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The Dynamic Process Integration Framework (DPIF) is a service oriented approach which supports effi-
cient creation of distributed systems for collaborative reasoning. The DPIF is relevant for an important
class of contemporary applications requiring efficient and reliable processing of large quantities of het-
erogeneous information. An example of such an application is situation assessment in complex decision
making processes in dynamic environments. The DPIF supports (i) a systematic encapsulation of hetero-
geneous processes and (ii) negotiation-based self configuration mechanisms which automate creation of
meaningful workflows implementing complex collaborative reasoning processes. The resulting systems
support processing based on rich domain knowledge while, at the same time, the collaboration between
heterogeneous services requires minimal ontological commitments.

Povzetek: Opisan je nov pristop v procesiranju informacij v kompleksnih porazdeljenih sistemih.

1 Introduction

This paper introduces a service oriented architecture sup-
porting complex collaborative processing in distributed
systems. The presented approach is relevant for many con-
temporary applications that require reasoning about com-
plex processes and phenomena in real world domains. For
example, in crisis management advanced information pro-
cessing is required for (i) identification of critical situa-
tions, (ii) impact assessment which takes into account pos-
sible evolution of physical processes, (iii) planning and
evaluation of countermeasures and (iv) decision making.
This can be achieved only through adequate processing of
large quantities of very heterogeneous information, based
on rich expertise about different aspects of the physical
world. Such processing requirements typically exceed the
cognitive capabilities of a single human expert; an expert
typically does not have knowledge of all the relevant mech-
anisms in the domain and cannot process the huge amounts
of available information. On the other hand, full automa-
tion of decision making processes in such settings is not
feasible, since the creation of the required domain models
as well as the inference are intractable problems. Specif-
ically, automated inference processes involve many vari-
ables and relations with accompanying representation and
inference mechanisms.

Such settings require collaborative processing based on
a combination of automated reasoning processes and cog-
nitive capabilities of multiple human experts, each con-

tributing specific expertise and processing resources. Key
to effective combination of human-based expertise and au-
tomated reasoning processes is a framework which allows
that each piece of the relevant information is adequately
considered in the final processing outcome. The main ele-
ments of such a framework are:

1. Standardized formats that facilitate sharing of hetero-
geneous information.

2. Filtering services which provide stakeholders in a de-
cision making process with the right information at
the right moment in time. In principle, filtering ser-
vices must transform heterogeneous data to more ab-
stract information types and route the information to
the consumers who can make use of it.

In this paper we focus on the second element, which
is tackled with the help of the Dynamic Process Integra-
tion Framework (DPIF). The DPIF supports seamless inte-
gration of heterogeneous domain knowledge and process-
ing capabilities into coherent collaborative processes. Pro-
cesses are encapsulated by software agents, each using
identical communication and collaboration mechanisms.
The DPIF combines Multi Agent Systems (MAS) and a ser-
vice oriented paradigm in new ways which facilitate imple-
mentation of hybrid collaborative reasoning systems with
emergent problem solving capabilities. In contrast to tradi-
tional MAS approaches [29, 11], the DPIF facilitates inte-
gration of human cognitive capabilities right into problem
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solving processes in workflows; humans are not mere users
of an automated system, but contribute the processing re-
sources. From the problem solving perspective, the humans
can be viewed as a specific type of processing modules,
integrated into the overall processing system via assistant
agents.

In general, a key to efficient collaborative processing
in complex domains are workflows, in which peers with
different processing capabilities exchange relevant infor-
mation [25, 4, 2, 3, 27]. Often such workflows are cre-
ated through dynamic composition of services [5, 25]. In
this way the systems can adapt at runtime and deliver tai-
lored solutions to specific problems. Creation of work-
flows is often based on centralized planning and ontolo-
gies describing relations between different services. Ap-
proaches exploiting centralized service composition have
been successfully used in many relevant applications, such
as business process modeling [15, 22], scientific querying
[4], planning/booking systems [22] and simulation and sci-
entific grid computing [14, 8].

For the challenges addressed in this paper, however,
centralized approaches to composition of workflows and
central description of relations between services are nei-
ther practical nor necessary. Namely, we are dealing with
systems in which artificial agents and experts collabora-
tively process large quantities of heterogeneous informa-
tion. In such settings construction of centralized ontologies
describing services as well as all relations between the han-
dled information types is likely to be very hard or even in-
tractable. Similarly, centralized construction of workflows
might not be practical, since the constellations of available
services (i.e. automated processes or experts) change fre-
quently at runtime. Given the time constraints, communi-
cation of all changes and system states to a central work-
flow composition process might not be feasible. Thus, the
resulting, centrally composed workflows are likely to incor-
porate only a subset of all services relevant for a problem
at hand.

It turns out that efficient solutions to service composition
can be obtained if we explicitly take into account the char-
acteristics of the problem. In particular, many of the chal-
lenges associated with centralized approaches to service
composition and definition can be avoided if the resulting
systems are used in organizations that can be characterized
as Professional Bureaucracy [26]. In such organizations
the skills are standardized, the control is decentralized to
a great extent and the experts and/or automated processes
do not have to share domain and processing knowledge. In
other words, complex problems can be efficiently solved
with the help of systems of loosely coupled experts and
automated processes without a centralized control. Collab-
oration in such systems can be achieved through service
discovery based on local domain knowledge. Therefore,
we introduce an approach which does not require central-
ized service ontologies and centralized service composition
methods. Moreover, fully decentralized configuration of
meaningful processing workflows can be achieved by us-

ing local knowledge of relations between different services.
The approach requires simple ontologies which serve pri-
marily for the alignment of the semantics and syntax of
messages exchanged between the processes in workflows.
In addition, the relations between types of services are cap-
tured by local functions, dispersed throughout a system of
modules providing the services. We show that meaning-
ful workflows supporting globally coherent processing can
be created by using only local domain knowledge. In this
way we obtain systems which support processing based on
rich domain knowledge while, at the same time, the collab-
oration between heterogeneous services requires minimal
ontological commitments [9].

