
https://doi.org/10.31449/inf.v45i3.3160 Informatica 45 (2021) 463–475 463

Formal Verification of Emergent Properties

Kamal Boumaza
LISCO: Laboratory of complex systems engineering, Computer science department
Badji Mokhtar University, Annaba, B.P. 12, 23000, Algeria
E-mail: kamel.boumaza23@gmail.com

Cherif Tolba
Computer science department, Badji Mokhtar University, Annaba, B.P. 12, 23000, Algeria
E-mail: cherif.tolba@univ-annaba.dz

Iulian Ober
ISAE-Supaero, University of Toulouse, France
E-mail: iulian.ober@isae-supaero.fr

Keywords: formal verification, emergence, model checking, refinement, game of life, boids

Received: Mai 11, 2020

Complex systems and systems of systems (SoS) are systems characterized by the interconnection of a large
number of components or sub-systems. The complexity of such systems increases with the number of com-
ponents and their manner of connectivity. The global behaviour of complex systems and SoS exhibits some
properties that cannot be predicted by analysing components or sub-systems in isolation. The verification
of these properties called “emergent properties" is considered a crucial issue when engineering such sys-
tems. The purpose of this paper is to give an overview and verify emergent properties. In a first step, we
have taken the blinker and the traffic light of the game of life as examples to verify emergence by using
refinement techniques; in a second step, since the refinement is not straightforward, we have taken another
example, the Boids model, and by using timed automata and UPPAAL model checking techniques, we
have been able to simulate and verify emergent properties.

Povzetek: Prispevek podaja pregled emergentnih lastnosti v kompleksnih sistemih.

1 Introduction

Technological development in various domains, especially
the decrease in size and cost of electronic devices, like mi-
croprocessors and storage devices, leads to the develop-
ment of distributed, decentralized, complex systems and
systems of systems (SoS) [6]. A complex system is any
system characterized by the interconnection of a large num-
ber of components with non-linear aggregate behaviour,
i.e., global behaviour is not derivable from the sum of the
local or individual behaviours of components. Generally,
these components have limited access or mostly they do
not have any access to global information, which makes
them operate on information obtained from the interaction
with other components. Hence, their complexity increases
with the number of components, in particular, when these
later are highly interconnected.

This kind of what we call complex systems often exhibits
properties that are not easily predictable by analysing the
behaviour of their individual interacting components. In
other words, complex systems exhibit emergent behaviours
at the macro-level: behaviours that cannot be inferred
from local behaviours or from behaviours at micro-levels.
When engineering such systems, the verification of emer-
gent properties is considered as a difficult issue for design-

ers. These properties that cannot be deduced from compo-
nents or systems when considered in isolation can be ben-
eficial or harmful. Simulation is a good and powerful man-
ner to detect emergence, but it is still not sufficient (a ran-
dom exploration of behaviour is not guaranteed to exhibit
the emergent ones). Hence, the use of formal techniques
to detect and verify emergence becomes mandatory. In this
paper, we present an overview of some definitions of emer-
gence in the literature giving a distinction between weak
and strong emergence and providing some works that have
been carried out for the verification of emergent properties.
On the one hand, we have taken examples of weak emer-
gent properties from the game of life and verified them us-
ing standard techniques of refinement. On the other hand,
since refinement is very difficult to apply for some exam-
ples which makes it undesirable for most designers, we
have taken another example of the Boids model. By using
timed automata [20, 21], we have been able to model, sim-
ulate and verify emergent properties using UPPAAL model
checking techniques [19].



464 Informatica 45 (2021) 463–475 K. Boumaza et al.

2 Emergence
The concept of emergence is widely used in various do-
mains, and has different significations, from philosoph-
ical, social sciences, arts, biology to computer science
[17, 25, 34, 35]. In the following, we will provide some
definitions in the area of computer science, in particular in
complex systems and SoS.

2.1 Definitions of emergent property

Despite several researches that have been done on the
domain of complex system and SoS focusing on emer-
gence, there is no consensus on the definition of emer-
gence [1, 7, 25, 26]. However, many works are inspired
from Aristotle’s definition: “the whole is greater than the
sum of its parts". An emergent property can be defined as
“a property of an assemblage that could not be predicted
by examining the components individually [10, 12]. Paul
Teller [1, 8] said: “a property of a whole is an emergent
property of a whole when it is not reducible to the non-
relational properties of the parts ”. In [1], Kopetz et al.
preserve Paul’s definition replacing the word “property" by
“phenomenon": a phenomenon of a whole at the macro-
level is emergent if and only if it is new with respect to the
non-relational of any of its proper parts at the micro-level.
In [2], Yong Meng defined emergent properties in complex
systems as properties that are irreducible from knowledge
of the interconnected components. In [5], Polack and Step-
ney define emergence as a discontinuity between global
and local system descriptions. Sanders and Smith [6] de-
fined emergent behaviour as a behaviour that is not deter-
mined by the behaviour of the constituents when consid-
ered in isolation. Isodora [4] characterized emergence of
agents that operate in two or three-dimensional space as “a
pattern appearing in the agents’ configuration at some in-
stance during the operation of the system".

2.2 Weak and strong emergence

As it is presented in many works in the literature and from
different views in different domains, emergence is not an
absolute concept, it can be classified on a scale from weak
to strong [9].

