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Earth observation systems have a continuous growth in the user and internal requirements that can be
handled nowadays only using distributed systems. These requirements are shortly reviewed in this paper.
Huge data-sets management and processing are of special interest, as well as the particularities of the
Earth observation data. On the technological side, the focus is put on service-oriented architectures that
are facilitating the linkage of data or resources and processing. As proof of concept of current distributed
system capabilities, the technological solutions used to build a training platform for Earth observation data
processing are exposed and discussed in details.

Povzetek: S pomoèjo distribuiranega sistema je realiziran opazovalni sistem Zemlje.

1 Introduction

The paradigm known as Data Intensive Science [7] is cur-
rently changing the way research and innovation is being
conducted. This paradigm is based on access and analy-
sis of large amounts of existing or new data that were or
are created not only by scientific instruments and comput-
ers, but also by processing and collating existing archived
data. Earth observation systems, in particular, are gathering
daily large amounts of information about the planet and are
nowadays intensively used to monitor and assess the status
of the natural and built environments.

Earth observation (EO) is most often referring to satellite
imagery or satellite remote sensing, the result of sensing
process being an image or a map. Remote sensing refers
to receiving and measuring reflected or emitted radiation
from different parts of the electromagnetic spectrum. Re-
mote sensing systems involve not only the collection of the
data, but also their processing and distribution. The rate of
increase in the remote sensing data volume is continuously
growing. Moreover, the number of users and applications is
also increasing and the data and resource sharing became
a key issue in remote sensing systems. Furthermore, EO
scientists are often hindered by difficulties locating and ac-
cessing the data and services. These needs lead to a shift
in the design of remote sensing systems from centralized
environments towards wide-area distributed environments
that allow a scale-out in a wide range of issues from real-
time access to enormous quantities of data to experimental
repeatability through the use of workflows. The underlying
technologies used in service-oriented architectures, either
Web, Grid or Cloud based, are facilitating this transition as
well the linkage of data, resources, and processing.

In this context, the paper starts with a survey of the cur-
rent requests imposed on distributed systems and coming

from remote sensing application field. This survey is based
on several recent research reports of EO and distributed
systems communities and it is an extended version of [19].
A deeper look is dedicated to the Grid usage benefits for
EO through techniques like bringing computations to the
data, rather than data to the computations. Furthermore, a
snapshot of the requests that can be satisfied by the current
technologies is provided through a case study on a newly
proposed service-based system for training in EO. A short
list of conclusions is provided in the last section.

2 EO requests on distributed
environments

Satellite image processing is usually a computational and
data consuming task and special techniques are required
for both data storage and processing in distributed environ-
ments. In what follows we point some main topics. This
section is a survey of the ideas exposed in the recent scien-
tific reports [3, 6, 7, 8].

2.1 Data management

The management of the distribution of data, from storing
to long-term archiving, is currently an important topic in
EO systems. The first issue is the data format that is vary-
ing from image files, databases, or structured file. Usually
an EO data contain metadata describing the data, such as
the dimensionality or reference coordinates. Another is-
sue is related to the user need to access remotely the EO
data. Due to the size of the EO data, a distributed file sys-
tem is needed. For more than three decades there are sev-
eral distributed file systems enabling multiple, distributed
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servers to be federated under the same file namespace. An-
other issue is the data discovery and this is currently done
usually exploiting metadata catalogs. Replica management
services are essential for EO systems, allowing to deter-
mine an optimal physical location for data access based on
data destination aiming to reducing the network traffic and
the response time. Data transfers secure protocols were de-
veloped to extends the traditional file transfer protocol.

In what concerns file catalogs there are no current stan-
dards, but several implementations are available in Grid
environments that are using special file catalogs allow-
ing data replications. The same situation is valid also for
metadata catalogs; fortunately, in the particular case of EO
this issue is pursued by the Open Geospatial Consortium
(http://www.opengeospatial.org).

While for the basic needs mentioned above there are sev-
eral stable and standardized solutions, the current key issue
in EO data management is to make the data reachable and
useful for any application through interoperability.

Interoperability is achieved through the usage of stan-
dard interfaces and protocols. Interoperable interfaces are
attractive to users allowing the fast design of distributed ap-
plication based on multiple components. Achieving inter-
operability includes also building adapted interfaces pro-
viding different front ends to basic services and bridging
protocols. There are at least two layers for interoperability:
for resource format and domain encoding, and semantic in-
teroperability.

Interoperability solutions for resources structures and
content are often application-field dependent. The solu-
tions are related to different levels, like device, commu-
nication, middleware and deployment ones. At device
level, the solutions are mostly standardized and are refer-
ring to the interfaces to the storage devices. At communi-
cation level, there are standardized data transfer protocols
(as HTTP, HTTPS, or GridFTP), standardized protocols for
Web services, and less standardized data movers for het-
erogeneous computing environments. At middleware level
there are fewer standard solutions. For example, for data
storage it is necessary a single consistent interface to differ-
ent storage systems – a solution is coming from Grid com-
munity through the open standard storage resource man-
ager, a control protocol for accessing mass storage.

In what concerns the interoperability of feder-
ated databases, a standard again proposed by the
Grid community is the Open Grid Services Ar-
chitecture Data Movement Interface (OGSA-DMI,
http://forge.gridforum.org/sf/projects/ogsa-dmi-wg).

