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Three modifications to the framework within which hyper-heuristic approaches operate are presented. 
The first modification automates a self learning mechanism for updating the values of parameters in the 
choice function used by the controller. Second, a procedure for dynamically configuring a range of low-
level heuristics is described. Third, in order to effectively use this range of low-level heuristics the 
controller is redesigned to form a hierarchy of sub-controllers. The second and third modifications 
improve the inflexibility associated with having a limited number of low-level heuristics available to the 
controller. Experiments are used to investigate features of the hyper-heuristic framework and the three 
modifications including comparisons with previously published results.

Povzetek: Opisane so tri modifikacije hiper-hevrističnih pristopov.

1 Introduction
As the complexity of optimisation problems increases 
methods which guarantee optimal solutions place 
excessive demands on computation time and computer 
resources. Alternative approaches have been developed 
including: heuristics, meta-heuristics, combinations of 
meta-heuristics referred to as hybrids, and more recently 
hyper-heuristics. Generally, these approaches do not 
guarantee optimal solutions but instead provide solutions 
of acceptable quality obtained with acceptable demands 
on algorithm development, tuning time, computation 
time, and computer resources. Surveys and comparisons 
among these approaches are presented in [1-9]. 

Heuristic approaches use rules derived from 
experience or intuition as opposed to those derived from 
mathematical formulations and they produce reasonable 
computational performance with conceptual simplicity. 
Problem specific knowledge is applied at the heuristic 
design phase and increases effectiveness but limits 
reusability for problems in other domains. Heuristic 
approaches have been applied successfully to a variety of 
specific problems including: resource investment [10]; 
resource usage [11]; project finance scheduling [12]; 
flow-shop scheduling [13]; graph colouring [14]; and 
train pathing [15]. Meta-heuristic approaches employ 
artificial intelligence methods and are different from 
simple heuristics in the manner in which the problem is 
modelled by attempting to prescribe more generic 
structures. Simulated annealing [16], tabu search [17], 
genetic algorithms [18], ant colony [19] and particle 
swarm optimisation [20], hill climbing and local search 
[21], and differential evolution [22] are well known 
meta-heuristic approaches. Interest in meta-heuristics has 
generated the development of hybrid approaches [8] and 
recent significant advances have combined meta-

heuristics with other problem solving paradigms and 
improved their use in important application areas [23]. 
However, due to the evolutionary nature of meta-
heuristic approaches the computation time may be 
unpredictable and there is often a need for a training 
period in order to tune the approach to the problem.

The aim of hyper-heuristic approaches is to be able 
to use the same procedures within and across problem 
domains without the need for extensive change to the 
basic components thus handling classes of problems 
rather than addressing one type of problem [24-28]. 
While most applications of meta-heuristics explore a 
search space of problem solutions hyper-heuristics 
explore a search space of low-level heuristics in order to 
select and apply an appropriate low-level heuristic. The 
framework in which hyper-heuristic approaches operate 
is presented in Figure 1 where at each stage of the search 
the controller uses information about the past 
performance of the low-level heuristics in order to select 
one to be used in the next stage. The selection is often 
made using a choice function and this process continues 
until a stopping condition is satisfied and the best 
solution is determined based on the value of the cost 
function.

Figure 1: Hyper-heuristic framework.
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The set of low level heuristics used by the controller are: 
pre-designed; limited in number; often involve add, drop, 
and swap operations; and remain the same throughout the 
search. They are problem specific and have limited 
reusability [29, 30]. Problems often include soft 
constraints, which may be violated, and hard constraints, 
which must not be violated, and these are usually 
assigned low and high positive weights, respectively, by 
the user. For any solution the value of the cost function is 
the sum of the weights associated with the constraints 
which are violated and for a feasible solution all of the 
hard constraints are satisfied.

The purpose of this article is to investigate three 
modifications to the hyper-heuristic framework The first 
modification (section 2.1) introduces a self learning 
mechanism for updating the values of choice function 
parameters so that the selection of low-level heuristics 
may be intensified or diversified appropriately. The 
second (section 2.2) introduces a procedure for 
dynamically configuring low-level heuristics in order to 
make a range of low-level heuristics available to the 
controller. In order to select effectively from this range 
of low-level heuristics the controller is redesigned 
(section 2.3) to form a hierarchy of sub-controllers each 
using the choice function described in section 2.1 and the 
dynamic configuration procedure described in section 
2.2. Section 3 presents the results of experiments related 
to each of the three modifications including comparisons 
with previously published results. Section 4 discusses the 
results and draws conclusions. An Appendix is used to 
present details associated with the updating of choice 
function parameters.

2 Modifications to the hyper-
heuristic framework

This section describes the three modifications to the 
hyper-heuristic framework in Figure 1.

