]’s methods is 
_ _ _

3 1 2x x x , while 

obtain from proposed methods is 
_ _ _

1 3 2x x x . And 

the differences between the allocation sets are also 

different. The differences between the imputation sets 

obtain from proposed methods is the greatest, while 

obtain from Method 1 is the least. It can be easily 

found that the smaller the differences between the 

allocation sets, the allocation results are easier to be 

accepted for all the players, and more stable of the 

coalition. Based on this fact, the allocation sets 

presented in Method 1 is the best one. 

According to the comparison analysis, the 

methods presented in this study have the following 

advantages over the other methods considered. 

(1) The proposed models taking into account the 

compromise limit of coalitions. To ensure the benefits 

of the coalitions, different coalitions may have 

different compromise limit constraints. However, the 

models showed in Li [43]’s methods do not consider 

this aspect. 

(2) The proposed methods based on undominated 

nonnegative excess vector whose total coalitional is 

minimized seems more reasonable than Li [43]’s 

method. Since the distance formula used in Li [43]’s 

method has some shortcomings. For that, the optimal 

solutions and optimal decision variables obtained from 

the proposed methods seem more convincing. 

 

4.4 Sensitivity analysis 
According to the previous discussion, the relationships 

between the proposed models Eq. (10) and Eq. (13) can 

be concluded as follows: the model presents in Eq. (13) 

take into accounted the compromise limit constrains of 

players while Eq. (10) discard this aspect. And the Eq. 

(13) is reduced to the Eq. (10) if all coalitions’ 

compromise limit constraints tend to infinity such that 

 →  . To better present the conclusion, the 

numerical analysis results under different values of   

are showed in the table 3. 

 

Table 3: The optimal solutions and optimal decision 

variables under different values of  . 

 

Compr

omise 

limit 

values 

Optimal 

solutions 

Optimal decision variables 

_

1x  
_

2x  
_

3x  

1.0 0  3.5, 4.5   2.5,2.5   1.5,1.5  

1.5 0  3.5, 4.5   2.5,2.5   1.5,1.5  

2.0 0  3.5, 4.5   2.5,2.5   1.5,1.5  

2.5 0  3.5, 4.5   2.5,2.5   1.5,1.5  

3.0 0  3.5, 4.5   2.5,2.5   1.5,1.5  

3.5 0  3.5, 4.5   2.5,2.5   1.5,1.5  

4.0 0  3.5, 4.5   2.5,2.5   1.5,1.5  

4.5 0  3.5, 4.5   2.5,2.5   1.5,1.5  

5.0 0  3.5, 4.5   2.5,2.5   1.5,1.5  

5.5 0  3.5, 4.5   2.5,2.5   1.5,1.5  

6.0 0  3.5, 4.5   2.5,2.5   1.5,1.5  

 

Review from the computational results present in 

table 3, we find that, the optimal decision variables and 

optimal solutions keep the same when the compromise 

limit values vary from 1.0 to 6.0, in this case, Eq. (13) is 

reduced to the Eq. (10), that is, there is no effect on the 

allocation results with the compromise limit constrains 

take into accounted in the model. 

 

5 Conclusion 
The aim of the paper is to develop several linear 

programming models for interval-valued cooperative 

games in which considering the coalitions’ compromise 

limit constraints. First, the profits allocation model with 

undominated nonnegative excess vector is extended to 

interval-valued fuzzy environments. Second, several 

linear programming models are constructed respectively 

considering without and with coalitions’ compromise 

limit constraints. Third, an illustrative example in 

conjunction with comparative analyses is employed to 

demonstrate the validity and applicability of the 

proposed models. Finally, the relationship of the models 

is discussed between without and with coalitions’ 

compromise limit constraints. 

The main contributions of this work are 

highlighted at three aspects: (1) the proposed models 

taking into account the compromise limit constraints of 

coalitions. To ensure the benefits of the coalition, 

different coalitions may have different compromise 

limit constraints. Based on this fact, the proposed 

methods are applicable to different cooperative 

background. (2) To address the coalition’s payoffs are 

interval numbers, the profits allocation model with 

undominated nonnegative excess vector is extended to 

interval-valued fuzzy environments. (3) The differences 

between the allocation sets are discussed in this study, it 
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can assist the players to choose stable coalition if 

they obtain several allocations sets at the same time. 

In the further study, the coalitions have different 

compromise limit constraints will be discussed. 

 

Acknowledgement 

The authors thank the anonymous reviewers and the 

editor for their insightful and constructive comments 

and suggestions that have led to an improved version 

of this paper. This work was supported by the 

National Natural Science Foundation of China 

(Nos.72061026), the Natural Science Foundation of 

Guangxi (Nos. 2020GXNSFAA297239), the Science 

and Technology Plan of Guangxi (gui ke 

AD20238006), the Young Teachers’ Basic Scientific 

Research Ability in Universities of Guangxi (No. 

