
Informatica 34 (2010) 523–534 523

An Investigation and Extension of a Hyper-heuristic Framework

Prapa Rattadilok
Assumption University, Thailand
E-mail: prapa.rattadilok@gmail.com

Keywords: choice function, dynamic configuration, hierarchical controller, hyper-heuristic framework, low-level
heuristics, timetabling.

Received: October 8, 2009

Three modifications to the framework within which hyper-heuristic approaches operate are presented.
The first modification automates a self learning mechanism for updating the values of parameters in the
choice function used by the controller. Second, a procedure for dynamically configuring a range of low-
level heuristics is described. Third, in order to effectively use this range of low-level heuristics the
controller is redesigned to form a hierarchy of sub-controllers. The second and third modifications
improve the inflexibility associated with having a limited number of low-level heuristics available to the
controller. Experiments are used to investigate features of the hyper-heuristic framework and the three
modifications including comparisons with previously published results.

Povzetek: Opisane so tri modifikacije hiper-hevrističnih pristopov.

1 Introduction
As the complexity of optimisation problems increases
methods which guarantee optimal solutions place
excessive demands on computation time and computer
resources. Alternative approaches have been developed
including: heuristics, meta-heuristics, combinations of
meta-heuristics referred to as hybrids, and more recently
hyper-heuristics. Generally, these approaches do not
guarantee optimal solutions but instead provide solutions
of acceptable quality obtained with acceptable demands
on algorithm development, tuning time, computation
time, and computer resources. Surveys and comparisons
among these approaches are presented in [1-9].

Heuristic approaches use rules derived from
experience or intuition as opposed to those derived from
mathematical formulations and they produce reasonable
computational performance with conceptual simplicity.
Problem specific knowledge is applied at the heuristic
design phase and increases effectiveness but limits
reusability for problems in other domains. Heuristic
approaches have been applied successfully to a variety of
specific problems including: resource investment [10];
resource usage [11]; project finance scheduling [12];
flow-shop scheduling [13]; graph colouring [14]; and
train pathing [15]. Meta-heuristic approaches employ
artificial intelligence methods and are different from
simple heuristics in the manner in which the problem is
modelled by attempting to prescribe more generic
structures. Simulated annealing [16], tabu search [17],
genetic algorithms [18], ant colony [19] and particle
swarm optimisation [20], hill climbing and local search
[21], and differential evolution [22] are well known
meta-heuristic approaches. Interest in meta-heuristics has
generated the development of hybrid approaches [8] and
recent significant advances have combined meta-

heuristics with other problem solving paradigms and
improved their use in important application areas [23].
However, due to the evolutionary nature of meta-
heuristic approaches the computation time may be
unpredictable and there is often a need for a training
period in order to tune the approach to the problem.

The aim of hyper-heuristic approaches is to be able
to use the same procedures within and across problem
domains without the need for extensive change to the
basic components thus handling classes of problems
rather than addressing one type of problem [24-28].
While most applications of meta-heuristics explore a
search space of problem solutions hyper-heuristics
explore a search space of low-level heuristics in order to
select and apply an appropriate low-level heuristic. The
framework in which hyper-heuristic approaches operate
is presented in Figure 1 where at each stage of the search
the controller uses information about the past
performance of the low-level heuristics in order to select
one to be used in the next stage. The selection is often
made using a choice function and this process continues
until a stopping condition is satisfied and the best
solution is determined based on the value of the cost
function.

Figure 1: Hyper-heuristic framework.

524 Informatica 34 (2010) 523–534 P. Rattadilok

The set of low level heuristics used by the controller are:
pre-designed; limited in number; often involve add, drop,
and swap operations; and remain the same throughout the
search. They are problem specific and have limited
reusability [29, 30]. Problems often include soft
constraints, which may be violated, and hard constraints,
which must not be violated, and these are usually
assigned low and high positive weights, respectively, by
the user. For any solution the value of the cost function is
the sum of the weights associated with the constraints
which are violated and for a feasible solution all of the
hard constraints are satisfied.

The purpose of this article is to investigate three
modifications to the hyper-heuristic framework The first
modification (section 2.1) introduces a self learning
mechanism for updating the values of choice function
parameters so that the selection of low-level heuristics
may be intensified or diversified appropriately. The
second (section 2.2) introduces a procedure for
dynamically configuring low-level heuristics in order to
make a range of low-level heuristics available to the
controller. In order to select effectively from this range
of low-level heuristics the controller is redesigned
(section 2.3) to form a hierarchy of sub-controllers each
using the choice function described in section 2.1 and the
dynamic configuration procedure described in section
2.2. Section 3 presents the results of experiments related
to each of the three modifications including comparisons
with previously published results. Section 4 discusses the
results and draws conclusions. An Appendix is used to
present details associated with the updating of choice
function parameters.

2 Modifications to the hyper-
heuristic framework

This section describes the three modifications to the
hyper-heuristic framework in Figure 1.

2.1 Modifications to the choice function
The choice function proposed by Cowling et al. [30] and
Soubeiga [31] is modified to allow the values of
parameters to be updated automatically independently of
any problem specific knowledge. The procedures work
with complete rather than partial solutions and there is no
need for an initial training period. The adjustment of
parameters allows the search procedure to be intensified
or diversified thus enhancing its applicability within and
between problem domains. In cost minimisation
problems the choice function selects a low-level heuristic
by assessing the efficiency of the past performance of
each of the low-level heuristics in decreasing the value of
the cost function. Some may consistently decrease the
value of the cost function and selection may be
intensified on them. However, this may result in
convergence to a local rather than global optimum and in
such cases the choice function needs to select a low-level
heuristic that diversifies the search to other parts of the
solution space. Thus a suitable choice function should
include factors which intensify or diversify the search

appropriately. If at each stage of the search the low-level

heuristics mHHHH ,,,, 321  are available to the

choice function (F) then a value of F is computed for
each low-level heuristic using,

       jjjj HfHfHfHF 321  ,

for j = 1, 2, 3, , m. (1)

The three factors in (1) represent: the past performance

of the low-level heuristic (1f); the paired past

performance of the low-level heuristic (2f); and the

time since the low-level heuristic was last selected (3f).