At deployment level, interoperability degradation is re-
lated to the event of new deployments and currently there
are no automated tools or standard interfaces allowing the
propagation of updates.

While resource-level interoperability is ensuring the
compatibility of implementations at hardware and software
levels, the semantic interoperability is enabling data and
information flows to be understood at a conceptual level.
Research efforts are currently devoted to the definition of

generic data models for specific structured linguistic data
types with the intention to represent a wide class of doc-
uments without loosing the essential characteristics of the
linguistic data type.

Data provision services in EO are not satisfying the
nowadays’ user needs due to current application and in-
frastructure limitations. The process of identifying and ac-
cessing data takes up a lot of time, according [6], due to:
physical discontinuity of data, diversity of metadata for-
mats, large volume of data, unavailability of historic data,
and many different actors involved.

In this context, there is a clear need for an efficient data
infrastructure able to provide reliable long-term access to
EO data via the Internet, and to allow the users to eas-
ily and quickly derive information and share knowledge.
Recognizing these needs, the European INSPIRE Direc-
tive (http://inspire.jrc.ec.europa.eu) requires all public au-
thorities holding spatial data to provide access to that data
through common metadata, data and network service stan-
dards. OPeNDAP (http://opendap.org/) is a data transport
architecture and protocol widely used in EO; it is based on
HTTP and includes standards for encapsulating structured
data, annotating the data with attributes, and adding seman-
tics that describe the data. Moreover, it is widely used by
governmental agencies to EO data [6].

The Committee on EO Satellites (www. ceos.org) main-
tains a Working Group on Information Systems and Ser-
vices with the responsibility to promote the development of
interoperable systems for the management of EO data in-
ternationally. This group plans to build in the next decade
the Global EO System of Systems (GEOSS) targeting the
development of a global, interoperable geospatial services
architecture [11].

2.2 Data processing

To address the computational requirements introduced by
time-critical satellite image applications, several research
efforts have been oriented towards parallel processing
strategies. According to the Top500 list of supercomputer
sites, NASA, for example, is maintaining two massively
parallel clusters for remote sensing applications. The re-
cent book [23] presents the latest achievements in the field
of high performance computing (HPC).

Currently ongoing research efforts are aiming also the
efficient distributed processing of remote sensing data. Re-
cent reports are related to the use of new versions of data
processing algorithms developed for heterogeneous clus-
ters as [22]. Moreover, distributed application framework
specifically have been developed for remote sensed data
processing, like JDAF [30]. EO applications are also good
candidates for building architectures based on components
encapsulating complex data processing algorithms and be-
ing exposed through standard interfaces like in [10].

As datasets grow larger, the most efficient way to per-
form data processing is to move the analysis functions as
close to the data as possible [28]. Data processing can be
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easily expressed today by a set-oriented, declarative lan-
guage whose execution can benefit enormously from cost-
based query optimization, automatic parallelism, and in-
dexes. Moreover, complex class libraries written in proce-
dural languages were developed as extension of the under-
lying database engine. MapReduce, for example, is nowa-
days a popular distributed data analysis and computing
paradigm; its principle resembles the distributed grouping
and aggregation capabilities existing in parallel relational
database systems. However, partitioned huge datasets are
making distributed queries and distributed joins difficult.
While simple data-crawling strategy over massively scaled-
out data partitions is adequate with MapReduce, this strat-
egy is suboptimal: a good index can provide better perfor-
mance by orders of magnitude [28]. Moreover, joins be-
tween tables of very different cardinalities are still difficult
to use.

Web services technology emerged as standard for in-
tegrating applications using open standards. In EO, the
Web services play a key role. A concrete example is the
Web mapping implementation specification proposed by
OpenGIS (http://www.opengis. org). Web technologies are
allowing also the distribution of scientific data in a decen-
tralized approach and are exposing catalogue services of
dataset metadata.

Grid computing services and more recent Cloud com-
puting services are going beyond what Web services are
offering, making a step forward towards an interactive pool
of processes, datasets, hardware and software resources.

3 Grid-based environments for
Earth observation

The promise of a Grid for EO community is to be a shared
environment that provides access to a wide range of re-
sources: instrumentation, data, HPC resources, and soft-
ware tools. There are at least three reasons for using Grids
for EO:

1. the required computing performance is not available
locally, the solution being the remote computing;

2. the required computing performance is not available
in one location, the solution being cooperative com-
puting;

3. the required services are only available in specialized
centres, the solution being application specific com-
puting.

Realizing the potential of the Grid computing for EO,
several research projects were launched to make the Grid
usage idea a reality. We review here the most important
ones.

3.1 Grid-based EO initiatives

Within the DataGrid project funded by the European Com-
mission, an experiment aiming to demonstrate the use of
Grid technology for remote sensing applications has been
carried out; the results can be found for example in the pa-
per [15]. Several other international Grid projects were fo-
cused on EO, like SpaceGrid (http://www.spacegrid.org),
Earth Observation Grid (http://www.e-science.clrc.ac.uk/
web/projects/earthobservation), or Genesis [35]. The
MediGrid project (http://www.eu-medigrid.org) aimed to
integrate and homogenize data and techniques for man-
aging multiple natural hazards. The authors of paper [1]
present an overview of SARA Digital Puglia, a remote
sensing environment that shows how Grid and HPC tech-
nologies can be efficiently used to build dynamic EO sys-
tems for the management of space mission data and for
their on-demand processing and delivering to final users.