Overall, by using the DPIF encapsulation techniques and
methods, arbitrary processing services can easily be made
composable and negotiable.

The paper is organized as follows. In section 2 a ra-
tionale for decentralized collaborative reasoning in work-
flows is provided and the basic features of the DPIF are
introduced. Section 3 explains how meaningful workflows
between heterogeneous processes can be dynamically im-
plemented, without centralized knowledge of relations be-
tween the variables in the reasoning processes. In partic-
ular, we emphasize a combination of service composition,
decentralized validation methods and advanced negotiation
mechanisms, which allow a systematic incorporation of
various criteria into the workflow creation processes. Sec-
tion 4 introduces basic DPIF architecture principles while
section 5 introduces an approach to efficient construction
of service ontologies by exploiting the local domain knowl-
edge captured by different DPIF agents. Section 6 provides
conclusions and plans for the future work.

2 Collaborative processing

Reasoning about domains requires knowledge about typi-
cal dependencies (i.e. relations) between relevant phenom-
ena in these domains. By using (i) domain models captur-
ing the relations between relevant phenomena and (ii) evi-
dence based on observations of certain phenomena, we can
assess (i.e. estimate) the states of the domain that cannot be
observed directly. In addition, with the help of models, the
future evolution in domains can be predicted. However, in
complex domains reliable reasoning can be achieved only
by relating large quantities of information of very hetero-
geneous types with very different semantics. Such depen-
dencies can be explained only through complex models.

Irrespectively of the used models, it is unlikely that in
complex domains a single model designer or an expert un-
derstands all the relevant phenomena and relations between
them. Instead, a set of relatively simple domain models
will exist, with each model capturing a small subset of the
relevant variables and the corresponding relations. Thus,
reasoning based on the relations between the entire avail-
able evidence can be achieved only by combining simpler
processes, each using a limited domain model. The out-
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puts of simple processes are used as inputs of other simple
processes. In other words, the reasoning is based on data-
driven workflows established between heterogeneous pro-
cesses. In such workflows difficult problems can be solved
through collaboration of heterogeneous processes, each fo-
cusing on a relatively small subset of relevant aspects in the
targeted domain.

We illustrate such processing by using an example from
the environmental management domain. In a chemical in-
cident a leaking chemical starts burning which results in
harmful fumes. The impact of a resulting fumes is miti-
gated through a collaboration of experts captured by fig-
ure 1. We assume that the factory staff (FS) at the incident
have an overview of the current state of the damaged sys-
tem; FS can estimate the quantity of the escaping chemical
and its type. This information can be used by a chemical
expert at the incident location (CE1) to estimate the type
and quantity of toxic fumes resulting from the fire. By
knowing the location of the fire, the meteorological con-
ditions, and the quantity and type of the produced fumes,
chemical expert (CE2) can estimate the zones in which the
concentration of the toxic gases have exceeded critical lev-
els and identify areas which are likely to be critical after a
certain period of time. The CE2 makes use of the domain
knowledge about the physical properties of the gases and
their propagation mechanisms. In addition, it guides fire
fighter teams (MT) which can measure gas concentrations
at specific locations in order to provide feedback for a more
accurate estimation of the critical area. A map showing the
critical area is supplied to a health expert (HE) who uses the
information on population obtained from the municipality
to estimate the impact of the toxic fumes on the human
population in case of exposure. Finally, the estimated im-
pact on the population is supplied to decision makers, who
choose between no action, evacuation and sheltering. This
decision also considers estimated time and costs in case
of an evacuation of people from the danger zone as well as
the estimated costs and duration of a preventive evacuation.
The former estimate is provided by the fire brigade repre-
sentatives while the latter estimate is supplied by the police
department. In other words, in such a system, each expert
can be viewed as a module providing predefined services
which in turn require services from other experts. Thus, the
situation analysis in the presented example can be viewed
as a workflow between different, weakly coupled process-
ing services, each specialized in specific aspects of the do-
main. Moreover, a processing service can be provided by
a human (e.g. a chemical expert analyzing the extent of
the contamination) or by an automated reasoning process
(e.g. detection of gases based on automatic fusion of sen-
sor data). Note that, for the sake of clarity, the used ex-
ample is a significant abstraction of real crisis management
processes.

Moreover, the example can be seen as a class of prob-
lems where we have to reason about a situation which can
be viewed as a specific combination of known types of
events and processes, each understood by a human expert

or modeled by an artificial agent. For example, the way
chemicals burn and react, the effects of exposure to toxic
fumes, evacuation approaches in hospitals and schools, etc.
are independent of the location and time. Therefore, we can
obtain general knowledge about such processes and phe-
nomena which can be used for the analysis in any situation
involving such phenomena. In other words, a mapping be-
tween experts and artificial agents, on the one hand, and
event types, on the other hand, can be made a priori; we can
assign roles to different experts and artificial agents based
on their domain knowledge and models.

Since each situation (e.g. chemical incident) is a unique
combination of known types of events, a specific workflow
consisting of a particular combination of processing nodes
is required for adequate situation assessment. In addition,
due to unpredictable sequences of events it is impossible to
specify an adequate workflow a priori. For example, given
the wind direction, experts for the evacuation of hospitals
and schools might be needed. However, if the gas is blown
to the open sea instead, no evacuation experts are needed
in the situation assessment process.

Clearly, a major challenge is creation of adequate work-
flows which correctly integrate the relevant processes and
support globally coherent processing in decentralized col-
laborative systems. In the following text we explain how
this can be achieved in an efficient and sound way.