The first two factors are associated with intensifying the
search while the last is associated with diversifying the
search. In the Appendix section A1 each of the three
factors is defined and the procedures for modifying
parameters are presented in section A2. At the start of the
search a solution is determined and one of the low-level
heuristics is selected at random and applied to that
solution. Information required in equations (A1), (A2),
(A3), and (1) is updated and stored. The controller uses
this information in (1) to determine the low-level
heuristic with the largest value for F and then using the
procedures to adjust parameters this low-level heuristic
or a different one is determined and used in the next
iteration of the search. Subsequent iterations are
conducted in the same manner until a stopping rule is
satisfied and then the best solution among all of the
solutions is selected as the final solution. The process is
stochastic and a transition from one solution to another in
the solution space is made using information about all of
the previous transitions. Consequently, the process is not
a Markov process and probabilistic equilibrium among
the solutions is not attained [32]. Unless stated otherwise
the choice function in (1) is used in all of the subsequent
modifications and experiments.

2.2 Dynamically configured low-level
heuristics

Swap-based low-level heuristics are used often and
instead of generating a solution from scratch these low-
level heuristics perform an exchange of attribute(s)
between at least two swap candidates. For example, in a
university timetabling problem an exchange may include
swapping the days on which 2 classes are scheduled.
Such low-level heuristics normally use problem specific
knowledge in their design and applying them to different
types of problems without any modification is usually
infeasible. Different swap-based heuristics may be
designed by choosing different configuration options at
each of a set of configuration decision points. Examples
of configuration options that may be selected at 4
commonly used configuration decision points are shown
in Table 1.

Configuration Decision Points 1:
The Number of Swap Candidates (λ)
Example Configuration Options:

AN INVESTIGATION AND EXTENSION OF… Informatica 34 (2010) 523–534 525

Configuration Decision Points 1:
The Number of Swap Candidates (λ)

1. Two swap candidates?
2. More than two swap candidates?

Comments: Determines the number of swap candidates
involved in any trial swap process.

Configuration Decision Point 2:
Formation of λ Swap Candidate Sets
Example Configuration Options:

1. Non-violated assignments?
2. Violated assignments?

Comments: Specifies the swap candidate for each of the
candidate sets.

Configuration Decision Point 3:
Ordering Candidates in the λ Swap Candidate Sets
Example Configuration Options:

1. Slot number?
2. Ascending cost?

Comments: Specifies the order in which the swap
candidate from each candidate set enters the trial swap
process.

Configuration Decision Point 4:
Acceptance Criteria
Example Configuration Options:

1. Best Solution?

Comments: The trial swap process terminates when a
solution satisfies the acceptance criteria and then the
solution is returned to the controller.
Table 1: An example of configuration options associated

with 4 configuration decision points.

From Table 1 it is seen that the number of configuration
options at decision points 2 and 3 depends on the number
of swap candidates (λ) chosen at decision point 1 and two
or three swap candidates are commonly used. When
forming swap candidate sets at decision point 2 the swap
candidates may be shared among the sets formed.

The restrictions of using a fixed and limited number
of problem specific low-level heuristics may be
addressed by dynamically configuring swap-based low-
level heuristics and using a hierarchical design for the
controller. Dynamic configuration is discussed next and
the design of a hierarchical controller is presented in
section 2.3.

Figure 2(a) elaborates on elements of the framework
in Figure 1 and represents a non-dynamic approach
where the controller uses the choice function to select a
low-level heuristic from a fixed set of usually no more
than 10 swap-based low-level heuristics. Figure 2(b)
presents the framework for an approach where the swap-
based low-level heuristics are dynamically configured by
the controller which selects configuration options at
decision points as illustrated in Table 1 using a choice
function of the same form as that used by the controller

Figure 2(a) but with low-level heuristics replaced by
configuration options. Dynamically configured low-level
heuristics are generated and applied to the current
solution and performance measures for configurations of
these low-level heuristics are accumulated.

Figure 2 (a): Non-dynamic approach.

Figure 2 (b): Dynamically configured approach.

The use of a single choice function in the dynamic
approach limits the total number of configuration options
that the controller can work with effectively.
Consequently, in order to improve the effectiveness of
the dynamic approach the design of the controller needs
to be reconsidered.

2.3 A hierarchical controller design
A new hierarchical design which operates in the
controller component in Figure 2(b) is shown in Figure 3.

Figure 3: Hierarchical controller design.

526 Informatica 34 (2010) 523–534 P. Rattadilok

Each component in Figure 3 is regarded as a sub-hyper-
heuristic controller each of which uses a choice function

where the low-level heuristic jH now represents a

configuration option or a combination of configuration
options depending on the level at which the sub-
controller is operating. Information about the
performance of configuration options or combinations of
them is used to choose configuration options at different
configuration decision points in the same manner as low-
level heuristics were selected in the non-dynamic
situation. There are 3 levels of sub-controllers in the
hierarchy. The number of sub-controllers at the bottom
level depends on the number of swap candidate sets
formed (λ in Table 1). Figure 3 shows the case where λ =
2 and five sub-controllers are used: two for forming swap
candidate sets; two for ordering swap candidate sets; and
one for acceptance criteria. The middle level sub-
controller chooses combinations of configuration options
based on their performance in trails using the sets of
configuration options generated at the bottom level.
These configuration options are combined to form a low-
level heuristic at the top level which is used in the next
stage of the search.

3 Experiments
Published data sets and results for two different sets of
problems are used in the experiments: international
university timetabling competition problems
(www.idsia.ch/Files/ttcomp2002/); and transportation
services timetabling problems [33]. In order to allow
comparisons experiments are designed to conform to the
conditions associated with the published experimental
results.

