
Informatica 34 (2010) 429-440 429

Trusted Reasoning Services for Semantic Web Agents

Kalliopi Kravari, Efstratios Kontopoulos and Nick Bassiliades
Dept. of Informatics, Aristotle University of Thessaloniki, Greece, GR-54124
E-mail: {kkravari, skontopo, nbassili}@csd.auth.gr

Keywords: semantic web, intelligent agents, multi-agent system, reasoning

Received: January 16, 2010

The Semantic Web aims at enriching information with well-defined semantics, making it possible both
for people and machines to understand Web content. Intelligent agents are the most prominent approach
towards realizing this vision. Nevertheless, agents do not necessarily share a common rule or logic for-
malism, neither would it be realistic to attempt imposing specific logic formalisms in a rapidly changing
world like the Web. Thus, based on the plethora of proposals and standards for logic- and rule-based
reasoning for the Semantic Web, a key factor for the success of Semantic Web agents lies in the interop-
erability of reasoning tasks. This paper reports on the implementation of trusted, third party reasoning
services wrapped as agents in a multi-agent system framework. This way, agents can exchange their ar-
guments, without the need to conform to a common rule or logic paradigm – via an external reasoning
service, the receiving agent can grasp the semantics of the received rule set. Finally, a use case scenario
is presented that illustrates the viability of the proposed approach.

Povzetek: Semantični spletni agenti potrebujejo oceno zaupanja storitev za kvalitetno delovanje.

1 Introduction
The Semantic Web (SW) is a rapidly evolving extension
of the World Wide Web that derives from Sir Tim Bern-
ers-Lee’s vision of a universal medium for data, informa-
tion and knowledge exchange [1]. The SW aims at aug-
menting Web content with well-defined semantics (i.e.
meaning), making it possible both for people and ma-
chines to comprehend the available information and bet-
ter satisfy their requests. So far, the fundamental SW
technologies (content representation, ontologies) have
been established and researchers are currently focusing
their efforts on logic and proofs.

Intelligent agents (IAs – software programs extended
to perform tasks more efficiently and with less human
intervention) are considered the most prominent means
towards realizing the SW vision [2]. The gradual integra-
tion of multi-agent systems (MAS) with SW technologies
will affect the use of the Web in the imminent future; its
next generation will consist of groups of intercommuni-
cating agents traversing it and performing complex ac-
tions on behalf of their users.

IAs, on the other hand, are considered to be greatly
favored by the interoperability that SW technologies aim
to achieve. Thus, IAs will often interact with other
agents, belonging to service providers, e-shops, Web
enterprises or even other users. However, it is unrealistic
to expect that all intercommunicating agents will share a
common rule or logic representation formalism; neither
can W3C impose specific logic formalisms in a drastical-
ly dynamic environment like the Web. In order for agent
interactions to be meaningful, nevertheless, agents
should somehow share an understanding of each other’s
position justification arguments (i.e. logical conclusions
based on corresponding rule sets and facts). This hetero-

geneity in representation and reasoning technologies
comprises a critical drawback in agent interoperation.

A solution to this compatibility issue could emerge
via equipping each agent with its own inference engine
or reasoning mechanism, which would assist in “grasp-
ing” other agents’ logics. Nevertheless, every rule engine
possesses its own formalism and, consequently, agents
would require a common interchange language. Since
generating a translation schema from one (rule) language
into the other (e.g. RIF – Rule Interchange Format [3]) is
not always plausible, this approach does not resolve the
agent intercommunication issue, but only moves the set-
back one step further, from argument interchange to rule
translation/transformation.

An alternative, more pragmatic, approach is pre-
sented in this work, where reasoning services are
wrapped in IAs. Although we have embedded these rea-
soners in a common framework for interoperating SW
agents, called EMERALD1, they can be added in any
other multi-agent system. The motivation behind this
approach is to avoid the drawbacks outlined above and
propose utilizing third-party reasoning services, instead,
that allow each agent to effectively exchange its argu-
ments with any other agent, without the need for all in-
volved agents to conform to the same kind of rule para-
digm or logic. This way, agents remain lightweight and
flexible, while the tasks of inferring knowledge from
agent rule bases and verifying the results is conveyed to
the reasoning services.

Flexibility is a key aim for our research, thus a varie-
ty of popular inference services that conform to various

1 http://lpis.csd.auth.gr/systems/emerald/emerald.html

430 Informatica 34 (2010) 429–440 K. Kravari et al.

types of logics is offered and the list is constantly ex-
panding. Furthermore, the notion of trust is vital, since
agents need a mechanism for establishing trust towards
the reasoning services, so that they can trust the gener-
ated inference results. Towards this direction, reputation
mechanisms (centralized and decentralized) were pro-
posed and integrated in the EMERALD framework.

The rest of the paper is structured as follows: Section
2 presents a brief overview of the framework, followed
by a more thorough description of the reasoning services,
in Section 3. Section 4 features the implemented trust
mechanisms, while Section 5 reports on a brokering use
case scenario that illustrates the use of the reasoning ser-
vices and the reputation methodology. Finally, the paper
is concluded with an outline of related work paradigms,
as well as the final remarks and directions for future im-
provements.

2 Framework overview
The EMERALD framework is built on-top of JADE2

and, as mentioned in the introduction, it involves trusted,
third-party reasoning services, deployed as agents that
infer knowledge from an agent’s rule base and verify the
results. The rest of the agents can communicate with
these services via ACL message exchange.

Figure 1: Generic Overview.

Figure 1 illustrates a generic overview of the frame-
work: each human user controls a single all-around
agent; agents can intercommunicate, but do not have to
“grasp” each other’s logic. This is why third-party, rea-
soning services are deployed. In our approach, reasoning
services are “wrapped” by an agent interface, called the
Reasoner (presented later), allowing other agents to con-
tact them via ACL (Agent Communication Language)
messages.