A frequent approach is to use the Grid as a HPC fa-
cility for processor-intensive operations. The paper [29],
for example, focuses on the Grid-enabled parallelization of
the computation-intensive satellite image geo-rectification
problem. The aim of the proposed classification middle-
ware on Grid from [31] is to divide jobs into several as-
signments and submit them to a computing pool. The par-
allel remote-sensing image processing software PRIPS was
encapsulated into a Grid service and this achievement was
reported in [33]. In the paper [34] is discussed the archi-
tecture of a spatial information Grid computing environ-
ment, based on Globus Toolkit, OpenPBS, and Condor-G;
a model of the image division is proposed, which can com-
pute the most appropriate image pieces and make the pro-
cessing time shorter.

CrossGrid (http://www.crossgrid.org) aimed at develop-
ing techniques for real-time, large-scale grid-enabled sim-
ulations and visualizations, and the issues addressed in-
cluded distribution of source data and the usefulness of
Grid in crisis scenarios.

DEGREE (http://www.eu-degree.eu) delivered a study
on the challenges that the Earth Sciences are imposing on
Grid infrastructure. D4Science (http://www.d4science.org)
studied the data management of satellite images on Grid
infrastructures. G-POD (http://eogrid.esrin.esa.int/) aims
to offer a Grid-based platform for remote processing the
satellite images provided by European Space Agency. The
GlobAEROSOL service of BEinGRID [24] is processing
data gathered from satellite sensors and generates an multi-
year global aerosol information in near real time.

The GEOGrid project [26] provides an e-Science in-
frastructure for Earth sciences community and integrates a
wide varieties of existing data sets including satellite im-
agery, geological data, and ground sensed data, through
Grid technology, and is accessible as a set of services.

LEAD (https://portal.leadproject.org/) is creating an in-
tegrated, scalable infrastructure for meteorology research;
its applications use large amounts of streaming data from
sensors.
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The Landsat Data Continuity Mission Grid Prototype
(LGP) offers a specific example of distributed processing of
remotely sensed data generating single, cloud and shadow
scenes from the composite of multiple input scenes [8].

GENESI-DR (http://genesi-dr.eu) intends to prove reli-
able long-term access to Earth Science data allowing sci-
entists to locate, access, combine and integrate data from
space, airborne and in-situ sensors archived in large dis-
tributed repositories; its discovery service allows to query
information about data existing in heterogeneous cata-
logues, and can be accessed by users via a Web portal, or
by external applications via open standardized interfaces
(OpenSearch-based) exposed by the system [6].

Several other smaller projects, like MedioGrid [20],
were also initiated to provide Grid-based services at na-
tional levels.

3.2 Remote sensing Grid
A Remote Sensing Grid (RSG) is defined in [8] as a highly
distributed system that includes resources that support the
collection, processing, and utilization of the remote sensing
data. The resources are not under a single central control.
Nowadays it is possible to construct a RSG using standard,
open protocols and interfaces. In the vision of [8] a RSG is
made up of resources from a variety of organizations which
provide specific capabilities, like observing elements, data
management elements, data processing and utilization ele-
ments, communications, command, and control elements,
and core infrastructure.

If a service oriented architecture is used, modular ser-
vices can be discovered and used to build complex ap-
plications by clients. The services should have the fol-
lowing characteristics [8]: composition, communication,
workflow, interaction, and advertise. These requirements
are mapped into the definition of specific services for work-
flow management, data management and processing, re-
source management, infrastructure core functions, policy
specification, and performance monitoring.

The services proposed in [8] are distributed in four cate-
gories: workflow management services, data management
services, applications in the form of services, and core Grid
services.

In the next section we describe a case study of a recent
Grid-based satellite imagery system that follows the RSG
concepts.

4 Case study: GiSHEO
The rapid evolution of the remote sensing technology is
not followed at the same developing rate by the training
and high education resources in this field. Currently there
are only a few number of resources involved in educational
activities in EO. The CEOS Working Group of Education,
Training and Capacity Building is one of the few facilities
that is collecting an index of free EO educational materials
(http://oislab.eumetsat.org/CEOS/webapps/).

Recognizing the gap between research activities and the
educational ones, we have developed recently a platform,
namely GiSHEO (On Demand Grid Services for Training
and High Education in EO, http://gisheo.info.uvt.ro) ad-
dressing the issue of specialized services for training in
EO. Contrary to the existing platforms providing tutori-
als and training materials, GiSHEO intends to be a living
platform where experimentation and extensibility are the
key words. Moreover, special solutions were proposed for
data management, image processing service deployment,
workflow-based service composition, and user interaction.
A particular attention is given to the basic services for im-
age processing that are reusing free image processing tools.
A special feature of the platform is the connection with the
GENESI-DR catalog mentioned in the previous section.