3.1 Experiments 1: The choice function
Two methods are investigated for generating an initial
solution for a university timetabling problem: a random
approach, which assigns random events (classes) to
random slots (day, time, and room); and a greedy
algorithm, which assigns an event to its best slot. On
average across 5 experimental runs there are 1000 hard
constraint violations in a randomly generated initial
solution but only 200 for a greedily assigned solution.
Consequently, greedy assignment is proposed for
generating the initial solution used with a choice
function.

Both of these methods are examined further by
considering the average percentage of improvement

in the cost of the initial solution if the search is allowed
to continue for 1 minute and the results are shown in
Figure 4. Table 2 shows the average number of hard and
soft constraint violations for both methods at the end of 5
and 7 minutes.

Time Limit: 5 Minutes
Methods Number of HCV Number of SCV
Random 8.7 1152.9
Greedy 0 921.6

Time Limit: 7 Minutes
Methods Number of HCV Number of SCV
Random 0 767.8
Greedy 0 598.4

Table 2: The number of hard and soft constraint
violations (HCV and SCV respectively) after 5 and 7

minutes.

From Figure 4 and Table 2 it is seen that beyond the
initial solution the greedy assignment method continues
to produce better results than the random method. In
particular, the patterns in Figure 4 demonstrate the more
general result that as the number of constraint violations
decreases it becomes more difficult to reduce the number
of constraint violations.

The results in Table 3 show the average costs of
solutions across 10 experiment runs on each of 17
university timetabling problems using the choice
function with and without automatic parameter
modification. The values for the parameters ,  , and

 in equations (A1), (A2), and (A3) are set randomly at
0.7, 0.5 and 0.1, respectively, at the start of the search
and the same set of 7 low-level heuristics is used for all
of the problems.

Problems Without Parameter
Modification

With Parameter
Modification

1 118.2 89.5
2 104.1 77
3 117.5 80.8
4 234 175.9
5 199.2 139.5
6 255 188.5
7 120.8 84.4

Figure 4: The percentage of improvement in the cost
of the initial solution during the first minute.

AN INVESTIGATION AND EXTENSION OF… Informatica 34 (2010) 523–534 527

Problems Without Parameter
Modification

With Parameter
Modification

8 103.6 71.9
9 124.3 89

10 122.2 85.2
11 155.7 107.6
12 185.1 127.3
13 96.8 75.1
14 255.9 186
15 91 64.2
16 195.1 188.8
17 141.7 99.3

Table 3: The cost of solutions with and without
parameter modification in the choice function.

From Table 3 it is seen that modification of the
parameters reduces the average cost of the solutions for
every problem. Although not shown here the same
outcome occurs when the initial values of the parameters
vary. From these experiments it is evident that automatic
parameter modification is a useful enhancement to the
choice function.

The next experiments examine the effect of varying
the number of low-level heuristics available to the
controller. In order to ensure that the results are not
affected by the quality of the low-level heuristics used in
each experiment all low-level heuristics are idle except
for one which performs a simple swap on the solution.
The idle heuristics may be selected by the controller and
vary in terms of the time they take to execute but they
have no effect on the solutions. Two problems are used
from the university timetabling competition (U1, U2) and
the transportation services timetabling (T1, T2) data sets.
The number of low-level heuristics varies from 5 to 40
and in each case results are averaged across 5
experimental runs. The entries in Table 4 represent the
percentage of calls received by the non-idle low-level
heuristic above the percentage expected if it is called at
random. For example, in problem U1 with 20 low-level
heuristics the non-idle low-level heuristic received on
average 27 percent of all of the calls which is 22 percent
above the 5 percent expected if 20 low-level heuristics
are called at random.

Problems
Number of Low-level Heuristics

5 10 15 20 25 30 35 40
Problem U1 56 52 30 22 12 11 10 10
Problem U2 51 49 34 25 20 15 11 11
Problem T1 41 44 39 33 25 20 15 14
Problem T2 38 42 38 31 27 23 19 18

Table 4: The effects of increasing the number of low-
level heuristics.

For each problem in Table 4 it is seen that as the number
of low-level heuristics increases the idle low-level
heuristics, which contribute nothing to the quality of the
solution, are being called increasingly and the selection
of low-level heuristics becomes almost random when
there are a large number of low-level heuristics.

Figure 5 illustrates the effect over time on the cost of
the solution of increasing the number of low-level
heuristics.

Figure 5: The number of low-level heuristics and the
solution cost.

In Figure 5 it is seen that as the number of low-level
heuristics increases it takes longer to establish good
performance measures for them. This is evidenced by the
flatter curve for 20 low-level heuristics compared to the
curves for 5 or 10. For only 2 low-level heuristics
performance measures are established earlier than in the
other cases but there is much less opportunity to diversify
the search and this makes it more difficult to escape from
a local optimum. Based on the results in Table 3 and
Figure 5 it is appropriate to recommended that the
number of low-level heuristics should not be more than
10 or less than 5.

Figure 6 compares the average percentage of
improvement across 5 experimental runs in the cost of
the initial solution using the choice function approach,
greedy selection, and random selection where for the
greedy selection method low-level heuristics are selected
and applied until no improvement is obtained and then a
new low-level heuristic is selected. A university
timetabling competition problem data set is used.

Figure 6: Improvement in the cost of the initial solution.

From Figure 6 it is seen that the choice function method
consistently improves the initial solution more than either
of the other methods. It is unlikely that the random
approach will obtain similar quality solutions as the
choice function even if more time is allowed. Random
selection has a smoother improvement curve than greedy
selection which has sharp improvement which flattens
out quickly. The choice function has an even sharper

528 Informatica 34 (2010) 523–534 P. Rattadilok

improvement. On average it reduces almost 90 percent of
the cost of the initial solution within the first 20 seconds
and reduces it by almost 100 percent after 50 seconds.

3.2 Experiments 2: Dynamic configuration
of low-level heuristics

Using problems from the university timetabling
competition these experiments examine different
configurations in terms of: their ability to improve,
worsen, or not change solution costs; their effect on
different constraints; and their performance on different
problems. Table 5 lists the configuration options used for
forming candidate sets and acceptance criteria where the
swap candidates in both sets are ordered based on their
cost.