The element of trust is also vital, since an agent
needs to trust the inference results returned from a Rea-

2 JADE (Java Agent Development Environment):
 http://jade.tilab.com/

soner and is established via centralized and decentralized
reputation mechanisms integrated in EMERALD. Figure
1 displays the aspect of the former (centralized) mecha-
nism, where a specialized “Trust Manager” agent keeps
the reputation scores for the reasoning services given
from the rest of the IAs.

Overall, the goal is to apply as many standards as
possible, in order to encourage the application and devel-
opment of the framework. Towards this affair, a number
of popular rule engines that comply with various types of
(monotonic and non-monotonic) logics are featured in
EMERALD (see section 3). Additionally, RDF/S (Re-
source Description Framework/Schema) and OWL (Web
Ontology Language) serve as language formalisms, using
in practice the Semantic Web as infrastructure for the
framework.

3 Reasoning services
EMERALD currently implements a number of Rea-

soner agents that offer reasoning services in two main
formalisms: deductive and defeasible reasoning.
Table 1 displays the main features of the reasoning en-
gines described in the following sections.

Table 1: Reasoning engine features.

Type of logic Implementation
R-DEVICE deductive RDF/CLIPS/RuleML

Prova deductive Prolog/Java
DR-DEVICE defeasible RDF/CLIPS/RuleML

SPINdle defeasible XML/Java

Order of Logic Reasoning
R-DEVICE 2nd order fwd chaining

Prova 1st order bwd chaining
DR-DEVICE 2nd order fwd chaining

SPINdle 1st order fwd chaining

Deductive reasoning is based on classical logic argu-
ments, where conclusions are proved to be valid, when
the premises of the argument (i.e. rule conditions) are
true. Defeasible reasoning [4], on the other hand, consti-
tutes a non-monotonic rule-based approach for efficient
reasoning with incomplete and inconsistent information.
When compared to more mainstream non-monotonic
reasoning approaches, the main advantages of defeasible
reasoning are enhanced representational capabilities and
low computational complexity [5]. The following subsec-
tion gives a brief insight into the fundamental elements
of defeasible logics.

3.1 Defeasible logics
A defeasible theory D (i.e. a knowledge base or a pro-
gram in defeasible logic) consists of three basic ingredi-
ents: a set of facts (F), a set of rules (R) and a superiority
relationship (>). Therefore, D can be represented by the
triple (F, R, >).

In defeasible logic, there are three distinct types of
rules: strict rules, defeasible rules and defeaters. Strict
rules are denoted by A → p and are interpreted in the
typical sense: whenever the premises are indisputable, so

TRUSTED REASONING SERVICES FOR… Informatica 34 (2010) 429–440 431

is the conclusion. An example of a strict rule is: “Apart-
ments are houses”, which, written formally, would be-
come: r1: apartment(X) → house(X).

Defeasible rules are rules that can be defeated by
contrary evidence and are denoted by A p. An exam-
ple of such a rule is “Any apartment is considered to be
acceptable”, which becomes: r2: apartment(X)
acceptable(X).

Defeaters, denoted by A p, are rules that do not ac-
tively support conclusions, but can only prevent some of
them. In other words, they are used to defeat some defea-
sible rules by producing evidence to the contrary. An
example of a defeater is: r3: pets(X), garden-
Size(X,Y), Y>0 acceptable(X), which reads as:
“If pets are allowed in the apartment, but the apartment
has a garden, then it might be acceptable”. This defeater
can defeat, for example, rule r4: pets(X)
¬acceptable(X).

Finally, the superiority relationship among the rule
set R is an acyclic relation > on R. For example, given
the defeasible rules r2 and r4, no conclusive decision
can be made about whether the apartment is acceptable
or not, because rules r2 and r4 contradict each other. But
if a superiority relation > with r4 > r2 is introduced, then
r4 overrides r2 and we can indeed conclude that the
apartment is considered unacceptable. In this case rule r4
is called superior to r2 and r2 inferior to r4.

Another important element of defeasible reasoning is
the notion of conflicting literals. In applications, literals
are often considered to be conflicting and at most one of
a certain set should be derived. An example of such an
application is price negotiation, where an offer should be
made by the potential buyer. The offer can be determined
by several rules, whose conditions may or may not be
mutually exclusive. All rules have offer(X) in their
head, since an offer is usually a positive literal. However,
only one offer should be made. Therefore, only one of
the rules should prevail, based on superiority relations
among them. In this case, the conflict set is:

C(offer(x,y)) =
{¬offer(x,y)} {offer(x,z) | z y}

For example, the following two rules make an offer
for a given apartment, based on the buyer’s requirements.
However, the second one is more specific and its conclu-
sion overrides the conclusion of the first one.

r5: size(X,Y),Y≥45,garden(X,Z)
 offer(X,250+2Z+5(Y−45))

r6: size(X,Y),Y≥45,garden(X,Z),central(X)
 offer(X,300+2Z+5(Y−45))

r6 > r5

3.2 Deductive reasoners
EMERALD currently deploys two deductive reasoners,
based on the logic programming paradigm: R-Reasoner
and Prova-Reasoner, which deploy the R-DEVICE and
Prova rule engines, respectively.

3.2.1 R-DEVICE
R-DEVICE [6] is a deductive object-oriented knowledge
base system for querying and reasoning about RDF
metadata. The system is based on an OO RDF data
model, which is different from the established triple-
based model, in the sense that resources are mapped to
objects and properties are encapsulated inside resource
objects, as traditional OO attributes. More specifically,
R-DEVICE transforms RDF triples into CLIPS (COOL)
objects and uses a deductive rule language for querying
and reasoning about them, in a forward-chaining Datalog
fashion. This transformation leads to fewer joins required
for accessing the properties of a single resource, subse-
quently resulting in better inference/querying perform-
ance.