2022KY0387 and 2021KY1563), by the National 

Natural Science Foundation of China (Nos.71971086) 

and the Guangdong Basic and Applied Basic Research 

Foundation (No.2019B151502037). The Natural 

Science Foundation of China (No.62106135), the 

Guangdong Basic and Applied Basic research 

Foundation (No.2020A1515110434), the Foundation 

for the Philosophy and Social Science Planning 

Project of Guangdong Province (No.GD20YGL13), 

and the Start-up Research Science Fund of Shantou 

University (No.STF19025). 

 

References 
 
[1] K. Maafa, L. Nourine, M.S. Radjef, Algorithms for 

computing the Shapley value of cooperative games 

on lattices, Discrete Applied Mathematics, 249 

(2018) 91-105. 

[2] A. Casajus, F. Huettner, Calculating direct and 

indirect contributions of players in cooperative 

games via the multi-linear extension, Economics 

Letters, 164 (2018) 27-30. 

[3] G. Koshevoy, T. Suzuki, D. Talman, Cooperative 

games with restricted formation of coalitions, 

Discrete Applied Mathematics, 218 (2017) 1-13. 

[4] S. Borkotokey, P. Hazarika, R. Mesiar, Fuzzy Bi-

cooperative games in multilinear extension form, 

Fuzzy Sets and Systems, 259 (2015) 44-55. 

[5] F. Navarro, The center value: A sharing rule for 

cooperative games on acyclic graphs, Mathematical 

Social Sciences, 105 (2020) 1-13. 

[6] J.M. Bilbao, T. Driessen, A.J. Losada, E. Lebrón, 

The Shapley value for games on matroids: The 

static model, Mathematical Methods of Operations 

Research, 53 (2001) 333-348. 

[7] J.M. Bilbao, T. Driessen, O. Stein, The Shapley 

value for games on matroids: The dynamic model, 

Mathematical Methods of Operations Research, 56 

(2002) 287-301. 

[8] F. Meng, J. Tang, B. Ma, Q. Zhang, Proportional 

coalition values for monotonic games on convex 

geometries with a coalition structure, Journal of 

Computational and Applied Mathematics, 348 

(2019) 34-47. 

[9] S. Béal, S. Ferrières, E. Rémila, P. Solal, The 

proportional Shapley value and applications, Games 

and Economic Behavior, 108 (2018) 93-112. 

[10] J. Derks, The Shapley value of conjunctive-restricted 

games, Games and Economic Behavior, 108 (2018) 

146-151. 

[11] R. van den Brink, R. Levínský, M. Zelený, The 

Shapley value, the Proper Shapley value, and sharing 

rules for cooperative ventures, Operations Research 

Letters, 48 (2020) 55-60. 

[12] I. Martino, Face module for realizable Z-matroids, 

Contributions to Discrete Mathematics, 13 (2018) 74-

87. 

[13] I. Martino, Probabilistic values for simplicial 

complexes, arXiv, (2020) 2001.05820. 

[14] I. Martino, Cooperative games on simplicial 

complexes, Discrete Applied Mathematics, 288 (2021) 

246-256. 

[15] I. Martino, Efficiency scenarios for fair division 

problems, arXiv, (2020) 2001.00779. 

[16] Q.Q. Kong, H. Sun, G.J. Xu, D.S. Hou, The general 

prenucleolus of n-person cooperative fuzzy games, 

Fuzzy Sets and Systems, (2018) 23-41. 

[17] Z. Yang, A.Q. Wang, Existence and stability of the α-

core for fuzzy games, Fuzzy Sets and Systems, 341 

(2018) 59-68. 

[18] J.R. Fernández, I. Gallego, A. Jiménez-Losada, M. 

Ordóñez, The cg-position value for games on fuzzy 

communication structures, Fuzzy Sets and Systems, 

341 (2018) 37-58. 

[19] J.Q. Liu, X.D. Liu, Y. Huang, W.B. Yang, Existence 

of an Aumann–Maschler fuzzy bargaining set and 

fuzzy kernels in TU fuzzy games, Fuzzy Sets and 

Systems, 349 (2018) 53-63. 

[20] M. Basallote, C. Hernández-Mancera, A. Jiménez-

Losada, A new Shapley value for games with fuzzy 

coalitions, Fuzzy Sets and Systems, 383 (2020) 51-67. 

[21] L. Monroy, M.A. Hinojosa, A.M. Mármol, F.R. 

Fernández, Set-valued cooperative games with fuzzy 

payoffs. The fuzzy assignment game, European 

Journal of Operational Research, 225 (2013) 85-90. 

[22] Z.X. Zou, Q. Zhang, Generalized Shapley function 

for cooperative games with fuzzy payoffs, Journal of 

Intelligent & Fuzzy Systems, 33 (2017) 3295-3308. 

[23] J.W. Gao, Y.S. Yu, Credibilistic extensive game with 

fuzzy payoffs, Soft Computing, 17 (2013) 557-567. 