2.1 Modifications to the choice function
The choice function proposed by Cowling et al. [30] and 
Soubeiga [31] is modified to allow the values of 
parameters to be updated automatically independently of 
any problem specific knowledge. The procedures work 
with complete rather than partial solutions and there is no 
need for an initial training period. The adjustment of 
parameters allows the search procedure to be intensified 
or diversified thus enhancing its applicability within and 
between problem domains. In cost minimisation
problems the choice function selects a low-level heuristic 
by assessing the efficiency of the past performance of 
each of the low-level heuristics in decreasing the value of 
the cost function. Some may consistently decrease the 
value of the cost function and selection may be 
intensified on them. However, this may result in 
convergence to a local rather than global optimum and in 
such cases the choice function needs to select a low-level 
heuristic that diversifies the search to other parts of the 
solution space. Thus a suitable choice function should 
include factors which intensify or diversify the search 

appropriately. If at each stage of the search the low-level 

heuristics mHHHH ,,,, 321  are available to the 

choice function ( F ) then a value of F is computed for 
each low-level heuristic using,

       jjjj HfHfHfHF 321  , 

for j = 1, 2, 3, , m.                                                     (1)

The three factors in (1) represent: the past performance 

of the low-level heuristic ( 1f ); the paired past 

performance of the low-level heuristic ( 2f ); and the 

time since the low-level heuristic was last selected ( 3f ). 

The first two factors are associated with intensifying the 
search while the last is associated with diversifying the 
search. In the Appendix section A1 each of the three 
factors is defined and the procedures for modifying 
parameters are presented in section A2. At the start of the 
search a solution is determined and one of the low-level 
heuristics is selected at random and applied to that 
solution. Information required in equations (A1), (A2), 
(A3), and (1) is updated and stored. The controller uses 
this information in (1) to determine the low-level 
heuristic with the largest value for F and then using the 
procedures to adjust parameters this low-level heuristic 
or a different one is determined and used in the next 
iteration of the search. Subsequent iterations are 
conducted in the same manner until a stopping rule is 
satisfied and then the best solution among all of the 
solutions is selected as the final solution. The process is 
stochastic and a transition from one solution to another in 
the solution space is made using information about all of 
the previous transitions. Consequently, the process is not 
a Markov process and probabilistic equilibrium among 
the solutions is not attained [32]. Unless stated otherwise 
the choice function in (1) is used in all of the subsequent 
modifications and experiments.

2.2 Dynamically configured low-level 
heuristics

Swap-based low-level heuristics are used often and 
instead of generating a solution from scratch these low-
level heuristics perform an exchange of attribute(s) 
between at least two swap candidates. For example, in a 
university timetabling problem an exchange may include 
swapping the days on which 2 classes are scheduled. 
Such low-level heuristics normally use problem specific 
knowledge in their design and applying them to different 
types of problems without any modification is usually 
infeasible. Different swap-based heuristics may be 
designed by choosing different configuration options at 
each of a set of configuration decision points. Examples 
of configuration options that may be selected at 4 
commonly used configuration decision points are shown 
in Table 1.

Configuration Decision Points 1:
The Number of Swap Candidates (λ)
Example Configuration Options:
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Configuration Decision Points 1:
The Number of Swap Candidates (λ)

1. Two swap candidates?
2. More than two swap candidates?

Comments: Determines the number of swap candidates 
involved in any trial swap process.

Configuration Decision Point 2:
Formation of λ Swap Candidate Sets
Example Configuration Options:

1. Non-violated assignments?
2. Violated assignments?

Comments: Specifies the swap candidate for each of the 
candidate sets.

Configuration Decision Point 3:
Ordering Candidates in the λ Swap Candidate Sets
Example Configuration Options:

1. Slot number? 
2. Ascending cost?

Comments: Specifies the order in which the swap 
candidate from each candidate set enters the trial swap 
process.

Configuration Decision Point 4:
Acceptance Criteria
Example Configuration Options:

1. Best Solution?

Comments: The trial swap process terminates when a 
solution satisfies the acceptance criteria and then the 
solution is returned to the controller.
Table 1: An example of configuration options associated 

with 4 configuration decision points.

From Table 1 it is seen that the number of configuration 
options at decision points 2 and 3 depends on the number 
of swap candidates (λ) chosen at decision point 1 and two 
or three swap candidates are commonly used. When 
forming swap candidate sets at decision point 2 the swap 
candidates may be shared among the sets formed.

The restrictions of using a fixed and limited number 
of problem specific low-level heuristics may be 
addressed by dynamically configuring swap-based low-
level heuristics and using a hierarchical design for the 
controller. Dynamic configuration is discussed next and 
the design of a hierarchical controller is presented in 
section 2.3.

Figure 2(a) elaborates on elements of the framework 
in Figure 1 and represents a non-dynamic approach 
where the controller uses the choice function to select a 
low-level heuristic from a fixed set of usually no more 
than 10 swap-based low-level heuristics. Figure 2(b) 
presents the framework for an approach where the swap-
based low-level heuristics are dynamically configured by 
the controller which selects configuration options at 
decision points as illustrated in Table 1 using a choice 
function of the same form as that used by the controller 

Figure 2(a) but with low-level heuristics replaced by 
configuration options. Dynamically configured low-level 
heuristics are generated and applied to the current 
solution and performance measures for configurations of 
these low-level heuristics are accumulated.

Figure 2 (a): Non-dynamic approach.

Figure 2 (b): Dynamically configured approach.

The use of a single choice function in the dynamic 
approach limits the total number of configuration options 
that the controller can work with effectively. 
Consequently, in order to improve the effectiveness of 
the dynamic approach the design of the controller needs 
to be reconsidered.