2.1 Dynamic process integration framework

The Dynamic Process Integration Framework (DPIF) sup-
ports decentralized creation of workflows that facilitate col-
laborative problem solving. The DPIF is a service-oriented
approach (SOA) which supports efficient composition of
very heterogeneous processing services provided by differ-
ent experts and automated reasoning processes. In the con-
text of the DPIF, the information processing is abstracted
from human or machine instances; a reasoning process is
either provided by a human expert or an automated system
implemented by a software agent. Each process provides a
well defined reasoning service in the form of an estimate,
prediction, cost estimate, etc. The inputs for each of such
processes are provided by other processes or by direct ob-
servations (i.e. sensor measurements and reports from hu-
mans).

A human expert or an automated inference process is
represented in the system by a software agent, a functional
(i.e. processing) module which (i) supports standardized
collaboration protocols and (ii) allows incorporation of ar-
bitrary reasoning approaches. In other words, the agents
provide a uniform communication/collaboration infrastruc-
ture allowing seamless combination of heterogeneous pro-
cesses provided by human experts or implemented through
AI techniques. Each agent registers in the DPIF-based sys-
tem (i) the services supported by its local processing capa-
bilities and (ii) the required inputs, i.e. types of services
that should be provided by other agents in the system.

By using the registered services, agents distributed
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Figure 1: A workflow in a decision making process. Arrows denote information flow between different experts, each
processing relevant information of different types. The circled region denotes the initial estimate of the area where
concentration is likely to be critical.

throughout different networked devices can autonomously
form workflows in which heterogeneous processes intro-
duce collaborative reasoning. The configuration of work-
flows is based on the relations between services captured
by local models; each agent knows what service it can pro-
vide and what it needs to do this. This local knowledge is
captured by the relations between the variables in partial
domain models. Thus, no centralized ontology describing
relations between different services of various agents is re-
quired, the creation of which is likely to be intractable.

In other words, globally coherent collaborative process-
ing is possible by combining local processes, without any
global description of relations between inputs and outputs.

In the following discussion we focus on (i) principles
for the creation of valid workflows based on the local pro-
cessing capabilities of different agents and (ii) describe the
basic elements of the DPIF architecture.

3 Processing workflows

A basic workflow element in the DPIF is a local process.
Moreover, in the following discussion the term local pro-
cess refers to a reasoning process provided either by a hu-
man expert or an automated system implemented by a soft-
ware agent. Each local process corresponds to a function
F : {X1, ..., Xn} → Y , mapping values in a domain
{X1, ..., Xn} to values of some variable of interest Y . The
value of Y for particular values of arguments is given by
y = fy(x1, ..., xn).

Such functions can be either explicit, based on some rig-

orous theory, or implicit, when they are provided by hu-
mans or sub-symbolic processes, such as for example neu-
ral networks. An example of a mathematically rigorous
mapping is the function xCE1 = fxCE1

(xFS), an explicit
formula describing the relations between the fume volume
per time unit represented by XCE1 and the escape rate of
chemicals denoted by XFS . This function is used by the
Chemical Expert CE1 in figure 1. An implicit mapping,
on the other hand, is performed by the health expert (HE)
who estimates the critical regions with respect to the impact
on the residents. HE interprets information about critical
concentration XCE2 in combination with information on
population distribution XPOP by using an implicit func-
tion xHE = fxHE

(xCE2, xPOP ).

3.1 From local to global processes

An expert or an artificial agent often cannot observe val-
ues of certain variables; i.e. variables cannot be instanti-
ated. Instead, the inputs to the local function are supplied
by other processes forming a collaborative workflow (see
section 2). Thus, the inputs to one function are outputs of
other functions used by the information suppliers. From
a global perspective this can be seen as a function com-
position; in a function, each variable which cannot be in-
stantiated is replaced by a function. This process contin-
ues until a function is obtained in which all variables are
instantiated, i.e. all free variables in the resulting nested
function have been reduced to direct observations. In this
way, a global function emerges as different processes are
connected in a workflow. The resulting function is a com-
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posite mapping between directly observable variable states
and hidden variables of interest.

In other words, a workflow in a DPIF system corre-
sponds to a full composition of functions, in which each
variable replaced by a function corresponds to a required
service. This yields the value of the variable of interest.
Let’s assume an example with six service suppliers shown
in figure 2(a), using the following functions:

xa = fa(xb, xc), xb = fb(xd), xc = fc(xe, xf ),

xd = fd(xg), xe = fe(xh), xf = ff (xi).

then the workflow supporting collaborative computation of
the value for xa corresponds to the composite function

fa(fb(fd(xg)), fc(fe(xh), ff (xi))) (1)

It is important to bear in mind that in DPIF no explicit
function composition takes place in any of the agents.
Instead, the sharing of function outputs in a workflow
corresponds to such a composite function; i.e. a workflow
models a (globally emergent) function, mapping all
observations of the phenomena of interest (i.e. evidence)
to a description of some unknown state of interest.

Each workflow corresponds to a system of systems,
in which exclusively local processing leads to a globally
emergent behavior that is equivalent to processing the fully
composed mapping from direct observations to the state of
the variable of interest.

3.2 Decentralized validation of workflow
structures

The functions in a workflow can be described through dif-
ferent ad-hoc or theoretically sound frameworks (such as
for example Bayesian reasoning). However, the relation
between workflows and function composition has several
interesting properties regardless of the theory used to de-
scribe the functions. Workflows, in general, can be repre-
sented by directed graphs1 whose topologies have impor-
tant implications regarding the reasoning (e.g. see figure
2(b)). Particularly important concepts in graphs are loops
and cycles. Loops occur when there is more than one way
to travel between two nodes by following the directed links
in a graph, i.e. there exist multiple directed paths between
two nodes (e.g. see figure 3(b)). Cycles occur if a node can
be revisited by following a directed path (see figure 4(c)).