While the Grid is usually employed to respond to
the researcher requirements to consume resources for
computational-intensive or data-intensive tasks, GiSHEO
aims to use it for near-real time applications for short-time
data-intensive tasks. The data sets that are used for each
application are rather big (at least of several tens of GBs),
and the tasks are specific for image processing (most of
them very simple). In this particular case a scheme of in-
stantiating a service where the data are located is required
in order to obtain a response in near-real time. Grid ser-
vices are a quite convenient solution in this case: a fabric
service is available at the server of the platform that serves
the user interface and this service instantiates the process-
ing service where the pointed data reside. In our platform
the Web services serve as interfaces for the processing al-
gorithms. These interfaces allow the remote access and ap-
plication execution on a Grid using different strategies for
fast response.

The platform design concepts were shortly presented in
[5, 17] and the details about the e-learning component can
be found in [9]. The EO services were described in [21] and
the data management is detailed in [13]. In this section we
describe the technological approaches that were undertaken
to solve the key issues mentioned in the previous sections.

4.1 System architecture

The GiSHEO Architecture is a Grid-enabled platform for
satellite image processing using a service oriented archi-
tecture structured on several levels including user, security,
service, processing and a data level (Figure 1).

The user level is in charge with the access to the Web
user interface (built by using DHTML technologies).

The security level provides security context for both
users and services. The security context defines the mech-
anisms used for authentication, authorization and delega-
tion. Each user must be identified by either using a user-
name/password pair or a canonical name provided by a
digital certificate. The services are using a digital certifi-
cate for authentication, authorization, and trust delegation.
The authorization is based on VOMS (Virtual Organiza-
tion Management Service, http://vdt.cs.wisc.edu/VOMS-
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Figure 1: GiSHEO’s architecture.

documentation.html) service which extends the PKI (Pub-
lic Key Infrastructure) mechanism by adding support for
certificate attributes. The service level exposes internal
mechanisms part of the GiSHEO platform by using vari-
ous Grid services technologies including:

– The Grid processing service - internal processing plat-
form exposed as a specialized Web service and capa-
ble of connecting with an external resource manage-
ment system.

– The workflow service - internal workflow engine
which can be accessed by using a specialized Web ser-
vice.

– The data indexing and discovery - access to the
GiSHEO proposed data management mechanisms.

At processing level the GiSHEO platform uses
Condor HTC (Condor High Throughput Computing,
http://www.cs.wisc.edu/condor/ description.html) as pro-
cessing model, task registration, scheduling and execution
environment. It uses also a direct job submission interface
using Condor’s specific Web service interface.

At data level two different types of data are involved:
database datasets which contain the satellite imagery repos-
itory and processing application datasets used by applica-
tions to manipulate satellite images.

Each of these components will be presented in further
details in the following subsections.

Figure 2: VOMS workflow.

4.2 Security mechanisms
The security level of the GiSHEO platform is divided into
three categories: authentication, authorization and delega-
tion.

The authentication is accomplished by using X.509 dig-
itally signed certificates. Each entity either a user or a ser-
vice will have a digital certificate attached. In case users
choose to use only a username/password pair, a digital cer-
tificate (also a user private/public key) will be also gen-
erated and stored on the Web portal side (using a private
key vault). In order to be valid, each certificate must be
signed by a trusted CA (Certificate Authority), GiSHEO
CA or a EuGRIDPMA (European Policy Management Au-
thority for Grid Authentication, www.eugridpma.org) affil-
iated CA.

In conclusion each entity will be uniquely identified by
using a CN (Canonical Name) which has the following
form:

/DC=RO/DC=GiSHEO CA/O=UVT/CN=User1
/DC=RO/DC=GiSHEO CA/O=UVT/CN=service/GTD

For authorization, a VOMS service approach has been
chosen. VOMS is a service providing VO membership for
both users and services by using a set of attributes that are
included inside the user’s digital certificate. VOMS can
be viewed as an extension to the simple digital certificate
authorization (in which case only CA signing validation is
made). As the following example will show in VOMS each
entity is mapped to a set of attributes as configured by the
VO administrator:

"/DC=RO/DC=GiSHEO CA/O=UVT/CN=User1" .gisheo
"/DC=RO/DC=GiSHEO CA/O=UVT/CN=U2" .sgmgisheo
"/gisheo/Role=ops" .gisheo
"/gisheo/Role=ops/Capability=NULL" .gisheo
"/gisheo/Role=VO-Admin" .sgmgisheo

In the above example User1 is mapped to .gisheo
group while U2 is mapped to .sgmgisheo group.
Each group has attached one or more attributes.
For example group .sgmgisheo has attribute
/gisheo/Role=VO-Admin attached to it which means
that any service user belonging to group .sgmgisheo is
a VO Administrator.
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The VOMS authorization process is described by the
following steps (Figure 2). First a request for validation
arrives from a VOMS service. Then the VOMS service
checks the user’s CN membership and creates a proxy cer-
tificate (with a limited life time) with user’s attributes avail-
able for GiSHEO VO. After the creation of the proxy cer-
tificate it can be used by the user to securely access any
services belonging to the GiSHEO VO.

The GiSHEO Infrastructure uses a single sign-
on authentication system; therefore a delegation of
credentials mechanism is needed. For this to hap-
pen a MyProxy Credentials Management Service
(http://grid.ncsa.uiuc.edu/myproxy/) is used. MyProxy
also provides VOMS authentication mechanisms therefore
can be easily integrated with the VOMS service. The
goal of the MyProxy service is to provide delegation
mechanism for both entities, users and services.