Index Forming Candidate Configuration Options
0 All slots
1 Occupied slots
2 Empty slots
3 Feasible slots
4 Infeasible slots
5 Constraint violated slots (specific constraint)
6 Non violated slots

Index Acceptance Criteria
0 First cost improvement
1 First feasibility improvement
2 Minimum cost
3 Maximum feasibility
4 Minimum cost improvement
5 Maximum feasibility improvement

Table 5: Configuration options for forming candidate sets
and acceptance criteria.

In Table 5 the forming candidate configuration options
specify which slots in the solution will be selected and
used as the swap candidates. The slots can be divided
into occupied and empty slots. Empty slots do not have
events assigned to them and are therefore always
feasible. Occupied slots can be feasible or infeasible.
Infeasible slots are those assignments that violate hard
constraints. These occupied slots can be further divided
based on the number of violations for specific types of
constraints and can also be assignments that have no
constraint violations. At the end of each trial swap the
acceptance criteria are checked. The acceptance criteria
used improve either the cost or feasibility of the solution.
The acceptance criteria can be specified to accept the
first solution that satisfies one or both of these objectives.
The minimum cost and maximum feasibility acceptance
criteria include the selection of solutions that decrease
the value of the cost function. Using the 7 configuration
options and the ordering of swap candidates based on
cost for each of the 2 swap candidate sets and the 6
acceptance criteria options a total of 294 (i.e.
7x1x7x1x6) low-level heuristics are generated and more

are generated if there is more than 1 option for ordering
swap candidates in the 2 candidate sets.

The configurations derived from Table 5 are
categorised according to their performance. If the largest
percentage of all of the calls made on a configuration
produce an improved solution then the configuration is
categorised as ‘improving’ and similarly configurations
may be categorised as ‘unchanging’ or ‘worsening’.
Table 6 shows the results for the first problem in the
university timetabling competition when random
selection is used to dynamically configure the
configuration options. The top 3 configurations in each
of the 3 categories are shown. The meaning of the entries
in Table 6 is explained using the example of the best
configuration in the ‘improving’ category (i.e. 2-5-2
(90.95%)). From Table 5 this means that the
configuration is generated by choosing ‘Empty slots’ as
the candidates for the first candidate set, ‘Constraint
violated slots’ as the candidates for the second candidate
set, ‘Minimum cost’ as the acceptance criteria, and on
average 90.95 percent of the times when it is called this
configuration improves the solution.

Unchanging Worsening Improving
2-3-3 (93.13%) 5-0-2 (62.12%) 2-5-2 (90.95%)
2-6-3 (91.27%) 5-0-3 (60.83%) 2-0-5 (90.57%)
3-6-3 (89.95%) 5-6-3 (59.77%) 2-5-5 (90.47%)

Table 6: Top 3 configurations for performance
categories.

From Table 6 it is seen that some configurations do
not lead to improvement in the cost but they may be used
for diversifying the search. For example, using
configurations that are associated with worsening costs
would lead to diversification and this is often desirable.
Configurations with high chances of improving costs are
appropriate when search intensification is desired
especially near the end of a search.

Table 7 presents a different view of the
configurations where the columns represent 5 different
types of constraints: ‘Room’ (an event must be assigned
to a room that has all of the resources needed); ‘Student’
(a student cannot attend more than one event at any one
time); ‘One Per Day’ (a student attends only one event
per day); ‘More Than Two’ (a student attends more than
2 classes consecutively); and ‘Late’ (a student attends an
event at the last period of the day). The configurations
are represented in the same manner as in Table 6 but the
percentage now indicates the average amount of
improvement they produced in the cost of the initial
solution each time they were used. The best 3
configurations are shown for each constraint.

Types of Constraints
Room Student One Per

Day
More
Than
Two

Late

2-4-2
(0.96%)

0-4-2
(24.36%)

4-2-2
(4.09%)

2-5-4
(1.50%)

2-1-2
(0.36%)

2-5-2 5-4-2 5-6-2 2-5-2 2-5-4

AN INVESTIGATION AND EXTENSION OF… Informatica 34 (2010) 523–534 529

Types of Constraints
Room Student One Per

Day
More
Than
Two

Late

(0.96%) (18.61%) (3.45%) (1.43%) (0.28%)
0-4-2

(0.92%)
1-4-2

(17.31%)
4-3-2

(3.05%)
2-1-2

(1.28%)
2-5-2

(0.25%)
Table 7: The best configurations for different types of

constraints.

From Table 7 it is seen that configuration 2-5-2
benefits 3 constraints while configurations 2-5-4, 2-1-2,
and 0-4-2 all benefit 2 constraints. When ‘Empty slot’ is
used to form one of the candidate sets the ‘Minimum
cost’ acceptance criteria is commonly used. The
‘Student’ constraint violations are removed at a high rate
each time, while ‘Late’ constraint violations are removed
at a much lower rate. If the ‘Room’ and ‘Student’
constraints are hard constraints and the other three are
soft constraints then configuration 0-4-2 appears to
perform well on those hard constraints.

The first 3 problems in the international timetabling
competition are used to obtain the results in Table 8. The
entries in the table have the same meaning as those in
Table 7.

Problem 1 Problem 2 Problem 3
0-4-4 (0.99%) 0-4-2 (1.53%) 2-1-3 (0.80%)
1-4-2 (0.94%) 1-4-2 (1.32%) 2-5-3 (0.74%)
2-4-5 (0.94%) 5-4-2 (1.21%) 2-4-5 (0.73%)

Table 8: Best configurations for 3 timetabling problems.

From Table 8 it is seen that the best configuration
varies from one problem to another but using the
‘Infeasible slots’ configuration option for forming the
second candidate set is beneficial across the 3 problems
and combining it with the ‘Empty slots’ option for the
first candidate set is beneficial for problems 1 and 3. The
configuration 1-4-2 works well in problems 1 and 2 but
with different average improvements and the ‘Minimum
cost’ acceptance criteria is dominant for problem 2 and
useful in problem 1 but not problem 3. Even when a
random configuration is used consistent performance
measures are observed when some configuration options
are combined and these performance measures may be
used to influence the configuration by the controller in
much the same way that a human heuristic designer
applies their past experience in selecting suitable low-
level heuristics for a problem. If configuration options
are good when combined then it is possible that there is a
positive relationship between the options and making
modifications to multiple configuration points
simultaneously may assist the controller in making
configurations.