Loops and cycles provide an important insight into the
dependencies between different services (i.e. processes)
and thus the use of information in a distributed system.

If a process uses multiple inputs obtained from services
belonging to a loop, then these inputs might have been gen-
erated by distributed processes using the same information.

1A directed graph representing a workflow consists of nodes, each rep-
resenting a process (i.e. a function), and directed links which capture
direct dependencies between the processes (i.e. supplier-consumer rela-
tions).

In other words, these inputs may not be independent, which
might lead to data incest [7], if the inputs are not prop-
erly treated. In case of data incest, the same information
is reused multiple times which is likely to lead to mislead-
ing conclusions. In case of rigorous reasoning approaches,
such as Bayesian networks, this problem can be avoided
by clustering of variables [12], which allows correct prob-
abilistic reasoning even if the graphs contain loops. In any
case, we should be aware of loops in systems implementing
distributed functions.

While loops may be permissible, as there are various
ways to deal with them if detectable, cycles are not permit-
ted in workflows that implement inference, as they would
lead to one or more components in a workflow process-
ing misleading data. That is, the system is generating out-
puts without adding new information to the system. In a
data-driven approach this leads to a self perpetuating sys-
tem which is likely to produce outputs which do not re-
flect the reality. Figure 4(b) shows an example of a sys-
tem with a directed cycle, where agent A keeps supplying
inputs to agent C, which in turn produces new inputs for
A. By looking at the composed function represented by a
workflow, cyclical workflows would lead to infinite compo-
sition sequences: if some function is directly or indirectly
dependent upon itself, then this would lead to an infinitely
recursive composition of the full function which is likely to
result in misleading outputs.

Therefore, an integral part of the DPIF is a cycle detec-
tion mechanism based on the cycle detection principles in-
troduced in [13]. The used approach allows a fully decen-
tralized detection of cycles based on peer to peer commu-
nication. These principles were initially used in modular
systems using Bayesian networks [13], but the technique
discussed is easily carried over to a more generic domain.

In order to effect cycle-free workflows, each DPIF agent
must be aware of the outputs of other agents that influence
the inputs of this agent. In [13] it was shown that this in-
formation can be obtained during the creation of workflows
by passing simple information between the peers in a work-
flow; as agents link up to form workflows, the composition
of the network influencing the inputs of each agent can be
recorded. By using such knowledge, agents can locally de-
termine whether extension of a DPIF workflow with a new
peer would introduce cycles; i.e. each agent can find out
whether or not it is setting up an (in)direct dependency on
itself, without any central authority.

While in this paper we cannot describe all interesting as-
pects of this approach, we illustrate the basic cycle detec-
tion principles from [13] with the help of an example. In
figure 4(a), agent A supplying xa forms a workflow with
agent B supplying xb. Agent A knows the output variable
set SA = {xa, xb}, and agent B knows the output variable
set SB = {xb}. In figure 4(b), an agent C, able to supply
xc, joins the workflow. Agent C knows its current set of
output variables; SC = {xc}. Before joining, agent A ver-
ifies whether the proposed connection does not introduce
cycles. This is the case if a simple intersection test yields
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Figure 2: a) A self-organized system of agents. Each agent supplies information concerning a particular variable of
interest in the domain. These outputs are based on other inferred or directly observed variables. b) A directed graph
capturing the workflow between the agents from a).

Figure 3: a) A self-organized system of agents forming a workflow corresponding to a multiply connected graph. b) A
directed graph capturing the workflow between the agents from a).
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SA ∩SC = ∅. This holds, so the connection is allowed and
Agent C joins the workflow. As it does so, Agent A up-
dates its variable set to SA = {xa, xb, xc}; i.e. A obtains
all the relevant information about the services that influence
its function by peer to peer sharing of local information.

However, when agent C looks for suppliers, the only
available agent supplying xa is A, the one to which C is
already connected. As C conducts a verification step, in
which the variable sets SC = {xc} and SA = {xa, xb, xc}
are tested for empty set intersection, the intersection SA ∩
SC 6= ∅, and so C knows that a cycle would be introduced
if the service xA were supplied to it by A.

In fact, in [13] it was shown that cycles, as well as loops,
can be detected in workflows in completely decentralized
manner by collaboration of peers exchanging asynchronous
messages. Peers check the intersections of dynamically as-
sembled variable sets at different levels of the workflow,
and as new agents join the workflow the new network lay-
out needs to be reflected in all agents whose downstream
network has changed by new connections. Thus, we can
view the task of loop and cycle detection as a combina-
tion of (i) checks which travel upstream (i.e. toward the
top agent) until the top agent of the network is reached, (ii)
messages conveying the updated topology, and (iii) control
messages which lock/unlock the agents for local checks.

In general, this approach allows for an intelligent han-
dling of loops and cycles in workflows, where the choice
on whether to allow a connection or not is dependent on
the function performed by an agent that is responsible for
expanding a workflow. There exist functions which require
that all inputs are provided, in order to yield an output. In
such cases, an agent modeling a function may decide to
abandon a workflow when one or more of its inputs would
lead to a cycle (or loop). On the other hand, there are also
functions which yield output even when some inputs are
left unknown, such as for example marginal conditional
probabilities expressed with the help of Bayesian networks.
In these cases, an agent modeling such a function may keep
participating in the workflow, provided it can ensure that
the inputs otherwise responsible for introducing cycles are
not supplied to any other agent; i.e. the inputs are ignored
in the evaluation of the function.