4.3 Processing platform

The GiSHEO processing platform consists of three parts,
the Web service interface for the processing platform, the
EO processing tools connectors and a set of connectiv-
ity wrappers that describe the mechanism of connecting
GiSHEO’s platform to Condor HTC workload manage-
ment system (WMS).

The Grid Processing Web service (G-PROC) is built
using Web service technologies from Apache Axis2
(http://ws.apache.org/axis2/). It is responsible for the inter-
action with other internal services including the Workflow
Composition Engine. Its main responsibilities are at this
point to receive tasks from the workflow engine or directly
from the user interface, to use a task description language
(the ClassAd meta language for example in case of Condor
HTC) in order to describe a job unit, to submit and check
the status of jobs inside the workload management system,
and to retrieve job logs for debugging purposes.

In order to access the available computational resources,
G-PROC provides a set of wrappers as interface with the
Condor WMS (Figure 3). This interface can be expanded to
support other types of grid resources (e.g. Globus Toolkit
4, EGEE gLite Middleware).

The proposed wrapper interface is able to support the en-
tire Grid specific life cycle: job registration (each task re-
quest must be translated into the WMS specific language -
i.e the ClassAd language for Condor), job submission (each
translated task becomes a Condor specific job ready to be
executed), job status (at any time the status of submitted
jobs can be retrieved), job logging (when requested, a log-
ging file can be created for debugging reasons) and job re-
trieval (at the end the output of the job execution can be
retrieved).

G-PROC’s last component is represented by the process-
ing tools’ connectors. The connectors create a bridge be-
tween the processing tools and the processing infrastruc-
ture. They are required when the arguments of the process-
ing application need to be translated so that they match ar-

Figure 3: G-PROC with CondorWrappers.

guments defined by the WMS description language. They
are also linked directly with the WMS and its specific job
description language.

4.4 Storage architecture
One of the fundamental components of the GiSHEO
project is the system responsible for storing and querying
the geographical data.

The GiSHEO Data Indexing and Storage Service (GDIS)
provides features for data storage, indexing data using a
specialized RDBMS, finding data by various conditions,
querying external services and for keeping track of tem-
porary data generated by other components. GDIS is avail-
able to other components or external parties using a spe-
cialized Grid service. This service is also responsible for
enforcing data access rules based on specific Grid creden-
tials (VO attributes, etc.).

4.4.1 Data storage

The Data Storage component part of GDIS is responsi-
ble for storing the data by using available storage back-
ends such as local disk file systems (eg. ext3), local clus-
ter storage (eg. GFS [27], GPFS [25]) or distributed file
systems (eg. HDFS, KosmosFS, GlusterFS). One impor-
tant requirement for the storage component is that data dis-
tributed across various storage domains (local or remote)
should be exposed through a unique interface.

This is achieved by implementing a front-end GridFTP
service capable of interacting with the storage domains on
behalf of the clients and in a uniform way (Figure 4). The
GridFTP service also enforces the security restrictions pro-
vided by other specialized services and related with data
access.

The GridFTP service has native access to the Hadoop
Distributed File System (http:// lucene.apache.org/hadoop)
offering access to data stored inside the internal HDFS file
systems and providing the required access control facilities.
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Figure 4: GridFTP interface.

Together with the data indexing components the GridFTP
service provides features for manipulating the data repos-
itory by providing a basic method for managing data (up-
load, deletion, retrieval, etc.).

4.4.2 Data indexing

The data indexing components enable GDIS to provide fast
access to the data offered by the storage component. Data
indexing is performed by PostGIS, an OGC (Open Geospa-
tial Consortium) compliant Spatial Database extension for
the PostgreSQL RDBMS engine. The PostGIS layer in-
dexes the metadata and location of the geographical data
available in the storage layer. The metadata usually repre-
sents both the extent or bounding box and the geographical
projection of the data (representing the exact geo-location).

The PostGIS Layer provides advanced geographical op-
erations (backed by a GiST index) which allows search-
ing the data by using various criteria including interaction
with raw shapes, interaction with shapes representing geo-
political data (country, city, road, etc.) or any other type
of geographical data which can be represented in PostGIS.
The geo-political data is typically provided by data im-
ported from public sources and extended using the Open
Street Map (OSM) data.

The catalogue also maintains data about the type of the
datasets. This data is useful not only for retrieving data
from the catalogue but also for the workflow engine and
execution components. It is used by these components to
enforce the data types that can be used with various image
processing operations or workflows.

4.4.3 Data query

Given the advanced data indexing capabilities of the Post-
GIS component, GiSHEO provides an advanced and highly
flexible interface for searching the project’s geographical
repository. The search interface is built around a cus-
tom query language (LLQL - Lisp Like Query Language)
designed to provide fine grained access to the data in
the repository and to query external services (TerraServer,
GENESI-DR, etc). The syntax of the query language is in-
spired from the syntax of the LISP language and partially
by LDAP filters. The language allows querying the repos-
itory both for raster images (Figure 5) and also for various
aggregated data or object properties (Figure 6).