2.3 A hierarchical controller design
A new hierarchical design which operates in the 
controller component in Figure 2(b) is shown in Figure 3.

Figure 3: Hierarchical controller design.
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Each component in Figure 3 is regarded as a sub-hyper-
heuristic controller each of which uses a choice function 

where the low-level heuristic jH now represents a 

configuration option or a combination of configuration 
options depending on the level at which the sub-
controller is operating. Information about the 
performance of configuration options or combinations of 
them is used to choose configuration options at different 
configuration decision points in the same manner as low-
level heuristics were selected in the non-dynamic 
situation. There are 3 levels of sub-controllers in the 
hierarchy. The number of sub-controllers at the bottom 
level depends on the number of swap candidate sets 
formed (λ in Table 1). Figure 3 shows the case where λ = 
2 and five sub-controllers are used: two for forming swap 
candidate sets; two for ordering swap candidate sets; and 
one for acceptance criteria. The middle level sub-
controller chooses combinations of configuration options 
based on their performance in trails using the sets of 
configuration options generated at the bottom level. 
These configuration options are combined to form a low-
level heuristic at the top level which is used in the next 
stage of the search.

3 Experiments
Published data sets and results for two different sets of 
problems are used in the experiments: international 
university timetabling competition problems 
(www.idsia.ch/Files/ttcomp2002/); and transportation 
services timetabling problems [33]. In order to allow 
comparisons experiments are designed to conform to the 
conditions associated with the published experimental 
results.

3.1 Experiments 1: The choice function
Two methods are investigated for generating an initial 
solution for a university timetabling problem: a random 
approach, which assigns random events (classes) to 
random slots (day, time, and room); and a greedy 
algorithm, which assigns an event to its best slot. On 
average across 5 experimental runs there are 1000 hard 
constraint violations in a randomly generated initial 
solution but only 200 for a greedily assigned solution. 
Consequently, greedy assignment is proposed for 
generating the initial solution used with a choice 
function.

Both of these methods are examined further by 
considering the average percentage of improvement 

in the cost of the initial solution if the search is allowed 
to continue for 1 minute and the results are shown in 
Figure 4. Table 2 shows the average number of hard and 
soft constraint violations for both methods at the end of 5 
and 7 minutes.

Time Limit: 5 Minutes
Methods Number of HCV Number of SCV
Random 8.7 1152.9
Greedy 0 921.6

Time Limit: 7 Minutes
Methods Number of HCV Number of SCV
Random 0 767.8
Greedy 0 598.4

Table 2: The number of hard and soft constraint 
violations (HCV and SCV respectively) after 5 and 7 

minutes.

From Figure 4 and Table 2 it is seen that beyond the 
initial solution the greedy assignment method continues 
to produce better results than the random method. In 
particular, the patterns in Figure 4 demonstrate the more 
general result that as the number of constraint violations 
decreases it becomes more difficult to reduce the number 
of constraint violations.

The results in Table 3 show the average costs of 
solutions across 10 experiment runs on each of 17 
university timetabling problems using the choice 
function with and without automatic parameter 
modification. The values for the parameters ,  , and 

 in equations (A1), (A2), and (A3) are set randomly at 
0.7, 0.5 and 0.1, respectively, at the start of the search 
and the same set of 7 low-level heuristics is used for all 
of the problems.

Problems Without Parameter 
Modification

With Parameter 
Modification

1 118.2 89.5
2 104.1 77
3 117.5 80.8
4 234 175.9
5 199.2 139.5
6 255 188.5
7 120.8 84.4

Figure 4: The percentage of improvement in the cost 
of the initial solution during the first minute.
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Problems Without Parameter 
Modification

With Parameter 
Modification

8 103.6 71.9
9 124.3 89

10 122.2 85.2
11 155.7 107.6
12 185.1 127.3
13 96.8 75.1
14 255.9 186
15 91 64.2
16 195.1 188.8
17 141.7 99.3

Table 3: The cost of solutions with and without 
parameter modification in the choice function.

From Table 3 it is seen that modification of the 
parameters reduces the average cost of the solutions for 
every problem. Although not shown here the same 
outcome occurs when the initial values of the parameters 
vary. From these experiments it is evident that automatic 
parameter modification is a useful enhancement to the 
choice function.

The next experiments examine the effect of varying 
the number of low-level heuristics available to the 
controller. In order to ensure that the results are not 
affected by the quality of the low-level heuristics used in 
each experiment all low-level heuristics are idle except 
for one which performs a simple swap on the solution. 
The idle heuristics may be selected by the controller and 
vary in terms of the time they take to execute but they 
have no effect on the solutions. Two problems are used 
from the university timetabling competition (U1, U2) and 
the transportation services timetabling (T1, T2) data sets. 
The number of low-level heuristics varies from 5 to 40 
and in each case results are averaged across 5 
experimental runs. The entries in Table 4 represent the 
percentage of calls received by the non-idle low-level 
heuristic above the percentage expected if it is called at 
random. For example, in problem U1 with 20 low-level 
heuristics the non-idle low-level heuristic received on 
average 27 percent of all of the calls which is 22 percent 
above the 5 percent expected if 20 low-level heuristics 
are called at random.  