3.3 Experiments 3: Using a hierarchical
design for the controller

These experiments compare the non-dynamic approach
in Figure 2(a), which uses a single choice function and a

fixed set of low-level heuristics, with the dynamic
approach in Figure 2(b), which incorporates the dynamic
configuration of low-level heuristics and a hierarchical
design for the controller as described in Figure 3. Data
sets from the university timetabling competition and the
transportation services timetabling problems are used in
the experiments.

The non-dynamic approach uses the following 8
low-level heuristics: H1: Swap the highest cost feasible
assignment with every other assignment (in ascending
order based on their cost), select the best quality solution;
H2: Same as H1 but select the first improving quality
solution; H3: Same as H1 but the candidate assignments
are ordered randomly; H4: Same as H3 but select the first
improving quality solution; H5: Swap the highest cost
infeasible assignment with every other assignment (in
ascending order based on their cost), select the best
quality solution; H6: Same as H5 but select the first
improving quality solution; H7: Same as H5 but the
candidate assignments are ordered randomly; and H8:
Same as H7 but select the first improving quality
solution.

For a fair comparison, the configuration options for
the dynamic approach are limited to those that will
generate low-level heuristics equivalent to the non-
dynamic set. The configuration options for the 4
configuration points are: The Number of Swap
Candidates (λ): 2; Forming λ Swap Candidate Sets:
Highest cost feasible assignment, Highest cost infeasible
assignment; Ordering λ Swap Candidate Sets:
Ascending cost based, Random; and Acceptance
Criteria: Best quality, First improving quality. To ensure
the same number of low-level heuristics as in the non-
dynamic set, the Forming options selects a swap
candidate for the first candidate set and the second
candidate set contains all other assignments. Because
there is only one assignment in the first candidate set the
Ordering options are only used to order the candidates in
the second candidate set.

Table 9 compares the 4 best results from the
university timetabling competition (www.idsia.ch/
Files/ttcomp2002/results.htm) with the results obtained
using the non-dynamic and dynamic approaches where
the solution costs are the averages from 10 experimental
runs. It is noted that the results for the competition were
obtained using algorithms specifically designed for these
problems while the dynamic and non-dynamic
approaches use generic configuration options and low-
level heuristics, respectively.

Problem
Data Set

Approach
Problem Specific

Algorithms
Hyper-heuristics

1 2 3 4 Non-
Dynamic

Dynamic

1 45 61 85 63 80.1 79.5*
2 25 39 42 46 73 73.2
3 65 77 84 96 77.8 77.6*
4 115 160 119 166 174.3 175.7
5 102 161 77 203 289.9 292
6 13 42 6 92 131.2 133.5

530 Informatica 34 (2010) 523–534 P. Rattadilok

Problem
Data Set

Approach
Problem Specific

Algorithms
Hyper-heuristics

1 2 3 4 Non-
Dynamic

Dynamic

7 44 52 12 118 180.2 170.9*
8 29 54 32 66 82.1 82.2
9 17 50 184 51 68.9 69.6

10 61 72 90 81 83.3 83.3*
11 44 53 73 65 79.9 81.2
12 107 110 79 119 120.2 118.1*
13 78 109 91 160 101.2 103.5
14 52 93 36 197 255.7 253.4*
15 24 62 27 114 119 123.6
16 22 34 300 38 64.2 64.8
17 86 114 79 212 169.9 170.5
18 31 38 39 40 61.3 61.3*
19 44 128 86 185 186.1 186.2
20 7 26 0 17 93.7 94.7

Table 9: University timetabling solution costs.

In Table 9 the highlighted values represent the 40
percent of cases where one or both of the hyper-heuristic
approaches achieved a lower cost than at least one of the
best 4 competition results and this is encouraging
considering the problem specific nature of the algorithms
used in the competition. The results for the hyper-
heuristic approaches are very similar but the dynamic
approach achieved the same or better results to the non-
dynamic approach in 35 percent of cases (marked *).

Table 10 compares the same hyper-heuristic
approaches with the problem specific algorithm BOOST
[32] for transportation services timetabling problems.
The results are the average solution costs from 10
experimental runs.

Problem
Data Set

Approach
Problem
Specific

Algorithm

Hyper-Heuristics

BOOST [32] Non-
Dynamic

Dynamic

1 492 492 492*
2 1376 1376 1376*
3 1678 1678 1678*
4 1641 1761 1756*
5 1396 1396 1396*
6 1389 1421 1434
7 1465 1606 1604*
8 1858 2045 2044*
9 3409 3409 3411
10 3502 3502 3533
11 14919 15598 15632
12 6028 6268 6272
13 21963 23987 24132
14 12510 14498 14498*

Table 10: Transportation services timetabling solution
costs.

In Table 10 the highlighted values represent the 43
percent of cases where one or both of the hyper-heuristic
approaches achieved the same cost as BOOST which is
specifically designed for the transportation problems
while the hyper-heuristic approaches are using generic
configurations and low-level heuristics. The results for
the hyper-heuristic approaches are very similar but the
dynamic approach achieved the same or better results
compared to the non-dynamic approach in 57 percent of
cases (marked *).

From the results in Tables 9 and 10 it is seen that the
dynamic approach has performed well across 2 different
types of problems using a generic set of configuration
options. It was not expected that the hyper-heuristic
approaches would achieve better results than algorithms
specifically designed for these problems but their
performance is acceptable and compares favourably with
the specific algorithms. In addition, for the dynamic
approach increasing the number of configuration options
increases the possible number of configurations.
Therefore, a longer time is required for the controller to
establish reliable performance measures and it is
expected that the dynamic approach may obtain equally
good solutions in all cases to the non-dynamic approach
given a longer search time.