Furthermore, R-DEVICE features a deductive rule
language (in OPS5/CLIPS-like format or in a RuleML-
like syntax) for reasoning on top of RDF metadata. The
language supports a second-order syntax, which is effi-
ciently translated into sets of first-order logic rules using
metadata, where variables can range over classes and
properties, so that reasoning over the RDF schema can be
performed. A sample rule in the CLIPS-like syntax is
displayed below:

(deductiverule test-rule
?x <- (website (dc:title ?t) (dc:creator
"John Smith"))
=>
(result (smith-creations ?t))

)

Rule test-rule above seeks for the titles of websites
(class website) created by "John Smith". Note that
namespaces, like DC, can also be used.

The semantics of the rule language of R-DEVICE
are similar to Datalog [7] with a semi-naive evaluation
proof procedure and an OO syntax in the spirit of F-
Logic [8]. The proof procedure of R-DEVICE dictates
that when the condition of the rule is satisfied, then the
conclusion is derived and the corresponding object is
materialized (asserted) in the knowledge base. R-
DEVICE supports non-monotonic conclusions. So, when
the condition of a rule is falsified (after being satisfied),
then concluded object is retrieved (retracted). R-DEVICE
also supports negation-as-failure.

3.2.2 Prova
Prova [9] is a rule engine for rule-based Java scripting,
integrating Java with derivation rules (for reasoning over
ontologies) and reaction rules (for specifying reactive
behaviors of distributed agents). Prova supports rule in-
terchange and rule-based decision logic, distributed in-
ference services and combines ontologies and inference
with dynamic object-oriented programming.

As a declarative language with derivation rules,
Prova features a Prolog syntax that allows calls to Java
methods, thus, merging a strong Java code base with
Prolog features, such as backtracking. For example, the
following Prova code fragment features a rule, whose
body consists of a number of Java method calls:

432 Informatica 34 (2010) 429–440 K. Kravari et al.

hello(Name):-
S = java.lang.String("Hello "),
S.append(Name),
java.lang.System.out.println(S).

On the other hand, Prova reaction rules are applied in
specifying agent behavior, leaving more critical opera-
tions (e.g. agent messaging etc.) to the language’s Java-
based extensions. In this affair, various communication
frameworks can be deployed, like JADE, JMS3 or even
Java events generated by Swing (G.U.I.) components.
Reaction rules in Prova have a blocking rcvMsg predi-
cate in the head and fire upon receipt of a corresponding
event. The rcvMsg predicate has the following syntax:
rcvMsg(Protocol, To, Performative, [Predi-
cate|Args] | Context). The following code frag-
ment shows a simplified reaction rule for the FIPA que-
ryref performative:

rcvMsg(Protocol,From,queryref,[Pred|Args]|
Context):-

derive([Pred|Args]),
sendMsg(Protocol,From,reply,[Pred|Args]
|Context).

rcvMsg(Protocol,From,queryref,[Pred|Args],
Protocol):-

sendMsg(Protocol,From,end_of_transmissi
on,[Pred|Args]|Context).

The sendMsg predicate is embedded into the body of
derivations or reaction rules and fails only if the parame-
ters are incorrect or if the message could not be sent due
to various other reasons, like network connection prob-
lems. Both code fragments presented above were adopted
from [9].

Prova is derived from Mandarax [10], an older Java-
based inference engine, and extends it by providing a
proper language syntax, native syntax integration with
Java, agent messaging and reaction rules.

3.3 Defeasible reasoners
Furthermore, EMERALD also supports two defeasible
reasoners: DR-Reasoner and SPINdle-Reasoner, which
deploy DR-DEVICE and SPINdle, respectively.

3.3.1 DR-DEVICE
DR-DEVICE [11] is a defeasible logic reasoner, based on
R-DEVICE presented above. DR-DEVICE is capable of
reasoning about RDF metadata over multiple Web
sources using defeasible logic rules. More specifically,
the system accepts as input the address of a defeasible
logic rule base. The rule base contains only rules; the
facts for the rule program are contained in RDF docu-
ments, whose addresses are declared in the rule base.
After the inference, conclusions are exported as an RDF
document. Furthermore, DR-DEVICE supports all defea-
sible logic features, like rule types, rule superiorities etc.,
applies two types of negation (strong, negation-as-
failure) and conflicting (mutually exclusive) literals.

3 JMS (Java Message Service):
http://java.sun.com/products/jms/

Similarly to R-DEVICE, rules can be expressed ei-
ther in a native CLIPS-like language, or in a (further)
extension of the OORuleML syntax, called DR-RuleML,
that enhances the rule language with defeasible logic
elements. For instance, rule r2 from section 3.1 can be
represented in the CLIPS-like syntax as:

(defeasiblerule r2
(apartment (name ?X))
=>
(acceptable (name ?X)))

For completeness, we also include the representation of
rule r4 from section 3.1 in the CLIPS-based syntax, in
order to demonstrate rule superiority and negation:

(defeasiblerule r4
(declare (superior r2))
(apartment (name ?X) (pets "no"))
=>
(not (acceptable (name ?X))))

The reasoner agent supporting DR-DEVICE is DR-
Reasoner [12].

3.3.2 SPINdle
SPINdle [13] is an open-source, Java-based defeasible
logic reasoner that supports reasoning on both standard
and modal defeasible logic. It accepts defeasible logic
theories, represented via a text-based pre-defined syntax
or via a custom XML vocabulary, processes them and
exports the results via XML. More specifically, SPINdle
supports all the defeasible logic features (facts, strict
rules, defeasible rules, defeaters and superiority relation-
ships), modal defeasible logics [14] with modal operator
conversions, negation and conflicting (mutually exclu-
sive) literals.

A sample theory that follows the pre-defined syntax
of SPINdle is displayed below (adopted from the SPIN-
dle website4):

>> sh #Nanook is a Siberian husky.
R1: sh -> d #Huskies are dogs.
R2: sh => -b #Huskies usually do not bark.
R3: d => b #Dogs usually bark.
R2 > R3 #R2 is more specific than R3.
#Defeasibly, Nanook should not bark.
#That is, +d –b

Additionally, as a standalone system, SPINdle also fea-
tures a visual theory editor for editing standard (i.e. non-
modal) defeasible logic theories.