Problems
Number of Low-level Heuristics

5 10 15 20 25 30 35 40
Problem U1 56 52 30 22 12 11 10 10
Problem U2 51 49 34 25 20 15 11 11
Problem T1 41 44 39 33 25 20 15 14
Problem T2 38 42 38 31 27 23 19 18

Table 4: The effects of increasing the number of low-
level heuristics.

For each problem in Table 4 it is seen that as the number 
of low-level heuristics increases the idle low-level 
heuristics, which contribute nothing to the quality of the 
solution, are being called increasingly and the selection 
of low-level heuristics becomes almost random when 
there are a large number of low-level heuristics. 

Figure 5 illustrates the effect over time on the cost of 
the solution of increasing the number of low-level 
heuristics.

Figure 5: The number of low-level heuristics and the 
solution cost.

In Figure 5 it is seen that as the number of low-level 
heuristics increases it takes longer to establish good 
performance measures for them. This is evidenced by the 
flatter curve for 20 low-level heuristics compared to the 
curves for 5 or 10. For only 2 low-level heuristics 
performance measures are established earlier than in the 
other cases but there is much less opportunity to diversify 
the search and this makes it more difficult to escape from 
a local optimum. Based on the results in Table 3 and 
Figure 5 it is appropriate to recommended that the 
number of low-level heuristics should not be more than 
10 or less than 5.

Figure 6 compares the average percentage of 
improvement across 5 experimental runs in the cost of 
the initial solution using the choice function approach, 
greedy selection, and random selection where for the 
greedy selection method low-level heuristics are selected 
and applied until no improvement is obtained and then a 
new low-level heuristic is selected. A university 
timetabling competition problem data set is used.

Figure 6: Improvement in the cost of the initial solution.

From Figure 6 it is seen that the choice function method 
consistently improves the initial solution more than either 
of the other methods. It is unlikely that the random 
approach will obtain similar quality solutions as the 
choice function even if more time is allowed. Random 
selection has a smoother improvement curve than greedy 
selection which has sharp improvement which flattens 
out quickly. The choice function has an even sharper 
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improvement. On average it reduces almost 90 percent of 
the cost of the initial solution within the first 20 seconds 
and reduces it by almost 100 percent after 50 seconds.

3.2 Experiments 2: Dynamic configuration 
of low-level heuristics

Using problems from the university timetabling 
competition these experiments examine different 
configurations in terms of: their ability to improve, 
worsen, or not change solution costs; their effect on 
different constraints; and their performance on different 
problems. Table 5 lists the configuration options used for 
forming candidate sets and acceptance criteria where the 
swap candidates in both sets are ordered based on their 
cost.

Index Forming Candidate Configuration Options
0 All slots
1 Occupied slots
2 Empty slots
3 Feasible slots
4 Infeasible slots
5 Constraint violated slots (specific constraint)
6 Non violated slots

Index Acceptance Criteria
0 First cost improvement
1 First feasibility improvement
2 Minimum cost
3 Maximum feasibility
4 Minimum cost improvement
5 Maximum feasibility improvement

Table 5: Configuration options for forming candidate sets 
and acceptance criteria.

In Table 5 the forming candidate configuration options 
specify which slots in the solution will be selected and 
used as the swap candidates. The slots can be divided 
into occupied and empty slots. Empty slots do not have 
events assigned to them and are therefore always 
feasible. Occupied slots can be feasible or infeasible. 
Infeasible slots are those assignments that violate hard 
constraints. These occupied slots can be further divided 
based on the number of violations for specific types of 
constraints and can also be assignments that have no 
constraint violations. At the end of each trial swap the 
acceptance criteria are checked. The acceptance criteria
used improve either the cost or feasibility of the solution. 
The acceptance criteria can be specified to accept the 
first solution that satisfies one or both of these objectives. 
The minimum cost and maximum feasibility acceptance 
criteria include the selection of solutions that decrease 
the value of the cost function. Using the 7 configuration 
options and the ordering of swap candidates based on 
cost for each of the 2 swap candidate sets and the 6 
acceptance criteria options a total of 294 (i.e. 
7x1x7x1x6) low-level heuristics are generated and more 

are generated if there is more than 1 option for ordering 
swap candidates in the 2 candidate sets.

The configurations derived from Table 5 are
categorised according to their performance. If the largest 
percentage of all of the calls made on a configuration 
produce an improved solution then the configuration is
categorised as ‘improving’ and similarly configurations 
may be categorised as ‘unchanging’ or ‘worsening’. 
Table 6 shows the results for the first problem in the 
university timetabling competition when random 
selection is used to dynamically configure the 
configuration options. The top 3 configurations in each 
of the 3 categories are shown. The meaning of the entries 
in Table 6 is explained using the example of the best 
configuration in the ‘improving’ category (i.e. 2-5-2 
(90.95%)). From Table 5 this means that the 
configuration is generated by choosing ‘Empty slots’ as 
the candidates for the first candidate set, ‘Constraint 
violated slots’ as the candidates for the second candidate 
set, ‘Minimum cost’ as the acceptance criteria, and on 
average 90.95 percent of the times when it is called this 
configuration improves the solution. 