3.3 Negotiation

In the DPIF, communication links between local processes
in agents are facilitated firstly using service discovery:
whenever an agent supplying some service (we will call
this service the parent service, and the agent implement-
ing it the parent, or manager agent) in a workflow requires
data relating to some other service (we will call this re-
quired service the child service, and the agent implement-
ing it the child, or contractor agent), a communication link
needs to be established between the parent agent and the
child agent. However, there are two important aspects that
affect whether and why links are established: i) we might
have several agents in the system that provide the same ser-

vice, i.e. that are able to realize the same task, and ii) we
cannot always assume that a service providing agent will
automatically agree to supply the service asked for by a
requesting agent. For example, the providing agent might
be overloaded, or it might even consider that establishing a
link is inappropriate, given the current context.

In addition, on its own, service discovery can only of-
fer links between agents based on a broad level of service
matching, while for the system to solve a particular prob-
lem, a finer level of control is required to match services
on whatever additional parameters may be of importance
to particular links. For this we use negotiation. Rather than
performing perfect matching at the service discovery level,
negotiation allows us to filter potential links found through
service discovery based on additional service parameters.

Negotiation in general consists of three elements [10]:

– protocols, i.e. sets of rules that describe the steps of
negotiation processes; example protocols are Contract
Net (CNET), monotonic concession protocol (MCP),
Rubinstein’s alternating offers and auctions [28] [24]
[29].

– subject, i.e. the item being negotiated about. In ser-
vice negotiation, the negotiation subject is the service
with its parameters.

– strategies, i.e. the set of decisions that agents will
make during the negotiation in order to reach a pre-
ferred agreement.

We have developed a conceptual framework for service
negotiation that will be used in the DPIF [21]. The frame-
work is generic and addresses negotiation protocols, nego-
tiation subject and decision components (how agents make
proposals and how they select the best proposals).

Establishing links is based on one-to-many negotiation;
i.e. one agent (the manager) negotiates with multiple
agents (possible contractors) about a service, with an arbi-
trary set of parameters (multi-issue subject) [19], [20]. The
framework defines the common steps of negotiations, in-
cluding starting negotiations, making proposals, deciding
whether an agreement or a conflict has been reached and
termination.

The negotiation subject consists of the service plus a sub-
set of service parameters that are important decision factors
during negotiation (they are taken into consideration when
selecting the proper service providers). During negotiation,
these parameters are considered negotiation issues. Thus,
the negotiation designer defines the negotiable parameters
of the service (negotiation issues) when configuring the ser-
vice. When negotiating, agents need to know how to han-
dle the issues and extra information about the issues should
be added into the system. Therefore, issues have a set of
properties. These properties include:

– name: a unique identifier of the issue in the subject.

– data type: the type of the value the issue is allowed to
take.
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Figure 4: a) a partially formed collaboration, allowing the top agent to perform inference, leading to information about
the state of variable xa. b) If the potential connection represented by dashed directed link were allowed, a cycle would
form in the workflow. c) A graph corresponding to a system of DPIF agent if the connection from b) were allowed.

– value type: specifies whether the value of the issue
can be modified in proposals or the original value set
by the manager should be kept.

In addition to the standard set of properties, agents (de-
pending on their role) are allowed to assign some extra
properties to the issues:

– weight: represents the relative importance of the issue
in the subject, compared to the other issues.

– reference value: represents the ideal value of the issue
from the point of view of the agent.

For the moment the issues are evaluated independently.
The default negotiation in DPIF is an implementation of

CNET [24]. A manager starts a negotiation for a service by
sending a call for proposals to all the contractors that are
able to provide the service. Each contractor then tries to
compute a proposal. Contractors evaluate possible propos-
als using a utility function that takes into consideration the
effort necessary to provide the service under the conditions
in the proposals. If contractors are successful in generating
proposals, they send them to the manager, otherwise they
withdraw from the negotiation. After receiving proposals,
the manager selects the best proposals, the ones that give
him the highest utility. The manager uses a weighted sum
utility function to evaluate proposals.

Although the default negotiation protocol is CNET, the
system allows for the use of arbitrary negotiation schemes,
supporting domain specific one-to-many generic negotia-
tion approaches where the protocol, the subject type and
strategies are specified in the service configuration phase.
There are two configuration levels:

– negotiation type level. At this level the negotiation
designer defines the negotiation protocol, identifies

the negotiation issues and sets default values for their
properties.

– negotiation instance level. At this level a human ex-
pert can tune the issue properties for a certain situa-
tion.

We illustrate how negotiation takes place with such
multi-issue subjects, by looking at the example described
in figure 1. We emphasize the step when the CE2 de-
cides to guide MTs to measure gas concentrations at a lo-
cation X. In addition, CE2 decides that measurement de-
vices DEV_X are the most appropriate for the measure-
ments. Other devices can be used as well but with less
precision. CE2 initiates a negotiation over the multi-issue
subject (Gas measurement, location, device) with all MTs
that are able to provide the service Gas measurement. MTs
propose various deals for this negotiation: the locations
they are currently placed at and the devices they have. Ide-
ally, MTs would propose the best deal (Gas measurement,
X, DEV_X). CE2 must decide what MTs to choose by tak-
ing into account various parameters: the distance between
location X and locations where MTs are placed, the dif-
ferences in precision between device DEV_X and devices
MTs have.

The outcome of a successful negotiation between two
agents is a contract, which results in the creation of a com-
munication channel supporting peer-to-peer communica-
tion between the agents.

3.4 Collaborative information acquisition
A DPIF-based system of experts and automated reasoning
processes typically requires acquisition of large amounts of
very heterogeneous information obtained at different loca-
tions by using complex acquisition procedures.
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The DPIF approach supports efficient gathering of infor-
mation by distributing the search task throughout systems
of collaborating agents, i.e. services. Namely, the search
for the relevant information/data must be based on the do-
main knowledge in the system, which is used for the rea-
soning; only the information that is represented in implicit
or explicit domain models can be processed. Since in the
DPIF the domain knowledge is dispersed throughout a sys-
tem y the experts or automated processes providing the rea-
soning services, the information gathering is carried out by
the service providers as well.