The sequence of the trips in a transportation services
timetabling problem determines the feasibility of the
solution where no trip precedes an earlier one. A
candidate selection configuration option may be added
where instead of forming the second candidate set by
selecting every other swap candidate these candidates
must be the slots on different buses from the first
candidate set. This limits the number of candidates in the
second candidate set and minimises the number of swap
trials needed especially when the sequence of all
assignments is time feasible. The 5 problems (10 – 14) in
Table 10 with the highest cost are used in the next set of
experiments which examine the effect of making this
simple modification to the dynamic approach based on
information specific to the timetabling problem. Table 11
shows the average cost of solutions from 10 experimental
runs using the dynamic approach with and without this
modification and the corresponding costs for BOOST as
shown in Table 10.

Approach
Problem Data Set (as in

Table 10)
10 11 12 13 14

Modified Dynamic 3502 15568 6066 24132 14467
Dynamic (as in Table 10) 3533 15632 6272 24132 14498
BOOST (as in Table 10) 3502 1419 6028 21963 12510
Table 11: Transportation services timetabling solution

costs with modified dynamic approach.

From the highlighted costs in Table 11 it is seen that
the modification has improved the solution using the
dynamic approach in 4 of the 5 problems. For problem
10 the modified dynamic approach has an equal cost to
BOOST and for problem 13 the cost has not changed.
The modification has improved the performance of the
dynamic approach for these transportation services

AN INVESTIGATION AND EXTENSION OF… Informatica 34 (2010) 523–534 531

problems but, although the results are not shown, it was
not as beneficial for the university timetabling problems.
However, it does demonstrate that often with the
dynamic approach it is easy to insert problem specific
knowledge into the configuration options with beneficial
results.

4 Conclusion
The framework within which hyper-heuristics operate
has been investigated and three modifications have been
developed and tested using experiments and comparisons
with published results.

The first modification introduced a self learning
mechanism into the choice function to modify the values
of parameters in the function as the search progresses in
order to allow intensification and diversification of the
search. Experimental evidence showed that the
modification improved the performance of the choice
function which performed better than either a greedy or
random method for selecting low-level heuristics. Other
experiments showed that a greedy algorithm is an
appropriate means of developing an initial solution and
no more than 10 or less than 5 low-level heuristics
should be used in the non-dynamic approach.

The second and third modifications represent two
steps toward addressing the inflexibility associated with a
non-dynamic approach where there is a fixed and limited
number of pre-designed problem specific low-level
heuristics available to a controller using a single choice
function. The second modification introduced procedures
for dynamically configuring low-level heuristics and the
third modification redesigned the controller using a
hierarchy of sub-controllers working together at different
levels to generate and combine configurations. The
combination of these two modifications resulted in a
dynamic approach.

Experiments examined the procedure for
dynamically configuring low-level heuristics in terms of:
their effect on solution costs; their effect on different
constraints; and their performance on different problems.
The procedure was shown to be feasible but it was
observed that a large number of configurations were
generated and that it may be possible to combine those
with desirable characteristics. However, with dynamic
configuration the effectiveness of a controller using a
single choice function was questionable and the
controller was redesigned to form a hierarchy of sub-
controllers. Experiments compared the performance of
the new dynamic hyper-heuristic approach, the non-
dynamic hyper-heuristic approach, and published results
for algorithms that were specifically designed for the
particular problems. The problems represented two
different timetabling tasks and the dynamic and non-
dynamic approaches used generic configuration options
and low-level heuristics, respectively. It was not
expected that either of the hyper-heuristic approaches
would achieve better results than the problem specific
algorithms but for 40 percent of the university problems
and 43 percent of the transportation problems the hyper-
heuristic approaches achieved a lower cost than problem

specific algorithms. The results for the non-dynamic and
dynamic approaches were very similar but the dynamic
approach achieved the same or better results on 57
percent and 35 percent of the transportation and
university problems, respectively. The dynamic approach
performed well across these two different types of
problems using a generic set of configuration options.
For the dynamic approach increasing the number of
configuration options increases the number of
configurations and the controller takes longer to establish
reliable performance measures so it is possible that the
dynamic approach may perform even better compared to
the non-dynamic approach given a longer search time.
For a subset of transportation problems it was
demonstrated that a simple modification to configuration
options using problem specific knowledge produced an
improvement in the solutions generated by the dynamic
approach.

Hyper-heuristic approaches are relatively new and
the findings for the modifications investigated in this
study are promising. In particular, the new dynamic
approach developed here is encouraging but further
studies are needed to: verify its applicability in other
problem domains; develop a more intelligent controller
able to identify the best configuration options for
particular problems; and further investigate methods
suggested by Rattadilok et al. [34] to allow the search to
be carried out simultaneously on multiple processors.

References
[1] V. Maniezzo, S. Vob, P. Hansen, (Editors) (2009)

Special Issue on Mathematical Contributions to
Metaheuristics, Journal of Heuristics, 3, pp.197-
312.

[2] R. Qu, E.K. Burke, B. McCollum, (2009) Adaptive
automated construction of hybrid heuristics for
exam timetabling and graph colouring problems,
European Journal of Operational Research, 198(2),
pp.392-404.

[3] R. Qu, E.K. Burke, B. McCollum, L.G.T. Merlot,
S.Y. Lee, (2009) A Survey of Search
Methodologies and Automated System
Development for Examination Timetabling, Journal
of Scheduling, 12(1), pp.55–89.

[4] Z. Rios, (Editor) (2009) Special Issue on Heuristic
Research: Advances and Applications, Journal of
Heuristics, 2, pp.105-196.

[5] E. Alba, E. Talbi, A.J. Nebro, (Editors) (2008)
Special Issue on Advances in Metaheuristics for
Multiobjective Optimization, Journal of Heuristics,
5, pp.311- 412.