Unchanging Worsening Improving
2-3-3 (93.13%) 5-0-2 (62.12%) 2-5-2 (90.95%)
2-6-3 (91.27%) 5-0-3 (60.83%) 2-0-5 (90.57%)
3-6-3 (89.95%) 5-6-3 (59.77%) 2-5-5 (90.47%)

Table 6: Top 3 configurations for performance 
categories.

From Table 6 it is seen that some configurations do 
not lead to improvement in the cost but they may be used 
for diversifying the search. For example, using 
configurations that are associated with worsening costs 
would lead to diversification and this is often desirable. 
Configurations with high chances of improving costs are 
appropriate when search intensification is desired 
especially near the end of a search.

Table 7 presents a different view of the 
configurations where the columns represent 5 different 
types of constraints: ‘Room’ (an event must be assigned 
to a room that has all of the resources needed); ‘Student’ 
(a student cannot attend more than one event at any one 
time); ‘One Per Day’ (a student attends only one event 
per day); ‘More Than Two’ (a student attends more than 
2 classes consecutively); and ‘Late’ (a student attends an 
event at the last period of the day). The configurations 
are represented in the same manner as in Table 6 but the 
percentage now indicates the average amount of 
improvement they produced in the cost of the initial 
solution each time they were used. The best 3 
configurations are shown for each constraint.

Types of Constraints
Room Student One Per 

Day
More 
Than 
Two

Late

2-4-2 
(0.96%)

0-4-2 
(24.36%)

4-2-2 
(4.09%)

2-5-4 
(1.50%)

2-1-2 
(0.36%)

2-5-2 5-4-2 5-6-2 2-5-2 2-5-4 
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Types of Constraints
Room Student One Per 

Day
More 
Than 
Two

Late

(0.96%) (18.61%) (3.45%) (1.43%) (0.28%)
0-4-2 

(0.92%)
1-4-2 

(17.31%)
4-3-2 

(3.05%)
2-1-2 

(1.28%)
2-5-2 

(0.25%)
Table 7: The best configurations for different types of 

constraints.

From Table 7 it is seen that configuration 2-5-2 
benefits 3 constraints while configurations 2-5-4, 2-1-2, 
and 0-4-2 all benefit 2 constraints. When ‘Empty slot’ is 
used to form one of the candidate sets the ‘Minimum 
cost’ acceptance criteria is commonly used. The 
‘Student’ constraint violations are removed at a high rate 
each time, while ‘Late’ constraint violations are removed 
at a much lower rate. If the ‘Room’ and ‘Student’ 
constraints are hard constraints and the other three are 
soft constraints then configuration 0-4-2 appears to 
perform well on those hard constraints.

The first 3 problems in the international timetabling 
competition are used to obtain the results in Table 8. The 
entries in the table have the same meaning as those in 
Table 7. 

Problem 1 Problem 2 Problem 3
0-4-4 (0.99%) 0-4-2 (1.53%) 2-1-3 (0.80%)
1-4-2 (0.94%) 1-4-2 (1.32%) 2-5-3 (0.74%)
2-4-5 (0.94%) 5-4-2 (1.21%) 2-4-5 (0.73%)

Table 8: Best configurations for 3 timetabling problems.

From Table 8 it is seen that the best configuration 
varies from one problem to another but using the 
‘Infeasible slots’ configuration option for forming the 
second candidate set is beneficial across the 3 problems 
and combining it with the ‘Empty slots’ option for the 
first candidate set is beneficial for problems 1 and 3. The 
configuration 1-4-2 works well in problems 1 and 2 but 
with different average improvements and the ‘Minimum 
cost’ acceptance criteria is dominant for problem 2 and 
useful in problem 1 but not problem 3. Even when a 
random configuration is used consistent performance 
measures are observed when some configuration options 
are combined and these performance measures may be 
used to influence the configuration by the controller in 
much the same way that a human heuristic designer 
applies their past experience in selecting suitable low-
level heuristics for a problem. If configuration options 
are good when combined then it is possible that there is a 
positive relationship between the options and making 
modifications to multiple configuration points 
simultaneously may assist the controller in making 
configurations.

3.3 Experiments 3: Using a hierarchical 
design for the controller

These experiments compare the non-dynamic approach 
in Figure 2(a), which uses a single choice function and a 

fixed set of low-level heuristics, with the dynamic 
approach in Figure 2(b), which incorporates the dynamic 
configuration of low-level heuristics and a hierarchical 
design for the controller as described in Figure 3. Data 
sets from the university timetabling competition and the 
transportation services timetabling problems are used in 
the experiments.

The non-dynamic approach uses the following 8 
low-level heuristics: H1: Swap the highest cost feasible 
assignment with every other assignment (in ascending 
order based on their cost), select the best quality solution; 
H2: Same as H1 but select the first improving quality 
solution; H3: Same as H1 but the candidate assignments 
are ordered randomly; H4: Same as H3 but select the first 
improving quality solution; H5: Swap the highest cost 
infeasible assignment with every other assignment (in 
ascending order based on their cost), select the best 
quality solution; H6: Same as H5 but select the first 
improving quality solution; H7: Same as H5 but the 
candidate assignments are ordered randomly; and H8: 
Same as H7 but select the first improving quality 
solution.