Upon establishing contracts in a particular collaboration
network, the service providers initiate a search for infor-
mation based on their domain knowledge. Each service
provider knows exactly which information is needed and
under what conditions it should be obtained. The service
providers either request inputs via the DPIF service dis-
covery or they have access to direct observations (e.g. they
observe sensors, databases, etc.). We say that the services
with a direct access to the observations are grounded in
the domain; they can observe real world phenomena di-
rectly. If the services are not grounded, they delegate the
search of information and pass on only the information
which constrains the search process carried out by service
provider. Typically, an information requester knows what
is needed and where and when it should be obtained but
does not know how this information locating can be car-
ried out. This information is passed on to the provider, that
knows how the information can be obtained in the specified
spatio-temporal context.

In this way a complex search for information is broken
down into several simple search processes which guaran-
tee that only the relevant information is inserted into the
distributed reasoning system. By using the service discov-
ery and negotiation, the judgment of what is needed and
what can be provided is carried out by the information con-
sumers and providers themselves, without the need of intro-
ducing a central authority. Note that a centralized approach
to information search would require a centralized author-
ity that would replicate some of the local knowledge and
have a complete overview of the information acquisition
processes and capabilities of all services. Such a central
solution is not practical in the targeted domains, where new
expertise/algorithms as well as new information sources are
added frequently.

We illustrate the distributed approach to information ac-
quisition with the help of the aforementioned example. Ex-
pert CE2 is requested to estimate the critical zones after
a leak at a chemical plant is discovered. CE2 needs ad-
ditional information to accomplish this task. Based on his
local expertise, CE2 knows what information should be ob-
tained and under what conditions this should happen. For
example, CE2 needs the information about the type and
quantity of toxic fumes escaping at location X (assuming
he was just informed that there was a leak at X). He also
needs information about the weather in the larger incident
area. This information should be obtained within a certain

time interval and the service itself should conform to cer-
tain quality requirements, pertaining to such things as the
experience of the information providers, minimum preci-
sion of the estimates, etc. The requested types of infor-
mation as well as the additional constraints are used by
the DPIF service discovery and negotiation mechanisms
which establish contacts between the DPIF agents of the re-
quester CE2 and suitable information providers, such as ex-
pert CE1. The negotiation ensures that the requested types
of information pertain to the right location and time inter-
val and that the experts with the right quality of service are
involved. For example, a request from CE2 is processed in
the DPIF, which finds agents of two experts that can pro-
vide service of type CE1. However, during the negotiation,
it may turn out that only one expert can provide the estimate
of the toxic fumes at location X within the given time in-
terval. The chosen CE1 can get to the location on time and
supports the required quality of the service. CE1 gets to the
incident location and obtains from the factory staff the in-
formation about the leaking chemical, the pressure and the
leak location; i.e. CE1 knows what information should be
obtained about the incident site and how this can be done.
This information is used by CE1 for the estimation of the
quantities of the escaping fumes. This estimate is routed
to CE2 by using the peer to peer communication channel.
After the first estimate of the critical areas is provided, CE2
requests additional concentration measurements at certain
locations, in order to improve the initial estimate of the crit-
ical zone. CE2 specifies the types of measurements, the
measurement locations as well as the maximum time in-
terval in which the measurements must be provided. The
requests are routed via the DPIF to the measurement teams
(MT) who are able to go to the specified locations and carry
out concentration measurements. The subsequent negotia-
tion results in the creation of contracts between the CE2’s
agent and the agents representing the MTs which can then
get to the specified locations in the given time and carry out
the requested measurements.

Note that in this simplified example the search of infor-
mation requires very different types of requests and acqui-
sition methods. In other words, a lot of domain knowledge
as well as procedural knowledge is required.

The requests to CE1 and MT reflect CE2’s knowledge
of the gas propagation processes, his current knowledge of
the situation as well as his processing capabilities. The bids
from MT and CE1, on the other hand, reflect their capabil-
ities to provide the requested information. As a result of
this approach, from a global perspective, the information
acquisition process implements very complex patterns in
non trivial spatio-temporal context.

4 Processing modules: architecture

Each local process (human or machine-based) is encapsu-
lated by a software agent. In the DPIF, agents provide a
uniform interface for the collaboration between local pro-



486 Informatica 34 (2010) 477–490 G. Pavlin et al.

cesses in different agents. A key feature of DPIF agents
is asynchronous, data-driven processing in complex work-
flows. This is achieved through a combination of weakly
coupled processes inside individual agents, and service
based coupling of processes between distinct agents.

Each agent consists of at least two processes imple-
mented through asynchronous threads communicating via
a local blackboard (see figure 5). The “Communica-
tion Engine” process is a thread that allows for message-
based inter-agent communication, facilitating collabora-
tion and making negotiation capabilities known to other
agents. Through their Communication Engines, workflows
between local processes in different agents can be estab-
lished, by executing service discovery and negotiation (see
section 3.3). The “Processing Engine” process, on the other
hand, is a thread which encapsulates arbitrary automated or
human based inference processes. The Processing Engine
is responsible for the local processes that implement trans-
formations between different types of information, based
on the interpretation of complex cues. Moreover, each Pro-
cessing Engine can keep track of one or more of these
local processes simultaneously. The Communication En-
gine supplies the Processing Engine with inputs that are
obtained through inter-agent messaging, by posting these
on the agent’s local blackboard for the Processing Engine
to see. The Processing Engine then places the results of
local inference processes on the local blackboard for the
Communication Engine to pick up and relay via normal
inter-agent messaging to interested agents.