3.4 Reasoner functionality
The reasoning services, as already mentioned, are
wrapped by an agent interface, the Reasoner, allowing
other IAs to contact them via ACL messages. The Rea-
soner can launch an associated reasoning engine, in order
to perform inference and provide results. In essence, the
Reasoner is a service and not an autonomous agent; the
agent interface is provided in order to integrate Reasoner

4 http://spin.nicta.org.au/spindleOnline/index.html

TRUSTED REASONING SERVICES FOR… Informatica 34 (2010) 429–440 433

agents into EMERALD or even any other multi-agent
system.

The procedure is straightforward (Figure 2): each
Reasoner constantly stands by for new requests (ACL
messages with a “REQUEST” communication act). As
soon as it gets a valid request, it launches the associated
reasoning engine that processes the input data (i.e. rule
base) and returns the results. Finally, the Reasoner re-
turns the above result through an “INFORM” ACL mes-
sage.

Figure 2: Reasoners’ functionality.

A sample ACL message, based on Fipa20005 description,
in the CLIPS-like syntax is displayed below:
(ACLMessage

(communicative-act REQUEST)
(sender AgentA@xx:1099/JADE)
(receiver xx-Reasoner@xx:1099/JADE)
....
(protocol protocolA)
(language “English”)
(content C:\\rulebase.ruleml)

)
where AgentA sends to a Reasoner (xx-Reasoner) a
RuleML file path (C:\\rulebase.ruleml).

Figure 3: Serving multiple requests.

An important feature of the procedure is that when-
ever a Reasoner receives a new valid request, it launches
a new instance of the associated reasoning engine. There-

5 Fipa2000 description for the ACL Message parameters:
 www.fipa.org

fore, multiple requests are served concurrently and inde-
pendently (see Fig. 3). As a result, new requests are
served almost immediately, avoiding burdening the
framework’s performance, because the only sequential
operation of the reasoner is the transfer of requests and
results between reasoning engines and the requesting
agents, which are very low demanding in time.

Finally, note that Reasoners do not use a particular
rule language. They simply transfer file paths (in the
form of Java Strings) via ACL messages either from a
requesting agent to a rule engine or from the rule engine
to the requesting agent. Obviously, the content of these
files has to be written in the appropriate rule language.
For instance an agent who wants to use either the DR-
DEVICE or the R-DEVICE rule engine has to provide
valid RuleML files. Similarly, valid Prova or XML files
are required by the Prova and SPINdle rule engine, re-
spectively. Hence, it is up to the requesting agent’s user
to provide the appropriate files, by taking each time into
consideration the rule engines’ specifications.

Thus, new reasoners can be easily created and
added to the platform by building a new agent that man-
ages messages between the requesting agent and the rule
engine. Furthermore, it has to launch instances of the rule
engine according to the specific requirements of the en-
gine.

4 Trust mechanisms
Tim Berners-Lee described trust as a fundamental com-
ponent of his vision for the Semantic Web [1], [15], [16].
Thus, it is not surprising that trust is considered critical
for effective interactions among agents in the Semantic
Web, where agents have to interact under uncertain and
risky situations. However, there is still no single, ac-
cepted definition of trust within the research community,
although it is generally defined as the expectation of
competence and willingness to perform a given task.
Broadly speaking, trust has been defined in various ways
in literature, depending on the domain of use. Among
these definitions, there is one that can be used as a refer-
ence point for understanding trust, provided by Dasgupta
[17]: “Trust is a belief an agent has that the other party
will do what it says it will (being honest and reliable) or
reciprocate (being reciprocative for the common good of
both), given an opportunity to defect to get higher
payoffs.”

There are various trust metrics, some involving past
experience, some giving relevance to opinions held by an
agent’s neighbours and others using only a single agent’s
own previous experience. During the past decade, many
different metrics have been proposed, but most have not
been widely implemented. Five such metrics are de-
scribed in [18], among them Sporas [19] seems to be the
most used metric, although CR (Certified Reputation)
[20] is one of the most recently proposed methodologies.

Our approach adopts two reputation mechanisms, a
decentralized and a centralized one. Notice that in both
approaches newcomers start with a neutral value. Other-
wise, if their initial reputation is set too low, it may be
rather difficult to prove trustworthiness through one’s

434 Informatica 34 (2010) 429–440 K. Kravari et al.

actions. If, on the other hand, the reputation is set too
high, there may be a need to limit the possibility for users
to “start over” after misbehaving. Otherwise, the pun-
ishment from having behaved badly becomes void.

4.1 Decentralized reputation mechanism
The decentralized mechanism is a combination of Sporas
and CR, where each agent keeps the references given
from other agents and calculates the reputation value,
according to the formula:

1 1 1
1

1

1
() (())

t

i i i i

o th er
iR R W E WR

 (1)

()

1
() 1

1
R D

R

e

 and
1() t

i

R
E W

D

where: t is the number of ratings the user has received
thus far, θ is a constant integer greater than 1, Wi repre-
sents the rating given by user i, Rother is the reputation
value of the user giving the rating, D is the range of repu-
tation values (maximum rating minus minimum rating)
and σ is the acceleration factor of the damping function
Φ (the smaller the value of s, the steeper the dumping
factor Φ). Note that the value of θ determines how fast
the reputation value of the user changes after each rating.
The larger the value of θ, the longer the memory of the
system is.

The user’s rating value Wi is based on four coeffi-
cients:
 Correctness (Corri): refers to the correctness of the

returned results.
 Completeness (Compi): refers to the completeness of

the returned results.
 Response time (Respi): refers to the Reasoner’s re-

sponse time.
 Flexibility (Flexi): refers to the Reasoner’s flexibility

in input parameters.
The four coefficients are evaluated, based on the

user’s (subjective) assessment for each standard and their
ratings vary from 1 to 10. The final rating value (Wi) is
the weighted sum of the coefficients (equation (2) be-
low), where ai1, ai2, ai3 and ai4 are the respective weights
and nCorri, nCompi, nRespi and nFlexi are the normal-
ized values for correctness, completeness, response time
and flexibility, accordingly:

wi = ai1nCorri + ai2nCompi + ai3nRespi + ai4nFlexi (2)

New users start with a reputation equal to 0 and can
advance up to the maximum of 3000. The reputation rat-
ings vary from 0.1 for “terrible” to 1 for “perfect”. Thus,
as soon as the interaction ends, the Reasoner asks for a
rating. The other agent responds with a new message
containing both its rating and its personal reputation and
the Reasoner applies equation (1) above to update its
reputation.