For a fair comparison, the configuration options for 
the dynamic approach are limited to those that will 
generate low-level heuristics equivalent to the non-
dynamic set. The configuration options for the 4 
configuration points are: The Number of Swap 
Candidates (λ): 2; Forming λ Swap Candidate Sets: 
Highest cost feasible assignment, Highest cost infeasible 
assignment; Ordering λ Swap Candidate Sets: 
Ascending cost based, Random; and Acceptance 
Criteria: Best quality, First improving quality. To ensure 
the same number of low-level heuristics as in the non-
dynamic set, the Forming options selects a swap 
candidate for the first candidate set and the second 
candidate set contains all other assignments. Because 
there is only one assignment in the first candidate set the 
Ordering options are only used to order the candidates in 
the second candidate set.

Table 9 compares the 4 best results from the 
university timetabling competition (www.idsia.ch/ 
Files/ttcomp2002/results.htm) with the results obtained 
using the non-dynamic and dynamic approaches where 
the solution costs are the averages from 10 experimental 
runs. It is noted that the results for the competition were 
obtained using algorithms specifically designed for these 
problems while the dynamic and non-dynamic 
approaches use generic configuration options and low-
level heuristics, respectively.

Problem 
Data Set

Approach
Problem Specific 

Algorithms
Hyper-heuristics

1 2 3 4 Non-
Dynamic

Dynamic

1 45 61 85 63 80.1 79.5*
2 25 39 42 46 73 73.2
3 65 77 84 96 77.8 77.6*
4 115 160 119 166 174.3 175.7
5 102 161 77 203 289.9 292
6 13 42 6 92 131.2 133.5
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Problem 
Data Set

Approach
Problem Specific 

Algorithms
Hyper-heuristics

1 2 3 4 Non-
Dynamic

Dynamic

7 44 52 12 118 180.2 170.9*
8 29 54 32 66 82.1 82.2
9 17 50 184 51 68.9 69.6

10 61 72 90 81 83.3 83.3*
11 44 53 73 65 79.9 81.2
12 107 110 79 119 120.2 118.1*
13 78 109 91 160 101.2 103.5
14 52 93 36 197 255.7 253.4*
15 24 62 27 114 119 123.6
16 22 34 300 38 64.2 64.8
17 86 114 79 212 169.9 170.5
18 31 38 39 40 61.3 61.3*
19 44 128 86 185 186.1 186.2
20 7 26 0 17 93.7 94.7

Table 9: University timetabling solution costs.

In Table 9 the highlighted values represent the 40 
percent of cases where one or both of the hyper-heuristic 
approaches achieved a lower cost than at least one of the 
best 4 competition results and this is encouraging 
considering the problem specific nature of the algorithms 
used in the competition. The results for the hyper-
heuristic approaches are very similar but the dynamic 
approach achieved the same or better results to the non-
dynamic approach in 35 percent of cases (marked *). 

Table 10 compares the same hyper-heuristic 
approaches with the problem specific algorithm BOOST 
[32] for transportation services timetabling problems. 
The results are the average solution costs from 10 
experimental runs.

Problem 
Data Set

Approach
Problem 
Specific 

Algorithm

Hyper-Heuristics

BOOST [32] Non-
Dynamic

Dynamic

1 492 492 492*
2 1376 1376 1376*
3 1678 1678 1678*
4 1641 1761 1756*
5 1396 1396 1396*
6 1389 1421 1434
7 1465 1606 1604*
8 1858 2045 2044*
9 3409 3409 3411
10 3502 3502 3533
11 14919 15598 15632
12 6028 6268 6272
13 21963 23987 24132
14 12510 14498 14498*

Table 10: Transportation services timetabling solution 
costs.

In Table 10 the highlighted values represent the 43 
percent of cases where one or both of the hyper-heuristic 
approaches achieved the same cost as BOOST which is 
specifically designed for the transportation problems 
while the hyper-heuristic approaches are using generic 
configurations and low-level heuristics. The results for 
the hyper-heuristic approaches are very similar but the 
dynamic approach achieved the same or better results 
compared to the non-dynamic approach in 57 percent of 
cases (marked *).

From the results in Tables 9 and 10 it is seen that the 
dynamic approach has performed well across 2 different 
types of problems using a generic set of configuration 
options. It was not expected that the hyper-heuristic 
approaches would achieve better results than algorithms 
specifically designed for these problems but their 
performance is acceptable and compares favourably with 
the specific algorithms. In addition, for the dynamic 
approach increasing the number of configuration options 
increases the possible number of configurations. 
Therefore, a longer time is required for the controller to 
establish reliable performance measures and it is 
expected that the dynamic approach may obtain equally 
good solutions in all cases to the non-dynamic approach 
given a longer search time.