The Communication and Processing engines must be
able to execute simultaneously. Reasoning can be com-
putationally expensive which requires a certain amount of
time, but during this time an agent should be able to nego-
tiate about possible collaboration with other agents, asyn-
chronously collect their outputs for use in local processes
and so on.

Both the Communication Engine and Processing Engine
threads communicate through a limited set of messages
via the local blackboard. New externally received inputs
are transformed and placed by the Communication Engine
on the internal blackboard, which triggers callback of ad-
equate functions in the Processing Engine. The Process-
ing Engine transforms these inputs into local output and
places this output on the blackboard, which triggers call-
back at the Communication Engine for relaying this infor-
mation via normal messaging to agents interested in this
output. Through cascaded processing in the resulting sys-
tem of collaborating agents, each piece of information in-
fluences the outcome of the collective reasoning processes,
such as estimates/predictions or evaluations (i.e. reasoning
result); with each contributing process, new observations
and a particular expertise are incorporated into the global
reasoning process.

Note that, irrespective of the type of the local processes,
the Communication Engine and the Processing Engine in
each agent use the same mechanisms for the creation and
maintenance of correct workflows between local processes

in different agents. The uniformity of configuration mech-
anisms can be used for a seamless integration of human
experts into complex processing workflows. A DPIF agent
representing an expert has a very simple Processing Engine
which delivers the required inputs to a human expert via a
suitable GUI. The expert’s conclusions, i.e. his/her service,
are also formulated with the help of this GUI and routed
to interested agents via the Communication Engine. Thus,
agents used by human experts merely provide automated
routing of information between experts, and take care of
the automated creation of collaboration connections.

5 Dynamic service ontologies
In order to be able to automatically compose heterogeneous
services provided by different developers or experts, the
definitions of service interfaces have to be standardized,
which is achieved with the help of explicit service ontolo-
gies. Moreover, the locality of the domain knowledge in
the DPIF approach can be exploited for efficient creation
of rigorous service descriptions.

Services declared in the DPIF are typically provided by
many stakeholders from different organizations whose ca-
pabilities evolve with time. Large systems of service de-
scriptions have to be maintained and it is very difficult to
specify a complete set of services prior to the operation.
In other words, traditional approaches based on rigorous
centralized ontologies, such as for example [4, 22], which
capture service descriptions and relationships between in-
formation provided by different types of services are not
practical; we simply do not know which relevant services
will be available in the future and maintenance of large on-
tologies is likely to be very expensive or even intractable.

Fortunately, the locality of domain knowledge in the
DPIF approach supports efficient creation of service on-
tologies. Because self organization and processing are
based on domain knowledge encoded in local functions,
we can avoid traditional approaches to constructing cen-
tralized ontologies, which describe domains in terms of
complex relations between the concepts corresponding to
the processing services. In the targeted domains, adequate
maintenance of such ontologies is likely to be an intractable
challenge. Instead, the services and relations between them
are described by using two types of light weight ontologies:

– The global service ontology merely captures service
descriptions, the semantics and syntax of messages
used for (i) service invocation and (ii) dissemination
of service results. This ontology is used for the align-
ment of the semantics and syntax of service descrip-
tions at design time.

– Local task ontologies coarsely describe relations be-
tween different types of services supplying differ-
ent types of information. In principle, they describe
which types of services provide inputs to the function
used by a specific service. These relations reflect the
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Figure 5: Interaction between agents providing heterogeneous processing services. Both agents use identical communi-
cation engine. However, agent 1 encapsulates automated processing while agent 2 introduces human-based processing.

local knowledge of each processing module. More-
over, the local ontology supports runtime creation of
workflows based on service discovery.

The global ontology is a central element of the service
description procedure. In order to make sure that all agents
speak the same language, the global ontology captures
three types of elements, namely (i) a verbal description of
the service to be provided, (ii) conditions under which this
service can be invoked, and (iii) a collection of represen-
tational elements resulting from the information gathered
by this service. While the vocabulary with which these de-
scriptions can be specified is rigidly formalized, it is rich
enough to allow the description of arbitrarily complex ser-
vices. The global ontology is used by a matching process
in which service suppliers are provided with a list of exist-
ing service descriptions, based on keywords and free text.
The descriptions retrieved from the global ontology are dis-
played in a form that facilitates inspection of the relevant
subset of existing services. If an existing service descrip-
tion corresponds to the new service, it is adopted. Other-
wise a service definition editor allows the experts to pro-
vide a new service description, which is then added to the
global ontology. By making experts responsible for decid-
ing whether they perform a role similar to another domain
participant or a genuinely new role, we overcome the prob-
lem of an a priori defined ontology that is likely to be un-
able to account for all aspects of the domain and expert
capabilities.

The local task ontologies, on the other hand, are created
with the help of a task definition tool which supports spec-
ification of the required inputs (provided by other services)
for each provided service. In this way different services
are related locally, based on the local domain knowledge.
The task ontologies are stored with agents of participat-
ing experts. These relations captured by local task ontolo-
gies are central to the service discovery, which is typically
initiated from within the local services. Consequently, if
each expert is made responsible for the description of re-

lations between the provided and the needed services, sys-
tems using complex relations between services can be built
in a collaborative way, without any centralized configura-
tion/administration authority.

In other words, the introduced division into a global ser-
vice ontology and local task ontologies dispersed through-
out the system of agents allows collaborative definition of
services by experts.

Construction of such ontologies is facilitated by a col-
lection of tools that (i) help the user discover the services
in the global ontology by using keywords and written lan-
guage, (ii) provide an interface facilitating inspection of the
human readable descriptions and (iii) editors for defining
local task ontologies. By using these tools, the experts de-
fine elements of the global service ontology and the local
task ontologies without using any formal language. At the
same time, the tools automatically translate expert inputs to
rigorous ontologies captured in the OWL format. In other
words, by deploying the two types of ontologies in combi-
nation with simple construction procedures, rigorous, ma-
chine understandable service descriptions can be created
without any formal knowledge of the underlying ontology
techniques.