4.2 Centralized reputation mechanism
In the centralized approach, a third-party agent keeps the
references given from agents interacting with Reasoners

or any other agent in the MAS environment. Each refer-
ence is in the form of:

Refi=(a, b, cr, cm, flx, rs)
where: a is the truster agent, b is the trustee agent and
cr (Correctness), cm (Completeness), flx (Flexibility) and
rs (Response time) are the evaluation criteria.

Ratings (r) vary from -1 (terrible) to 1 (perfect),
while newcomers start with a reputation equal to 0 (neu-
tral). The final reputation value (Rb) is based on the
weighted sum of the relevant references stored in the
third-party agent and is calculated according to the for-
mula:

Rb=w1*cr+w2*cm+w3*flx+w4*rs
where: w1+w2+w3+w4=1. Two options are supported for
Rb, a default where the weights are equivalent, namely
wk[1,4]=0.25 each and a user-defined, where the weights
vary from 0 to 1 depending on user priorities.

4.3 Comparison
The simple evaluation formula of the centralized ap-
proach, compared to the decentralized one, leads to time
gain as it needs less calculation time. Moreover, it pro-
vides more guaranteed and reliable results (Rb), as it is
centralized, overcoming the difficulty to locate refer-
ences in a distributed mechanism.

In addition, in the decentralized approach an agent
can interact with only one agent per time and, thus, re-
quires more interactions, in order to discover the most
reliable agent, leading to further time loss.

Agents can use either of the above mechanisms or
even both complementarily. Namely, they can use the
centralized mechanism, in order to find the most trusted
service provider and/or they can use the decentralized
approach for the rest of the agents.

5 Use case: a brokering scenario
Defeasible reasoning (see section 3) is useful in various
applications, like brokering [21], bargaining and agent
negotiations [22]. These domains are also extensively
influenced by agent-based technology [23]. Towards this
direction, a defeasible reasoning-based brokering sce-
nario is adopted from [24]. In order to demonstrate the
functionality of the presented technologies, part of the
above scenario is extended with deductive reasoning.
Four independent parties are involved, represented by
intercommunicating intelligent agents.

 The customer (called Carlo) is a potential renter that
wishes to rent an apartment based on his requirements
(e.g. location, floor) and preferences.

 The broker possesses a number of available apart-
ments stored in a database. His role is to match Car-
lo’s requirements with the features of the available
apartments and eventually propose suitable flats to the
potential renter.

 Two Reasoners (independent third-party services),
DR-Reasoner and R-Reasoner, with a high reputation
rating that can conduct inference on defeasible and

TRUSTED REASONING SERVICES FOR… Informatica 34 (2010) 429–440 435

deductive logic rule bases, accordingly, and produce
the results as an RDF file.

5.1 Scenario overview
The scenario is carried out in eight distinct steps, as
shown in Fig. 4 Carlo’s agent retrieves the corresponding
apartment schema (Appendix A), published in the bro-
ker’s website, formulates his requirements accordingly
and submits them to the broker, in order to get back all
the available apartments with the proper specifications
(Fig. 4 – step 1). These requirements are expressed in
defeasible logic, in the DR-DEVICE RuleML-like syntax
(Fig 5 and Fig 6). For the interested reader, Appendix B
features a full description of the customer’s requirements
in d-POSL (see Appendix E), a POSL[25]-like dialect for
representing defeasible logic rule sets in a more compact
way.

The broker, on the other hand, has a list of all avail-
able apartments, along with their specifications (stored as
an RDF database – see Figure 7 for an excerpt), but does
not reveal it to Carlo, because it’s one of his most valu-
able assets. However, since the broker cannot process
Carlo’s requirements using defeasible logic, he requests a
trusted third-party reasoning service. The DR-Reasoner,
as mentioned, is an agent-based service that uses DR-
DEVICE, in order to infer conclusions from a defeasible
logic program and a set of facts in an RDF document.
Hence, the broker sends the customer’s requirements,
along with the URI of the RDF document containing the
list of available apartments, and stands by for the list of
proper apartments (step 2).

Figure 4: The distinct steps featured in the scenario.

Then, DR-Reasoner launches DR-DEVICE, which
processes the above data and returns an RDF document,
containing the apartments that fulfil all requirements
(Fig. 8). When the result is ready, the Reasoner sends it
back to the broker’s agent (step 3). The latter should for-
ward the results to Carlo’s agent; however, the broker
possesses a private “agenda”, i.e. a rulebase that infers
broker’s proposals, according to his/her own strategy,
customized to Carlo’s case, i.e. selected from the list of
apartments compatible to Carlo’s requirements. A sample

of these rules is shown in Appendix C; one rule proposes
the biggest apartment in the city centre, while the other
one suggests the apartment with the largest garden in the
suburbs. These rules are formulated using deductive
logic, so the broker sends them, along with the results of
the previous inference step, to the R-Reasoner that
launches R-DEVICE (step 4). Finally, the broker gets the
appropriate list with proposed apartments that fulfil his
“special” rules (step 5).

Figure 5: Rule base fragment – rule r1.

Figure 6: Rule base fragment – rule r2.