The sequence of the trips in a transportation services 
timetabling problem determines the feasibility of the 
solution where no trip precedes an earlier one. A 
candidate selection configuration option may be added 
where instead of forming the second candidate set by 
selecting every other swap candidate these candidates 
must be the slots on different buses from the first 
candidate set. This limits the number of candidates in the 
second candidate set and minimises the number of swap 
trials needed especially when the sequence of all 
assignments is time feasible. The 5 problems (10 – 14) in 
Table 10 with the highest cost are used in the next set of 
experiments which examine the effect of making this 
simple modification to the dynamic approach based on 
information specific to the timetabling problem. Table 11 
shows the average cost of solutions from 10 experimental 
runs using the dynamic approach with and without this 
modification and the corresponding costs for BOOST as 
shown in Table 10. 

Approach
Problem Data Set (as in 

Table 10)
10 11 12 13 14

Modified Dynamic 3502 15568 6066 24132 14467
Dynamic (as in Table 10) 3533 15632 6272 24132 14498
BOOST (as in Table 10) 3502 1419 6028 21963 12510
Table 11: Transportation services timetabling solution 

costs with modified dynamic approach.

From the highlighted costs in Table 11 it is seen that 
the modification has improved the solution using the 
dynamic approach in 4 of the 5 problems. For problem 
10 the modified dynamic approach has an equal cost to 
BOOST and for problem 13 the cost has not changed. 
The modification has improved the performance of the 
dynamic approach for these transportation services 
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problems but, although the results are not shown, it was 
not as beneficial for the university timetabling problems. 
However, it does demonstrate that often with the 
dynamic approach it is easy to insert problem specific 
knowledge into the configuration options with beneficial 
results.

4 Conclusion
The framework within which hyper-heuristics operate 
has been investigated and three modifications have been 
developed and tested using experiments and comparisons 
with published results.

The first modification introduced a self learning 
mechanism into the choice function to modify the values 
of parameters in the function as the search progresses in 
order to allow intensification and diversification of the 
search. Experimental evidence showed that the 
modification improved the performance of the choice 
function which performed better than either a greedy or 
random method for selecting low-level heuristics. Other 
experiments showed that a greedy algorithm is an 
appropriate means of developing an initial solution and 
no more than 10 or less than 5 low-level heuristics 
should be used in the non-dynamic approach.

The second and third modifications represent two 
steps toward addressing the inflexibility associated with a 
non-dynamic approach where there is a fixed and limited 
number of pre-designed problem specific low-level 
heuristics available to a controller using a single choice 
function. The second modification introduced procedures 
for dynamically configuring low-level heuristics and the 
third modification redesigned the controller using a 
hierarchy of sub-controllers working together at different 
levels to generate and combine configurations. The 
combination of these two modifications resulted in a 
dynamic approach.

Experiments examined the procedure for 
dynamically configuring low-level heuristics in terms of: 
their effect on solution costs; their effect on different 
constraints; and their performance on different problems. 
The procedure was shown to be feasible but it was 
observed that a large number of configurations were 
generated and that it may be possible to combine those 
with desirable characteristics. However, with dynamic 
configuration the effectiveness of a controller using a 
single choice function was questionable and the 
controller was redesigned to form a hierarchy of sub-
controllers. Experiments compared the performance of 
the new dynamic hyper-heuristic approach, the non-
dynamic hyper-heuristic approach, and published results 
for algorithms that were specifically designed for the 
particular problems. The problems represented two 
different timetabling tasks and the dynamic and non-
dynamic approaches used generic configuration options 
and low-level heuristics, respectively. It was not 
expected that either of the hyper-heuristic approaches 
would achieve better results than the problem specific 
algorithms but for 40 percent of the university problems 
and 43 percent of the transportation problems the hyper-
heuristic approaches achieved a lower cost than problem 

specific algorithms. The results for the non-dynamic and 
dynamic approaches were very similar but the dynamic 
approach achieved the same or better results on 57 
percent and 35 percent of the transportation and 
university problems, respectively. The dynamic approach 
performed well across these two different types of 
problems using a generic set of configuration options. 
For the dynamic approach increasing the number of 
configuration options increases the number of 
configurations and the controller takes longer to establish 
reliable performance measures so it is possible that the 
dynamic approach may perform even better compared to 
the non-dynamic approach given a longer search time. 
For a subset of transportation problems it was 
demonstrated that a simple modification to configuration 
options using problem specific knowledge produced an 
improvement in the solutions generated by the dynamic 
approach.

Hyper-heuristic approaches are relatively new and 
the findings for the modifications investigated in this 
study are promising. In particular, the new dynamic 
approach developed here is encouraging but further 
studies are needed to: verify its applicability in other 
problem domains; develop a more intelligent controller 
able to identify the best configuration options for 
particular problems; and further investigate methods 
suggested by Rattadilok et al. [34] to allow the search to 
be carried out simultaneously on multiple processors.
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Appendix

A1 Factors in the choice function

Factor 1f : A measure of the past performance of the 

low-level heuristic jH is calculated using,
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1  .                   (A1) 

 jn HI is the change in the cost function the nth last 

time jH was used, l refers to the first time that jH was 

selected, and if  jn HI > 0 then the value of the cost 

function was decreased.  jn HT is the amount of CPU 

time in milliseconds from the time the low-level heuristic

jH was used the nth last time until the time when it 

returned a solution to the controller. The parameter is
normalised to have a value in the interval (0, 1) and it 
assigns a decreasing geometric sequence of weights to 

the past performance measures of jH . The initial value 

of  is determined randomly and if necessary it is 
automatically modified during the search as described 
below. 