(select ’(url, owner)
(and
(or
(ogc:interacts
(osm:country "Romania"))

(ogc:interacts
(osm:country "Hungary"))
)

(gdis:type "RASTER/AERIAL")
)

)

Figure 5: Raster query.

; Find cities in Romania
; filter by bbox
(select-place ’(name)
(and
(ogc:interacts
(ogc:bbox 16.69 43.97 24.8 48.48))

(osm:country "Romania")
(osm:type "city")

)
)

Figure 6: Feature query.

Figures 5 and 6 show in detail how the LLQL syntax
looks like. The PostGIS related queries are translated di-
rectly to PostGreSQL queries, while the external lookups
are resolved prior to submitting the query’s to PostGIS.

The GDIS layer also provides a simpler query language
called GDIS Query Language (GQL). GQL is suitable
for search engines or direct user query. The queries are
translated automatically into corresponding SQL queries
(through an extensible custom made SQL generation en-
gine).

A simple example of an GQL query is:

"place:Timisoara,Timis,Romania
type:DEM vendor:NASA"

When invoked using this query the catalogue returns all
datasets that match the criteria (when an explicit operand
was not specified the default is and).

4.4.4 External services

Another set of tasks handled by GDIS are represented by
the interaction with external services. In this case GDIS
represents a thin middleware layer interacting with external
repositories and exposes only one unique interface (similar
and possibly integrated with the internal repositories). One
example of external back-ends supported by GDIS is rep-
resented by the GENESI-DR catalog.



470 Informatica 34 (2010) 463–476 D. Petcu et al.

4.5 Image processing workflows

Processing satellite images for usage in geographical and
historical analysis could require large amount of processing
steps involving different image processing transformations.
This scenario implies linking the processing algorithms to
form a workflow either defined by the user or selected from
an already existing list. These algorithms could be located
on the same or on different machines spread inside a Grid.
In the former case each of them could be exposed as a Web
or Grid service. Distributing them across a Grid where each
resource exposes several algorithms could help in balanc-
ing the resource workload.

Starting from some practical applications involving his-
torical and geographical analysis a few usage scenarios
which require more than one image transformation on the
source image can be detailed.

In archaeology, for example, assuming that there is
a need to identify artificial ancient sites containing hu-
man settlements and fortifications from satellite images,
the following image transformations could be applied in
sequence: gray level conversion, histogram equalization,
quantization and thresholding. Applying the resulted im-
age over the initial one allows users to better observe the
previously described artificial structures.

Another example could involve identifying linear shapes
such as roads or linear fortifications (wave like structures).
In this case a workflow made up of the following sequence
of operations could provide useful information as output:
grayscale conversion, edge detection (e.g. Canny filter),
lines detection (e.g. Hough transform).

Related with geography a scenario in which the vege-
tation index for some particular area needs to be detailed
could result from the following operations which also need
to be applied in sequence: extract red band, extract infrared
band, compute by using the previously obtained images the
Normalized Difference Vegetation Index (NDVI).

In the same way detecting changes in river beds or vege-
tation can be computed by first applying some shape recog-
nition techniques on images taken at different moments in
the past and then by overlaying them.

4.6 Workflow composition engine

In general workflow image processing transformations are
sequential or parallel involving at some point a join or a
split. There are few cases which require the use of loops.

As each of the transformation is exposed as a Web or
Grid service belonging to a certain resource and due to the
dynamic nature of Grids a self adaptive scenario in which
tasks would be reassigned (when their corresponding re-
sources might become unable to solve them needs) to be
taken into consideration. The natural way to achieve this
is by using an Event-Condition-Action (ECA) approach.
ECA usually implies a rule governed scenario in which an
action takes place on as a result of an event and in case
one or more conditions are met. The reason for choosing

this paradigm is that it allows the separation of logic rep-
resented by rules and data which is represented by objects,
declarative programming which is useful for applications
focused on what to do instead on how to do it, scalability,
centralization of knowledge, etc.

The proposed workflow engine, namely OSyRIS (Or-
chestration System using a Rule based Inference So-
lution), detailed in this section is based on DROOLS
(http://drools.org) which uses an object oriented version of
the RETE [4] algorithm. A simplified workflow language
has been built on top of it with the aim of offering a simple
yet general rule based language. The following subsection
will present in greater detail the language with emphasis
on its syntax and its capability of expressing general work-
flows.

4.6.1 Rule-based language

The rule based language, namely SiLK (Simple Language
for worKflow), envisioned as part of the GiSHEO project
aims at providing a simple yet general language which
could be used without modifications in general purpose
workflows. The basis of the language are the following:
tasks and relations (rules) between them. It is similar with
the SCUFL [16] language, but does not rely on XML: it
allows the introduction of more workflow specific issues
and the ECA approach allows a greater flexibility when ex-
pressing data and task dependencies. The following para-
graphs will detail these characteristics.

Each task is made up of several mandatory and optional
attributes. The mandatory attributes consist of at least one
input and one output port. Each task can have several such
ports as it could receive input from more than one task
and could produce more than one output. The optional at-
tributes are also called meta-attributes. They are not used
by the workflow engine and are simply passed over to the
service handling the task under the assumption that it can
decode and understand them. Meta-attributes are declared
by using quotation marks both for the attribute name as
well as for the attribute value.