Eventually, Carlo receives the appropriate list (step
6) and has to decide which apartment he prefers. How-
ever, his agent does not want to send Carlo’s preferences
to the broker, because he is afraid that the broker might
take advantage of that and will not present him with his
most preferred choices. Thus, Carlo’s agent sends the list
of acceptable apartments (an RDF document) and his
preferences (once again as a defeasible logic rule base) to
the Reasoner (step 7). The latter calls DR-DEVICE and

436 Informatica 34 (2010) 429–440 K. Kravari et al.

gets the single most appropriate apartment. It replies to
Carlo and proposes the best transaction (step 8). The pro-
cedure ends and Carlo can safely make the best choice
based on his requirements and personal preferences. See
Appendix D for a d-POSL version of Carlo’s specific
preferences. Notice that Carlo takes into consideration
not only his preferences and requirements, but also bro-
ker’s proposals, as long as they are compatible with his
own requirements.

Figure 7: RDF document excerpt for available apart-
ments.

As for the reputation rating, after each interaction
with the Reasoners, both the Broker and the Customer
are requested for their ratings. For instance, after the suc-
cessful end of step 3, the Broker not only proceeds to
step 4, but also sends its rating to the Reasoner or/and the
third-party agent. As a result, the latter updates the repu-
tation value.

Figure 8: Results of defeasible reasoning exported as an
RDF document.

5.2 Brokering protocol
Although FIPA provides standardized protocols, we
found that none is suitable for our brokering scenario,
since 1-1 automated brokering cannot be supported. As a
result, a brokering protocol was implemented that en-
codes the allowed sequences of actions for the automa-
tion of the brokering process among the agents. The pro-
tocol is depicted in Fig. 9 and is based on specific per-
formatives that conform to the FIPA ACL specification.

S0 to S6 represent the states of a brokering trade and
E is the final state. Predicates Send and Receive represent
the interactions that cause state transitions. For instance,
the sequence of transitions for the customer is:
S1→S2→S3→S4→S5→E, which means that the agent
initially sends a REQUEST message (S1→S2) to the bro-
ker, then waits and finally gets an INFORM message
with the response (S2→S3). After that, the customer de-
cides to send a new request message to the DR-Reasoner

(S3→S4), receives an INFORM message from him
(S4→S5) and successfully terminates the process (S5→E).

On the other hand, the transition sequence for the
broker is: S0→S1→S2→S3→S4→S5→S6→E. Initially, the
agent is waiting for new requests; as soon as one is re-
ceived (S0→S1), he sends an enriched REQUEST mes-
sage to the DR-Reasoner (S1→S2) and waits for results.
Finally, he gets the INFORM message from the DR-
Reasoner (S2→S3) and sends a new enriched REQUEST
message to the R-Reasoner (S3→S4). Eventually, the bro-
ker receives the appropriate INFORM message from the
R-Reasoner (S4→S5) and forwards it to the customer
(S5→ S6), terminating the trade (S6→E).

Figure 9: Agent brokering communication protocol.

In case that an agent receives a wrong performative,
it sends back a NOT-UNDERSTOOD message and the
interaction is repeated.

6 Related work
A similar architecture for intelligent agents is presented
in [26], where various reasoning engines are employed as
plug-in components, while agents intercommunicate via
FIPA-based communication protocols. The framework is
build on top of the OPAL agent platform [27] and, simi-
larly to EMERALD, features distinct types of reasoning
services that are implemented as reasoner agents. The
featured reasoning engines are 3APL [28], JPRS (Java
Procedural Reasoning System) and ROK (Rule-driven
Object-oriented Knowledge-based System) [29]. 3APL
agents incorporate BDI logic elements and first-order
logic features, providing constructs for implementing
agent beliefs, declarative goals, basic capabilities and
reasoning rules, through which an agent’s goals can be
updated or revised. JPRS agents perform goal-driven
procedural reasoning and each JPRS agent is composed
of a world model (agent beliefs), a plan library (plans
that the agent can use to achieve its goals), a plan execu-
tor (reasoning module) and a set of goals. Finally, ROC
agents are composed of a working memory, a rule-base
(consisting of first-order, forward-chaining production
rules) and a conflict set. Thus, following a similar ap-
proach to EMERALD, the framework integrates the three
reasoning engines into OPAL in the form of OPAL mi-
cro-agents.

TRUSTED REASONING SERVICES FOR… Informatica 34 (2010) 429–440 437

The primary difference between the two frameworks
lies in the variety of reasoning services offered by EM-
ERALD. While the three reasoners featured in [26] are
all based on declarative rule languages, EMERALD pro-
poses a variety of reasoning services, including deduc-
tive, defeasible and modal defeasible reasoning, thus,
comprising a more integrated solution. Furthermore, the
framework does not feature a trust and reputation
mechanism. Finally, and most importantly, the approach
of [26] is not based on Semantic Web standards, like
EMERALD, for rule and data interchange.

The Rule Responder [30] project builds a service-
oriented methodology and a rule-based middleware for
interchanging rules in virtual organizations, as well as
negotiating about their meaning. Rule Responder demon-
strates the interoperation of various distributed platform-
specific rule execution environments, based on Reaction
RuleML as a platform-independent rule interchange for-
mat. We have a similar view of reasoning service for
intelligent agents and usage of RuleML. Also, both ap-
proaches allow utilizing a variety of rule engines. How-
ever, contrary to Rule Responder, our framework (EM-
ERALD) is based on FIPA specifications, achieving a
fully FIPA-compliant model and proposes two reputation
mechanisms to deal with trust issues. Finally, and most
importantly, our framework does not rely on a single rule
interchange language, but allows each agent to follow its
own rule formalism, but still be able to exchange its rule
base with other agents, which will use trusted third-party
reasoning services to infer knowledge based on the re-
ceived ruleset.

DR-BROKERING, a system for brokering and mat-
chmaking, is presented in [31]. The system applies RDF
in representing offerings and a deductive logical lan-
guage for expressing requirements and preferences.
Three agent types are featured (Buyer, Seller and Bro-
ker). Similarly, our approach identifies roles such as
Broker and Buyer. On the other hand, we provide a num-
ber of independent reasoning services, offering both de-
ductive and defeasible logic. Moreover, our approach
takes into account trust issues, providing two reputation
approaches in order to guarantee the interactions’ safety.