[6] G.I. Zobolas, C.D. Tarantilis, G. Ioannou, (2009)
Minimizing makespan in permutation flow shop
scheduling problems using a hybrid metaheuristic
algorithm, Computers and Operations Research,
36(4), pp. 1249-1267.

[7] B. McCollum, (2007) A Perspective on Bridging
the Gap between Research and Practice in
University Timetabling, in E.K. Burke, H. Rudova,
(Editors) Practice and Theory of Automated

532 Informatica 34 (2010) 523–534 P. Rattadilok

Timetabling VI, Lecture Notes in Computer
Science, 3867, pp.3-23.

[8] C. Blum, A. Roli, (2003) Metaheuristics in
combinatorial optimisation: overview and
conceptual comparison, ACM Comput. Sruv., 35,
pp.268-308.

[9] F.W. Glover, G.A. Kochenberger, (2003)
Handbook of Metaheuristics, International Series on
Operational Research and Management Science,
Vol.57, Springer.

[10] A.A. Najafi, F. Azimi, (2009) A priority rules-based
heuristic for resource investment project scheduling
problem with discounted cash flows and tardiness
penalties, Mathematical Problems in Engineering,
Vol. 2009, article ID 106425.

[11] C. Weng, X. Lu, (2005). Heuristic scheduling for
bag-of-tasks applications in combination with QOS
in the computational grid source, Future
Generation Computer Systems, 21(2), pp.271-280.

[12] A. Elazouni, (2009) Heuristic method for multi-
project finance-based scheduling, Construction
Management and Economics, 27(2), pp.199-211.

[13] J.P.O. Fan, G.K. Winley, (2008) A Heuristic Search
Algorithm for Flow-shop Scheduling, Informatica,
32, pp.453-464.

[14] H.E. Mausser, M.J. Magazine, (1996) Comparison
of neural and heuristic methods for a timetabling
problem, European Journal of Operational
Research, 93(2), pp.271-287.

[15] Y. Lee, C. Chen, (2009) A heuristic for the train
pathing and timetabling problem, Transportation
Research Part B: Methodological, 43(8-9), pp.837-
851.

[16] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, (1983)
Optimization by Simulated Annealing, Science,
220(4598), pp.671-680.

[17] F. Glover, (1989) Tabu Search - Part I, ORSA
Journal on Computing, 1(3), pp.190-206.

[18] D.E. Goldberg, (1989) Genetic Algorithms in
Search, Optimization and Machine Learning.
Boston, MA: Kluwer Academic Publishers.

[19] M. Dorigo, T. Stützle, (2004) Ant Colony
Optimization. MIT Press.

[20] J. Kennedy, R.C. Eberhart, Y. Shi, (2001) Swarm
Intelligence. Morgan Kaufmann Publishers.

[21] B. Selman, H. Kautz, B. Cohen, (1993) Local
Search Strategies for Satisability Testing,
Proceedings of 2nd DIMACS Challenge Workshop
on Cliques, Color-ing, and Satisability, Rutgers
University, pp.290-295.

[22] K.V. Price, M.R. Storn, J.A. Lampinen, (1998)
Differential Evolution: A Practical Approach to
Global Optimization. Springer.

[23] T.G. Crainic, M. Gendreau, L-M. Rousseau,
(Editors) (2010) Special Issue on Recent Advances
in Metaheuristics, Journal of Heuristics,16, pp.235-
535.

[24] R. Bai, J. Blazewicz, E.K. Burke, G. Kendall, B.
McCollum, (2007) A simulated annealing hyper-
heuristic methodology for flexible decision support,
Technical Report, School of Computer Science,

University of Nottingham (available at:
www.asap.cs.nott.ac.uk/publications/pdf/Bai_et_al_
2007-8.pdf).

[25] E.K. Burke, B. McCollum, A. Meisels, S. Petrovic,
R. Qu, (2007) A Graph-Based Hyper Heuristic for
Educational Timetabling Problems, European
Journal of Operational Research, 176(1), pp.177-
192.

[26] E.K. Burke, S. Petrovic, R. Qu, (2006) Case-based
heuristic selection for timetabling problems,
Journal of Scheduling, 9(2), pp.115-132.

[27] E.K. Burke, G. Kendall, E. Soubeiga, (2003) A tabu
search hyperheuristic for timetabling and rostering,
Journal of Heuristics, 9(6), pp.451-470.

[28] P. Cowling, G. Kendall, E. Soubeiga, (2000) A
Hyperheuristic Approach to Scheduling a Sales
Summit, in E.K. Burke, W. Erben, (Editors)
Proceedings of the Third International Conference
on the Practice and Theory of Automated
Timetabling, Lecture Notes in Computer Science,
2079, pp.176 – 190.

[29] P. Cowling, G. Kendall, E. Soubeiga, (2002)
Hyperheuristics: A Robust Optimisation Method
Applied to Nurse Scheduling, in Parallel Problem
Solving from Nature VI (PPSN 2002), Lecture
Notes in Computer Science, pp.851–860.

[30] P. Cowling, G. Kendall, E. Soubeiga, (2001)
Hyperheuristic: A Tool for Rapid Prototyping in
Scheduling and Optimisation, Proceedings of the
Second European Conference on Evolutionary
Computing for Combinatorial Optimisation
(EvoCop 2002), pp.1–10.

[31] E. Soubeiga, (2003) Development and Application
of Hyperheuristics to Personnel Scheduling, Ph.D.
thesis, University of Nottingham School of
Computer Science.

[32] S. Karlin, (1972) A First Course in Stochastic
Processes, Academic Press, New York.

[33] R.S.K. Kwan, M.A. Rahim, (1999) Object Oriented
Bus Vehicle Scheduling – the BOOST System, in
N.H.M. Wilson, (Editor) Computer-Aided Transit
Scheduling of Public Transport, Springer, pp.177-
179.

[34] P. Rattadilok, A. Gaw, R.S.K. Kwan, (2005)
Distributed Choice Function Hyper-heuristics for
Timetabling and Scheduling, in E. Burke, M. Trick,
(Editors) Practice and Theory of Automated
Timetabling V, Lecture Notes in Computer Science,
3616, pp.51-67.