Each task needs to be declared before actually being
used. It can be noticed the lack of any mandatory attributes
concerning the input or output data type and content. This
is due to the fact that the compatibility issues between tasks
are resolved at the moment the workflow is created by us-
ing methods which are specific to each workflow. These
methods should be implemented by the platform running
the workflow engine and should not be incorporated inside
the workflow description. Because of the nature of the rule
engine there is a need for a fictive start task which has the
role of a trigger causing the first actual task in the workflow
to be executed.

Rules are defined by simply mentioning the events and
conditions which should take place in order to trigger the
execution of right hand side tasks. Each event is being seen
as a completed task and is placed on the left hand side of
the rule. Linking the output of left hand tasks with the input
of right hand side tasks is accomplished by using variables.
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For example the rule:

A[a=o1] -> B[i1=a]

links the output of task A with the input of task B through
variable a. Conditions are placed at the end of the rule and
can involve numerical or string variables:

A[d=o1] -> B[i1=d] | d<1.

In the same way splits and joins made of, but not re-
stricted to, two tasks could be expressed in the same way
as the following rules:

# synchronized join
A[b=o1],B[c=o1] -> C[i1=b#i2=c]
# parallel split
A[a=o1] -> B[i1=a],C[i1=a],D[i1=a]

Loops can be also modeled as in the following example:

A[d=o1],B[e=o1] -> A[i1=d#i2=e] | d<1
and
A[d=o1],B[e=o1] -> C[i1=d#i2=e] | d>=1.

The former rule expresses the condition to reiterate the loop
while the latter expresses the condition to exit the loop. As
a remark it should be noticed that when several right hand
side tasks need to be activated their execution will take
place in parallel. Synchronization between several tasks
can also be achieved by adding them into the left hand side
of the rule:

A[b=o1],B -> C[i1=b].

The previous example shows how task A is synchronized
with task B and cannot execute until the latter one is com-
pleted. Tasks can also have multiple instances. For in-
stance, a rule could produce 5 instances of a task:

B[a=o1] -> C[i1=a#instances=5]

with the default number of instances being one. Instances
of left hand tasks are usually consumed when the rule fires

B[a=o1#consume=true] -> C[i1=a].

However this feature is optional with the default behaviour
being consume. It is useful for example when there are n
rules with the same left hand task which can fire but only k
rules are needed. In this case having k instances of that task
could prove useful. Another utility for this feature could be
the case when a rule is needed to be fired several times.
Multiple task instances allow users to express workflows
related to natural processes such as those involved in chem-
ical reactions [14] and cellular membranes [18].

Several meta-attributes including datagroup, dataset,
processing and argument-list need to be introduced in order
to fully define a GiSHEO workflow. The meta-attributes
are used to identify the image to be processed, the operation
and the arguments to be used. For example the datagroup
and dataset attributes identify the group and the set inside
the group to which the image belongs. The processing at-
tribute identifies the operation to be applied to the image.
Its value follows a C-like prototype format with return type,

# Define a fictive start task.
# Needed for initial activation
A0:= [o1:output="FTP address",

"instances"="1"];
# The following two tasks belong to the
# processing workflow
A:= [i1:input,o1:output,"datagroup"="ID",
"dataset"="ID",
"processing"="outIMG_1 grayscale(inIMG_1)",
"argument-list"=""];

B:= [i1:input,o1:output,"datagroup"="ID",
"dataset"="ID", "processing"=
"outIMG_1 canny(inIMG_1#canny1#
aperture_size#canny2)",

"argument-list"=
"<canny1=80>#<aperture_size=3>#
<canny2=120>"];

C:=[i1:input,o1:output,"datagroup"="ID",
"dataset"="ID","processing"=
"outIMG_1 hough_lines(inIMG_1#min_line#
min_gap#hough_treshold)",

"argument-list"=
"<min_line=20>#<min_gap=10>#
<hough_treshold=100>",
"isLast"="true"];

# Start rule: compute grayscale
# from the initial image
A0[a=o1] -> A[i1=a];
# Compute Canny from the grayscale image
# A[a=o1] -> B[i1=a];
# Compute a Hough transform from
# the Canny image
B[a=o1] -> C[i1=a];

Figure 7: Workflow example using SiLK

operation name and argument list. The attribute-list speci-
fies the optional attributes used by the operation. It is a list
where the values are pairs in the form <name=value>.
Each value is separated by a # sign. The name inside the
pair must match the name given to the attribute in the pro-
cessing description.

Figure 7 shows a complex example, for detecting lin-
ear structures by combining several basic operations as:
grayscale conversion, edge detection with Canny filter and
lines detection with Hough transform. It also presents the
required attribute values.

As previously mentioned using an ECA approach al-
lows for creating adaptive workflows which can react to
changes either in the configuration of the Grid or inside
the workflow itself. Changes inside the Grid are handled
by creating specific rules which allow resource selection
based on various task scheduling criteria. Modifications
of the workflow are usually accomplished either by in-
serting or retracting at runtime rules belonging to it or by
modifying the executor of the task in case a better one is
found. It is very hard or almost impossible to express adap-
tivity by using classic workflow languages such as WS-
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BPEL (http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-
v2.0-OS.html), SCUFL [16], JSDL (Job Submission
Description Language (JSDL), http://www.gridforum.org/
documents/GFD.56.pdf), DAGs (Directed Acyclic Graphs)
or Petri Nets. Most of the previously listed languages are
either too verbose and strict due to the use of XML or their
structure is predetermined by the corresponding DAG or
Petri Net which cannot be changed at runtime.