In [32] a negotiation protocol and a framework that
applies it are described. Similarly to our approach, the
proposed framework also uses JADE. Additionally, a
taxonomy of declarative rules for capturing a wide vari-
ety of negotiation mechanisms in a well-structured way
is derived. The approach offers the same advantages with
EMERALD, namely, the involved mechanisms are being
represented in a more modular and explicit way. This
makes agent design and implementation easier, reducing
the risks of unintentional incorrect behaviour. On the
other hand, EMERALD comprises a more generic
framework, allowing the adoption of various scenarios
that are not only restricted in negotiations. Moreover,
reasoning services are provided, along with two reputa-
tion models for agents.

7 Conclusions
The paper argued that agent technology will play a vital
role in the realization of the Semantic Web vision and
presented a variety of reasoning services, wrapped in an
agent interface, embedded in a common framework for
interoperating SW IAs, called EMERALD, a JADE multi-
agent framework designed specifically for the Semantic
Web. This methodology allows each agent to effectively
exchange its argument base with any other agent, without
the need for all involved agents to conform to the same
kind of rule paradigm or logic. Instead, via EMERALD,
IAs can utilize third-party reasoning services, that will
infer knowledge from agent rule bases and verify the
results.

The framework offers a variety of popular inference
services that conform to various types of logics. Addi-
tionally, since agents need a mechanism for establishing
trust towards the reasoning services, reputation mechan-
isms (centralized and decentralized) were integrated in
the framework and were also described in this work. Fi-
nally, the paper presents a use case brokering trade sce-
nario that illustrates the usability of the technologies de-
scribed in the paper.

As for future directions, it would be interesting to
verify our model’s capability to adapt to a variety of dif-
ferent scenarios other than brokering. An appealing field
could be contract negotiation; the incorporation of nego-
tiation elements into the agents’ behavior would demand
alterations in the protocol. The latter would now have to
include the agents’ negotiation strategy as well. Another
goal is to integrate an even broader variety of distinct
reasoning engines, thus, forming a flexible, generic envi-
ronment for interoperating agents in the SW. Finally, our
intention is to test our reasoning services (reasoners) in
data intensive applications.

References
[1] Berners-Lee T, Hendler J, Lassila O (2001) The Semantic

Web. Scientific American, 284(5):34-43
[2] Hendler J (2001) Agents and the Semantic Web. IEEE

Intelligent Systems, 16(2):30-37
[3] Boley H, Kifer M. RIF Basic Logic Dialect. Latest ver-

sion available at http://www.w3.org/TR/rif-bld/.
[4] Nute D. (1987) Defeasible Reasoning. 20th International

Conference on Systems Science, IEEE Press, pp. 470-477.
[5] Maher MJ (2001) Propositional defeasible logic has linear

complexity. Theory and Practice of Logic Programming
1(6):691–711.

[6] Bassiliades N, Vlahavas I (2006) R-DEVICE: An Object-
Oriented Knowledge Base System for RDF Metadata. In-
ternational Journal on Semantic Web and Information
Systems, 2(2):24-90.

[7] Abiteboul S, Hull R, Vianu V (1995) Foundations of
Databases. Addison-Wesley, p. 305.

[8] Kifer M, Lausen G, Wu J (1995) Logical foundations of
object-oriented and frame-based languages. J. ACM
42(4):741-843.

[9] Kozlenkov A, Penaloza R, Nigam V, Royer L, Dawelbait
G, Schroeder M (2006) Prova: Rule-based Java Scripting
for Distributed Web Applications: A Case Study in Bioin-
formatics. In Sebastian Schaffert (Ed.) Workshop on Re-

438 Informatica 34 (2010) 429–440 K. Kravari et al.

activity on the Web at the International Conference on
Extending Database Technology (EDBT 2006), Springer.

[10] Dietrich J, Kozlenkov A, Schroeder M, Wagner G (2003)
Rule-based agents for the semantic web. Electronic
Commerce Research and Applications, 2(4):323–338.

[11] Bassiliades N, Antoniou G, Vlahavas I (2006) A Defeasi-
ble Logic Reasoner for the Semantic Web. International
Journal on Semantic Web and Information Systems,
2(1):1-41.

[12] Kravari K, Kontopoulos E, Bassiliades N (2009) Towards
a Knowledge-based Framework for Agents Interacting in
the Semantic Web. 2009 IEEE/WIC/ACM International
Conference on Intelligent Agent Technology (IAT'09), It-
aly, Vol. 2, pp. 482-485.

[13] Lam H, Governatori G (2009) The Making of SPINdle.
RuleML-2009 International Symposium on Rule Inter-
change and Applications, Springer, pp. 315-322.

[14] Governatori, G, Rotolo, A (2008). BIO logical agents:
Norms, beliefs, intentions in defeasible logic. Journal of
Autonomous Agents and Multi Agent Systems 17:36–69.

[15] Berners-Lee T (1999) Weaving the Web, Harper San
Francisco, ISBN: 0062515861.

[16] Berners-Lee T, Hall W, Hendler J, O’Hara K, Shadbolt
N, Weitzner D (2006) A Framework for Web Science.
Foundations and Trends in Web Science, Vol 1, No 1.

[17] Dasgupta P (2000) Trust as a commodity. Gambetta D.
(Ed.). Trust: Making and Breaking Cooperative Rela-
tions, Blackwell, pp. 49-72.

[18] Macarthur K (2008) Tutorial: Trust and Reputation in
Multi-Agent Systems. International Conference on Auto-
nomous Agents and Multiagent Systems (AAMAS 2008),
Portugal.

[19] Zacharia G, Moukas A, Maes P (2000) Collaborative
reputation mechanisms for electronic marketplaces. Deci-
sion Support Systems, 29:371-388.

[20] Huynh T, Jennings N, Shadbolt N (2006) Certified Repu-
tation: how an agent can trust a stranger. In AAMAS ’06:
Proceedings of the fifth international joint conference on
Autonomous agents and multiagent systems, Hokkaido,
Japan.