Factor 2f : The performance of a low-level heuristic may 

be affected by the low-level heuristic that was used 

immediately before it. Suppose that kH was used at the 

last iteration and the use of jH next is being considered. 

Then the measure of the past performance of the pair 

 jk HH , is calculated using, 
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 jkn HHI , is the change in the cost function the nth

last time the pair  jk HH , was used, l refers to the first 

time in the search that jH was used immediately after

kH , and if  jkn HHI , > 0 then the value of the cost 

function decreased.  jkn HHT , is the amount of CPU 

time in milliseconds from the time the pair  jk HH ,
was used the nth last time until the time when a solution 
was returned to the controller. The parameter  is

normalised to have a value in the interval (0, 1) and it 
assigns a decreasing geometric sequence of weights to 

the past performance measures of the pair  jk HH , . 

The initial value of  is determined randomly and if 

necessary it is automatically modified during the search 
as described below. 

Factor 3f : The two factors 1f and 2f intensify the 

search on low-level heuristics which have performed 

well in the past. The third factor 3f diversifies the 

search by considering low-level heuristics that may not 
have been used for some time and this is relevant in 
situations where the search is stuck at a local optimum. 

The value of 3f is calculated for each low-level 

heuristic jH using,

 jj HHf .3 





 .                               (A3)                                                               

 jH is the amount of CPU time in milliseconds since 

the low-level heuristic jH was last used and each time

jH is used  jH is reset to zero. The initial value of

 is selected randomly in the interval (0, 1) and if 
necessary it is automatically modified during the search 
as described below. 

A2 Modification of parameters in the choice 
function

Suppose that there are m low-level 

heuristics mHHHH ,,,, 321  , kH has just been used, 

and the choice function suggests the use of jH at the 

next iteration. Before using jH determine which of the 

factors  jHf1 ,  jHf2 , and  jHf3 has the largest 

value L .

1. If  jHfL 1 (or  jHf2 ) then use jH in the next 

iteration and modify the value of  to   1 (or

to   1 ) where
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0

1
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 
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or 
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HHI jk

and c0 is the value of the cost function for the low-level 
heuristic used at the start of the search. Thus the value of
 (or  ) increases as confidence grows in the forecasts 

provided by the choice function and decreases when a 
low-level heuristic cannot be found that has decreased 
the value of the cost function the last time it was used.

     If  jHI1 = 0 (or  jk HHI ,1 = 0) and this has not 

been occurring regularly then no change in the value of 
the cost function is preferable to a decrease and the value 
of  (or  ) needs to be decreased by a small amount 

where
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j

jk

nm

HHT
2

1 ,
or and jn is 

the number of times jH has been used in the search. 

Here  is proportional to the time that might be wasted 

by using jH and it is a small value if jn is large which 

means jH (or the pair  jk HH , ) has often performed 

well in the past. If  jHI1 = 0 (or  jk HHI ,1 = 0) 

and this has been occurring regularly (as defined by the 
user) then the value of  is modified as in part 4 of the 
modification procedures below.
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2. If  jHfL 3 then determine the trial low-level 

heuristic iH which maximises the value of 

   hh HfHf 21  for h = 1, 2, 3, , m. Use iH as a 

trial and if    ki HFHF  then decrease the 

value of  to  q1 and accept that iH is the low-

level heuristic to use in the next iteration. This means 

that diversification of the search using jH has been 

suggested prematurely.

     Before the trial use of iH is 

conducted
   
     ijj

ij

HfHfHf

HFHF

321 


which 

means that  jHf3 >  iHf3 . If the use of iH
decreases the value of the cost function then it is 

preferred to jH and the value of  needs to be 

decreased in order to lessen the effect of the factor 3f in 

the choice function. If jH has been suggested 

prematurely then it is desirable to use iH and 

have  iHF >  jHF which means that if the value of 

 changes to  q1
then    ii HqfHF 3 >    jj HqfHF 3 and so 

q >
   
   ij

ij

HfHf

HFHF

33 


> 0. Thus an appropriate value 

for q is
   
   ij

ij

HfHf

HFHF

33 


+ γ, where γ is an arbitrarily 

selected small positive number.

     Otherwise, use jH as suggested by the choice 

function and do not change the value of  . This means 

that diversification of the search using jH is 

appropriate. 

3. If the values of  jHf1 ,  jHf2 , and  jHf3 are 

the same then use jH as suggested by the choice 

function and do not change the values of  and,, .

4. Regardless of the value of L if the suggested low-level 

heuristic jH has been selected and used many times in 

recent iterations and continually fails to decrease the 
value of the cost function then increase the value of  to 

p in order to diversify the search using nH which

maximises the value of  hH for h = 1, 2, 3, , m. 

nH is the low-level heuristic which was last used the 

longest time ago and    nj HFHF  . However, it is 

desirable to diversify the search so that 

   nn HpHF  >    jj HpHF  and so 

p >
   
   jn

nj

HH

HFHF

 


> 0. Thus and an appropriate 

value for p is
   
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 


+ ν, where ν is an 

arbitrarily selected small positive number.