Appendix

A1 Factors in the choice function

Factor 1f : A measure of the past performance of the

low-level heuristic jH is calculated using,

AN INVESTIGATION AND EXTENSION OF… Informatica 34 (2010) 523–534 533

    
 







 

 jn

jn
l

n

n
j HT

HI
Hf

1
1  . (A1)

 jn HI is the change in the cost function the nth last

time jH was used, l refers to the first time that jH was

selected, and if  jn HI > 0 then the value of the cost

function was decreased.  jn HT is the amount of CPU

time in milliseconds from the time the low-level heuristic

jH was used the nth last time until the time when it

returned a solution to the controller. The parameter is
normalised to have a value in the interval (0, 1) and it
assigns a decreasing geometric sequence of weights to

the past performance measures of jH . The initial value

of  is determined randomly and if necessary it is
automatically modified during the search as described
below.

Factor 2f : The performance of a low-level heuristic may

be affected by the low-level heuristic that was used

immediately before it. Suppose that kH was used at the

last iteration and the use of jH next is being considered.

Then the measure of the past performance of the pair

 jk HH , is calculated using,

   
 







 

 jkn

jkn
l

n

n
jk H,HT

H,HI
H,Hf

1
2 

. (A2)

 jkn HHI , is the change in the cost function the nth

last time the pair  jk HH , was used, l refers to the first

time in the search that jH was used immediately after

kH , and if  jkn HHI , > 0 then the value of the cost

function decreased.  jkn HHT , is the amount of CPU

time in milliseconds from the time the pair  jk HH ,
was used the nth last time until the time when a solution
was returned to the controller. The parameter  is

normalised to have a value in the interval (0, 1) and it
assigns a decreasing geometric sequence of weights to

the past performance measures of the pair  jk HH , .

The initial value of  is determined randomly and if

necessary it is automatically modified during the search
as described below.

Factor 3f : The two factors 1f and 2f intensify the

search on low-level heuristics which have performed

well in the past. The third factor 3f diversifies the

search by considering low-level heuristics that may not
have been used for some time and this is relevant in
situations where the search is stuck at a local optimum.

The value of 3f is calculated for each low-level

heuristic jH using,

 jj HHf .3 





 . (A3)

 jH is the amount of CPU time in milliseconds since

the low-level heuristic jH was last used and each time

jH is used  jH is reset to zero. The initial value of

 is selected randomly in the interval (0, 1) and if
necessary it is automatically modified during the search
as described below.

A2 Modification of parameters in the choice
function

Suppose that there are m low-level

heuristics mHHHH ,,,, 321  , kH has just been used,

and the choice function suggests the use of jH at the

next iteration. Before using jH determine which of the

factors  jHf1 ,  jHf2 , and  jHf3 has the largest

value L .

1. If  jHfL 1 (or  jHf2) then use jH in the next

iteration and modify the value of  to   1 (or

to   1) where
 

0

1

mc

HI j
 










0

1 ,
or

mc

HHI jk

and c0 is the value of the cost function for the low-level
heuristic used at the start of the search. Thus the value of
 (or ) increases as confidence grows in the forecasts

provided by the choice function and decreases when a
low-level heuristic cannot be found that has decreased
the value of the cost function the last time it was used.

 If  jHI1 = 0 (or  jk HHI ,1 = 0) and this has not

been occurring regularly then no change in the value of
the cost function is preferable to a decrease and the value
of  (or ) needs to be decreased by a small amount

where
 

j

j

nm

HT
2

1


 









 

j

jk

nm

HHT
2

1 ,
or and jn is

the number of times jH has been used in the search.

Here  is proportional to the time that might be wasted

by using jH and it is a small value if jn is large which

means jH (or the pair  jk HH ,) has often performed

well in the past. If  jHI1 = 0 (or  jk HHI ,1 = 0)

and this has been occurring regularly (as defined by the
user) then the value of  is modified as in part 4 of the
modification procedures below.

534 Informatica 34 (2010) 523–534 P. Rattadilok

2. If  jHfL 3 then determine the trial low-level

heuristic iH which maximises the value of

   hh HfHf 21  for h = 1, 2, 3, , m. Use iH as a

trial and if    ki HFHF  then decrease the

value of  to  q1 and accept that iH is the low-

level heuristic to use in the next iteration. This means

that diversification of the search using jH has been

suggested prematurely.

 Before the trial use of iH is

conducted
   
     ijj

ij

HfHfHf

HFHF

321 


which

means that  jHf3 >  iHf3 . If the use of iH
decreases the value of the cost function then it is

preferred to jH and the value of  needs to be

decreased in order to lessen the effect of the factor 3f in

the choice function. If jH has been suggested

prematurely then it is desirable to use iH and

have  iHF >  jHF which means that if the value of

 changes to  q1
then    ii HqfHF 3 >    jj HqfHF 3 and so

q >
   
   ij

ij

HfHf

HFHF

33 


> 0. Thus an appropriate value

for q is
   
   ij

ij

HfHf

HFHF

33 


+ γ, where γ is an arbitrarily

selected small positive number.

 Otherwise, use jH as suggested by the choice

function and do not change the value of  . This means

that diversification of the search using jH is

appropriate.

3. If the values of  jHf1 ,  jHf2 , and  jHf3 are

the same then use jH as suggested by the choice

function and do not change the values of  and,, .

4. Regardless of the value of L if the suggested low-level

heuristic jH has been selected and used many times in

recent iterations and continually fails to decrease the
value of the cost function then increase the value of  to

p in order to diversify the search using nH which

maximises the value of  hH for h = 1, 2, 3, , m.

nH is the low-level heuristic which was last used the

longest time ago and    nj HFHF  . However, it is

desirable to diversify the search so that

   nn HpHF  >    jj HpHF  and so

p >
   
   jn

nj

HH

HFHF

 


> 0. Thus and an appropriate

value for p is
   
   jn

nj

HH

HFHF

 


+ ν, where ν is an

arbitrarily selected small positive number.