[21] Benjamins R, Wielinga B, Wielemaker J, Fensel D
(1999) An Intelligent Agent for Brokering Problem-
Solving Knowledge. International Work-Conference on
Artificial Neural Networks IWANN (2), pp. 693-705.

[22] Governatori G, Dumas M, Hofstede A ter, Oaks P (2001)
A Formal Approach to Protocols and Strategies for (Le-
gal) Negotiation. International Conference on Artificial
Intelligence and Law (ICAIL 2001), pp. 168-177.

[23] Skylogiannis T, Antoniou G, Bassiliades N, Governatori
G, Bikakis A (2007) DR-NEGOTIATE - A System for
Automated Agent Negotiation with Defeasible Logic-
based Strategies. Data & Knowledge Engineering (DKE),
63(2):362-380.

[24] Antoniou G, Harmelen F van (2004) A Semantic Web
Primer. MIT Press.

[25] Boley H.: POSL: An Integrated Positional-Slotted Lan-
guage for Semantic Web Knowledge.
http://www.ruleml.org/submission/ruleml-shortation.html

[26] Wang M, Purvis M, Nowostawski M. (2005) An Internal
Agent Architecture Incorporating Standard Reasoning
Components and Standards-based Agent Communication.
In: IEEE/WIC/ACM international Conference on intelli-
gent Agent Technology (IAT’05), IEEE Computer Soci-
ety, Washington, DC, pp. 58-64.

[27] Purvis M, Cranefield S, Nowostawski M, Carter D (2002)
Opal: A Multi-Level Infrastructure for Agent-Oriented
Software Development. In: Information Science Discus-

sion Paper Series, number 2002/01, ISSN 1172-602.
University of Otago, Dunedin, New Zealand.

[28] Dastani M, van Riemsdijk M B, Meyer J-J C. (2005)
Programming multi-agent systems in 3APL. In: R. H.
Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni
(Eds.) Multi-Agent Programming: Languages, Platforms
and Applications, Springer, Berlin.

[29] Nowostawski, M. (2001) Kea Enterprise Agents Docu-
mentation.

[30] Paschke A, Boley H, Kozlenkov A, Craig B (2007) Rule
responder: RuleML-based Agents for Distributed Colla-
boration on the Pragmatic Web. 2nd International Confe-
rence on Pragmatic Web. ACM, pp. 17-28, vol. 280, Til-
burg, The Netherlands.

[31] Antoniou G, Skylogiannis T, Bikakis A, Bassiliades N
(2005) DR-BROKERING – A Defeasible Logic-Based
System for Semantic Brokering. IEEE International Con-
ference on E-Technology, E-Commerce and E-Service,
IEEE, pp. 414-417.

[32] Bartolini C, Preist C, Jennings N (2002) A Generic Soft-
ware Framework for Automated Negotiation. 1st Interna-
tional Joint Conference on the Autonomous Agents and
Multi-Agent Systems (AAMAS), Italy.

TRUSTED REASONING SERVICES FOR… Informatica 34 (2010) 429–440 439

Appendix A – Apartment Schema
The RDF Schema file for the broker’s apartments and
proposals (Section 5):

Appendix B – Carlo’s Requirements
Carlo’s requirements (Section 5) in d-POSL:

Rules r1-r6 express Carlo’s requirements regarding the
apartment specifications. Rules r7 and r8 indicate the
offer Carlo is willing to make for an apartment that fits
his needs, while rule r9 ensures that the amount offered
by the customer will not be higher than the apartment’s
actual rental price. Finally, rule info-copy stores all the
characteristics of appropriate apartments that are of inter-
est to Carlo, so that he can later refer to them.

Appendix C – Broker’s “Hidden
Agenda”
Broker’s “hidden agenda” (Section 5) in d-POSL:

The broker does not propose to Carlo all appropriate
apartments, but only a subset of them, according to his
“hidden agenda”. The two rules depicted above are an
example: the broker proposes to the customer the largest
of all appropriate centrally located apartments or a non-
centrally located one with the biggest garden size. Of
course, the broker’s hidden agenda could potentially con-
sist of more (and possibly more adept) rules.

Appendix D – Carlo’s Preferences
Carlo’s apartment preferences (Section 5) in d-POSL:

Carlo will choose among the apartments proposed by the
broker and the ones that are compatible with his own
preferences.

Appendix E – d-POSL
POSL (positional-slotted language) [26] is an ASCII lan-
guage that integrates Prolog's positional and F-logic's

440 Informatica 34 (2010) 429–440 K. Kravari et al.

slotted syntaxes for representing knowledge (facts and
rules) in the Semantic Web. POSL is primarily designed
for human consumption, since it is faster to write and
easier to read than any XML-based syntax. We devised
an extension to POSL, called d-POSL, which handles the
specifics of defeasible logics and is a secondary contribu-
tion included in this work. Variables are denoted with a
preceding "?". A deeper insight into core POSL, its unifi-
cation scheme, the underlying webizing process (i.e. the
introduction of URIs as names in a system to scale it to
the Web – orthogonal to the positional/slotted distinc-
tion), and its typing conventions along with examples is
found in [26].

Furthermore, d-POSL maintains all the critical com-
ponents of POSL, extending the language with elements
that are essential in defeasible logics:
 Rule Type: Binary infix functors are introduced (“:-”,

“:=”,“:~”) to denote the rule type (“strict”, “defeasi-
ble”, “defeater”, respectively).

 Rule Label: The rule label is a vital feature in defeasi-
ble logic, since it satisfies the need to express superior-
ities among rules. Consequently, d-POSL employs a
mechanism for expressing rule labels and superiority
relationships.

 Conflicting Literals: Conflicting literals are represented
as headless rules, i.e. constraints that have the follow-
ing format:
:= predicate(?x), predicate(?y), ?x\=?y.
See, for example, Appendix D above.