Similarly to the DPIF approach, the OpenKnowledge
framework [23] avoids creation of centralized heavy weight
ontologies describing all aspects of the domain. How-
ever, while the DPIF requires a mere specification of
the provided and supplied services, the OpenKnowledge
framework also requires specification of interaction mod-
els shared by the collaborating peers. Such interaction
models define workflows for each processing task a priory;
the OpenKnowledge approach assumes that collaborating
peers understand interaction protocols and the processing
sequences of collaborating peers. This can introduce ad-
ditional complexity to the system configuration in which
services and processes are specified. Since the DPIF is
targeting Professional Bureaucracy systems [26], it is as-
sumed that experts do not have to share knowledge about
their local processes.
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6 Conclusions and future work

The DPIF supports uniform encapsulation and combina-
tion of heterogeneous processing capabilities which are re-
quired for collaborative reasoning about complex domains.
The processing capabilities can be provided by human ex-
perts or automated reasoning processes. In the DPIF con-
text, human expertise and automated processes are ab-
stracted to functions with well defined outputs and inputs;
each function provides a particular reasoning service given
certain inputs.

The DPIF provides function wrappers, software agents
which standardize function interfacing. The interfaces
are based on standardized service descriptions as well as
uniform self-configuration, negotiation and logical routing
protocols. With the help of the DPIF encapsulation meth-
ods very heterogeneous services can be made composable
and negotiable.

The DPIF agents support automatic formation of work-
flows in which heterogeneous functions correspond to sup-
pliers and consumers; outputs of some functions are inputs
to other functions and so on. In other words, a workflow
corresponds to a set of nested functions that captures de-
pendencies between very heterogeneous variables. Cre-
ation of workflows and routing of information is based on
the relations between different types of information. These
relations are captured by local functions wrapped by differ-
ent modules. The DPIF approach assumes that each expert
or an automated process can declare the inputs and outputs
of the contributed local functions, which is sufficient for
automated creation of globally meaningful workflows by
using service discovery. Thus, in contrast to traditional ap-
proaches to processing in workflows, neither centralized
configuration of workflows nor centralized knowledge of
the combination or routing rules are needed. The resulting
systems support processing based on rich domain knowl-
edge while, at the same time, the collaboration between
heterogeneous services requires minimal ontological com-
mitments.

Decentralized creation of emergent processing work-
flows, based on local domain knowledge and negotiation,
is useful in dynamic domains, such as crisis management,
where it is difficult to maintain a centralized overview of
the resources. However, if applications require optimiza-
tion of workflows, centralized approaches to workflow con-
struction might be necessary. The DPIF approach supports
also centralized approaches in several ways. Namely, the
DPIF facilitates creation of processing modules whose ser-
vices can easily be composed by centralized algorithms;
the local task ontologies provide the information on the
compatibility of services, i.e. possible service combina-
tions in workflows.

In principle, arbitrary automated reasoning techniques
can be integrated into the DPIF. However, globally coher-
ent reasoning in such workflows can be achieved only by
using rigorous approaches to designing local models and
combining partial processing results. Globally coherent

and theoretically sound collaborative reasoning is in gen-
eral very challenging and it has not been discussed in this
paper due to the limited space. An example of a the-
oretically sound collaborative inference system based on
the DPIF is the Distributed Perception Networks (DPN), a
modular approach to Bayesian inference [16]. The DPN
is a fully automated DPIF variant that supports exact de-
centralized inference through sharing of partial inference
results obtained by running inference processes on local
Bayesian networks [18] in different collaborating DPN
agents. If the local Bayesian networks are designed ac-
cording to the rules introduced in [16], it can be shown
that a collaboratively computed posterior distribution for
any variable in the distributed system correctly captures all
evidence. The DPN framework has been used for the im-
plementation of robust distributed gas detection and leak
localization systems based on Hidden Markov Models [17].

In general, however, it can be difficult to prove that a
collaborative processing approach is sound (i.e. globally
coherent), especially if algorithms and the used models are
not based on rigorous theory, which is especially the case
with human based reasoning. Recent research on struc-
turing of human collaborative processing in DPIF-based
systems indicated that some processing rigor can be intro-
duced if the experts implement causal reasoning [6]. In
such settings the reasoning could be structured with the
help of qualitative models, such as causal graphs which
allow exploitation of d-separation and concepts from Hid-
den Markov Models (HMM) [1], such as observation and
dynamic process models defined over discrete time-slices.
Such structuring has several advantages. Firstly, we can
prevent processing that involves the so called data-incest
and recycling of information in infinite, self perpetuating
reasoning cycles. Secondly, we can introduce efficient con-
trol of discrete reasoning phases throughout time slices,
which supports sound temporal reasoning.

In addition, several challenges remain with decentralized
creation and control of workflows. It turns out that the
complexity of workflow control depends on the problem
itself and the used processing paradigm. In cases in which
the reasoning can be structured as HMMs, valid workflows
can easily be created and time-slices can be controlled via
emission of simple reset messages within the system. In
such settings no workflow deadlocks can occur and infor-
mation can unambiguously be associated with subsequent
time-slices.

A basic version of the DPIF as well as a prototype of the
service configuration tool have been implemented and are
currently being enhanced in the context of the FP7 DIA-
DEM project. In this project we are investigating incorpo-
ration of advanced negotiation techniques as well as inte-
gration of Multi Criteria Decision Analysis and Scenario
Based Reasoning methods facilitating human-based pro-
cessing in workflows.
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