Different from the previous classic approaches are the
ones based on ECA. The nature inspired approach based
on chemical reactions and described in paper [14] falls into
this category. Moreover it allows self adaptation to changes
by using the High Order Chemical Language also described
in the paper. Other approaches include the AGENTWork
[12], a workflow engine based on a language supporting
rule based adaptation and which is used in medical prac-
tices. The paper [32] presents a Condition-Action (CA)
language and platform called FARAO, based on an Adap-
tive Service Oriented Architecture (ASOA), which has the
aim of supporting the development of adaptable service or-
chestrations.

4.6.2 Particularities of the workflow engine

Each of the non ECA workflow languages listed in
the previous subsection has a workflow enactment en-
gine built on top of it. WS-BPEL relies for example
on Active-BPEL (http://www.active-endpoints.com/active-
bpel-engine-overview.htm), SCUFL uses Taverna [16]
while Condor and Pegasus [2] use DAGman to execute
workflows expressed as DAGs.

Not all of the previously mentioned workflow systems
provide however sufficient functionalities to cover system
and logical failures that could occur when running the
workflow. To cope with this issue a workflow management
platform has been built on top of the workflow language
described in the previous subsection. Its role is to exe-
cute the workflow and to handle system and logical failures
by inserting additional rules inside the initial rule database.
These new rules will be expressed by using the same lan-
guage and will be interpreted by using DROOLS.

The workflow platform is also responsible for check-
ing the integrity of the workflow syntax. However it does
not check the compatibility between different nodes. This
problem is left to the specialized system which will use the
platform.

Given existing ECA based workflow engines such as
AGENTWork [12] which already deal with adaptiveness
issues, the aim of this platform is not only to provide a
simpler yet general language but to offer solutions in form
of workflows to different problems such as archaeological
and geographical image related transformations. In this di-
rection the goal is to build a workflow backwards from the
desired result to the input requirements given by the user,
and to provide the user with one or more solutions from
which he/she can use the most appropriate one.

4.7 Example for visualising linear shapes
using the GiSHEO interface

GiSHEO offers a web portal from which the user can select
images, apply various operations on them and visualize the
results. In what follows we present an example that shows
all the required steps starting with the selection of the im-
age and until the final image is obtained. The processing we
selected follows the workflow example described in Figure
7 from previous subsection.

First the desired geographical area needs to be selected
by introducing a GQL expression (see subsection 4.4.3 for
details) as shown in Figure 8. After the area is selected the
user can choose the area of interest (see Figure 9). This
is done by simply using the mouse to select a rectangular
region that will be used when image processing operations
are invoked.

Figure 8: Selecting the images by geographical position.

Once the desired area has been selected the user can pro-
ceed by choosing the operations he/she would like to per-
form on the images. As our example follows the workflow
specified in Figure 7, the first operation the user will select
is the grayscale conversion (see Figure 10). Once a name
for the result image is set the request is sent to the server
which triggers the execution. The result can be visualized
as soon as it is available (as seen in Figure 11).

The other requests are for the Canny edge detector (see
Figures 12 and 13) and for the Hough transform for lines
detection (see Figures 14 and 15).

Once the final operation is completed the user can clearly
see the linear shapes indicated by red lines (see Figure 15).
By comparing this final image with the initial one (see Fig-
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Figure 9: Selecting the area of interest inside the selected
images.

Figure 10: Applying the grayscale conversion.

Figure 11: Visualizing the result of the grayscale conver-
sion.

Figure 12: Applying the Canny edge detector on the
grayscale image.
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Figure 13: Visualizing the result of the Canny edge detec-
tor.

Figure 14: Applying the Hough transform on the Canny
image.

Figure 15: Visualising the result of the lines detection op-
eration.

ure 8) the importance of selecting a proper sequence of pro-
cessing steps when a specific study (e.g. the identification
of important lines inside an image) is undertaken becomes
obvious.

The user has two choices in what concerns the steps re-
quired to obtain a final image. By using the interface he/she
can either build a workflow made of several basic opera-
tions or send basic operations to the server one at a time.
In either case the requests are processed by the workflow
engine as it treats even basic operations as workflows com-
posed of a single task.

If several data are selected by the user, the actions will
be undertaken on all of them in parallel.

5 Conclusions
Starting from a debate of the current issues in satisfying
the user and system requirements in Earth observation sys-
tems, as well as from the need of training in Earth obser-
vation field, a service oriented platform was proposed and
described in this paper. It uses the latest technologies both
in distributed systems as well as in Earth observation sys-
tems and therefore can be considered as a proof of concept
of what is currently possible to be done with available tech-
nologies.

During the platform design and implementation, inno-
vative solutions were proposed like the custom query lan-
guage or the specific rule-based language for the workflow
engine. While these solutions are not in line with the cur-
rent standards, they proved to be more efficient in the im-
plementation, as well as to respond better to the require-
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ments of the Earth observation system and to obtain a fast
response from the distributed platform.
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