[24] H.-C. Wu, Cores and dominance cores of cooperative 

games endowed with fuzzy payoffs, Fuzzy 

Optimization and Decision Making, 18 (2019) 219-

257. 

[25] H.C. Wu, Cores of fuzzy games and their convexity, 

Fuzzy Sets and Systems, 198 (2012) 59-69. 

[26] X.D. Liu, J.Q. Liu, C. Li, Average monotonic 

cooperative fuzzy games, Fuzzy Sets and Systems, 231 

(2013) 95-107. 

[27] J.M. Gallardo, N. Jiménez, A. Jiménez-Losada, 

Nontransferable utility games with fuzzy coalition 

restrictions, Fuzzy Sets and Systems, 349 (2018) 42-

52. 

[28] X. Yu, Z. Du, Z. Zou, Q. Zhang, Z. Zhou, Fuzzy 

Harsanyi solution for a kind of fuzzy coalition games, 



72   Informatica 46 (2022) 61-72                                                                                                                         J. Li et al. 

Fuzzy Sets and Systems, 383 (2020) 27-50. 

[29] X.H. Yu, Q. Zhang, Z. Zhou, Linear fuzzy game 

with coalition interaction and its coincident 

solutions, Fuzzy Sets and Systems, 349 (2018) 1-

22. 

[30] L. Mallozzi, V. Scalzo, S. Tijs, Fuzzy interval 

cooperative games, Fuzzy Sets and Systems, 165 

(2011) 98-105. 

[31] S.Z. Alparslan-Gök, S. Miquel, S. Tijs, 

Cooperation under interval uncertainty, 

Mathematical Methods of Operations Research, 69 

(2009) 99-109. 

[32] S.Z. Alparslan-Gök, R. Branzei, S. Tijs, The 

interval Shapley value: an axiomatization, Central 

European Journal of Operations Research, 18 

(2010) 131-140. 

[33] S.Z. Alparslan-Gök, O. Branzei, R. Branzei, S. 

Tijs, Set-valued solution concepts using interval-

type payoffs for interval games, Journal of 

Mathematical Economics, 47 (2011) 621-626. 

[34] W.B. Han, H. Sun, G.J. Xu, A new approach of 

cooperative interval games: The interval core and 

Shapley value revisited, Operations Research 

Letters, 40 (2012) 462-468. 

[35] F.Y. Meng, X.H. Chen, C.Q. Tan, Cooperative 

fuzzy games with interval characteristic functions, 

Operational Research, 16 (2016) 1-24. 

[36] F.X. Hong, D.F. Li, Nonlinear programming 

method for interval-valued n-person cooperative 

games, Operational Research, 17 (2016) 1-19. 

[37] D.F. Li, Y.F. Ye, Interval-valued least square 

prenucleolus of interval-valued cooperative games 

and a simplified method, Operational Research, 

(2016) 1-16. 

[38] K. Liang, D. Li, A direct method of interval 

Banzhaf values of interval cooperative games, 

Journal of Systems Science and Systems 

Engineering, 28 (2019) 382-391. 

[39] J. Li, J.Q. Wang, J.H. Hu, Interval-valued n-person 

cooperative games with satisfactory degree 

constraints, Central European Journal of Operations 

Research, 27 (2019) 1177-1194. 

[40] J.M. Gallardo, A. Jiménez-Losada, A 

characterization of the Shapley value for 

cooperative games with fuzzy characteristic 

function, Fuzzy Sets and Systems, 398 (2019) 98-

111  

[41] R.E. Moore, Methods and applications of interval 

analysis, SIAM Studies in Applied Mathematics, 

Philadelphia,1979: 20-25, 1979. 

[42] R. Branzei, O. Branzei, S.Z.A. Gök, S. Tijs, 

Cooperative interval games: a survey, Central 

European Journal of Operations Research, 18 

(2010) 397-411. 

[43] D.F. Li, Models and methods of interval-valued 

cooperative games in economic management, 

Springer, 2016: 1-43, 2016. 

[44] D. Schmeidler, The Nucleolus of a Characteristic 

Function Game, Siam Journal on Applied 

Mathematics, 17 (1969) 1163-1170. 

[45] H. Chen, Undominated nonnegative excesses and 

core extensions of transferable utility games, European 

Journal of Operational Research, 261 (2017) 222-233. 

[46] R. Moore, Methods and Applications of Interval 

Analysis, in:  SIAM Studies in Applied Mathematiic, 

Philadelphia, 1979. 

[47] H.T. Banks, A differential calculus for 

multifunctions, Journal of Mathematical Analysis & 

Applications, 29 (1970) 246-272. 

[48] H. Ishibuchi, H. Tanaka, Multiobjective programming 

in optimization of the interval objective function, 

European Journal of Operational Research, 48 (1990) 

219-225. 

[49] B. Zhang, H. Liang, G. Zhang, Reaching a consensus 

with minimum adjustment in MAGDM with hesitant 

fuzzy linguistic term sets, Information Fusion, 42 

(2018) 12-23. 

 