2.2.1 Weak emergence

Weak emergence is a type of emergence in which the emer-
gent property is amenable to computer simulation, it de-
scribes new properties arising in systems as a result of the
interactions at an elemental level. However, it is stipulated
that the properties can be determined by observing or sim-
ulating the system, and not by any process of a priori analy-
sis [1, 10, 11]. I.e., weak emergence is deducible but unex-
pected from the laws of the low-level domain. Bedau [11]
describes deducible features of weak emergence in terms
of derivability by simulation.

2.2.2 Strong emergence

Strong emergence is a type of emergence in which the
emergent property cannot be simulated by a computer. It
describes the direct causal action of a high-level system
upon its components; qualities produced this way are irre-
ducible to the system’s constituent parts, i.e., there is no
theory, concept, or principle that can explain or deduce
the behaviour of the system based on the properties or be-
haviour of its micro level components (the whole is greater
than the sum of its parts). It follows that no simulation
of the system can exist, for such a simulation would itself
constitute a reduction of the system to its constituent parts
[1, 10, 11].

3 Related work
In this section, we will show some research works in which
emergence has been studied.

In [1], Kopetz et al. explained the phenomenon of
emergence in systems of systems (SoS)[13]. Compared to
monolithic systems, they noticed that emergent phenomena
are the most differentiating characteristic of an SoS. They
elaborated a short overview of emergence in two fields.
In the field of philosophy: “how the emergence of a new
properties of complex systems, such as life or the mind
can be explained?". To answer this question, there were
basically two camps. The first is the reductive physical-
ism view which claims that physical sciences can explain
all that exists in the world. The second holds the oppo-
site view of non-reductive physicalism, which claims that
some new properties at the higher level cannot be reduced
to mere physical phenomena.

In the domain of computer science, Kopetz et al. said
that there is no consensus of emergence according to the
remark of John Holland, a computer scientist working in
the area of complex systems, saying “Despite its ubiquity
and importance, emergence is an enigmatic and recondite
topic, more wondered at than analysed... It is unlikely that
a topic as complicated as emergence will submit meekly to
a concise definition and I have no such definition to offer"
[14].

In the European project TEREA SoS [1, 33], a roadmap
for future research in SoS has been proposed, where the
topics of theoretical foundation of SoS and emergence are
in prominent position. They distinguished four cases in ad-
dition to the two types of emergence (weak and strong):
expected and beneficial so emergent behaviour is a normal
case; unexpected and beneficial: emergent behaviour is a
positive surprise; expected and detrimental: emergent be-
haviour can be avoided by adhering to proper design rules;
and unexpected and detrimental: emergent behaviour is a
problematic case or a catastrophe.

They noticed that the type of emergence that is occurring
in an SoS is weak emergence even if we are surprised and
cannot explain the occurrence of an unexpected emergent
phenomenon at the moment of its first encounter. After



Formal Verification of Emergent Properties Informatica 45 (2021) 463–475 465

lighting both types of emergence phenomena, Kopetz et al.
explained the causality of emergent phenomena in an SoS,
finally, they proposed a new methodology for the design of
complex systems based on the explanation of emergence
engineering.

In [2], Yong Meng et al. proposed a grammar-based
approach for verifying emergence in multi-agent systems.
According to some works on emergence [7, 15, 16], they
said that complex systems exhibit emergent properties that
are irreducible from knowledge of the interconnected com-
ponents. They provided an overview of emergence in three
main perspectives: philosophy, natural and social sciences
and computer science.

Computer science aims to predict, verify, validate and
reason about emergence. Prediction is done before the
observation of emergence, while verification is done only
when emergence is observed. Verification of emergent
properties is a complex task because it may lead to com-
binatorial explosion in terms of the system states. More
importantly, emergent properties should be defined first be-
fore verifying. Validation allows determining whether an
emergent property is beneficial or harmful [18]. Finally,
reasoning enables the understanding of the cause-and-
effect of emergence. Yong Meng et al. noticed that the only
studied type of emergence in computer science is weak
emergence. They classify formalization of emergence in
three mainly categories: Variable-based, event-based and
grammar based. They extended Kubik’s grammar-based
approach [17], which does not require a prior definition of
emergence, in order to derive emergent property states.

In [3], Rouff et al. made an investigation into formal
methods techniques that can be applicable to swarm based
missions. They made a survey of some works in formal
methods and extract a few ones for applying them in NASA
swarm based systems. NASA future mission 2020-2030
will be the prospective ANTS (Autonomous Nano Tech-
nology Swarm). They argued that formal methods are very
interesting to use for assuring the correctness of this mis-
sion. One of the most challenging aspects of using swarms
is how to verify that the emergent behaviour of such a sys-
tem will be proper and that no undesirable behaviour will
occur. They cited several formal methods that have been
used in the literature, but very few of them are used for ver-
ifying emergent behaviour of swarms. Based on the survey
results, they selected four methods to do sample specifi-
cation of parts of the ANTS mission and provided some
advantages and inconveniences for each one. Finally, they
suggested necessary properties of formal methods in order
to specify swarm-based systems:

– modelling and reasoning about aggregate behaviour
based on future actions of the individual agents of a
swarm [27]

– modelling states of an agent of the swarm to assure
correctness[28]

– modelling and reasoning about concurrent processes
for detection of race conditions[29]

– modelling and reasoning about persistent information
for verifying adaptive behaviour [28].

They conclude that the use of methods together is the
best approach for the specification and the analysis of
swarm-based systems.

In [4], Isodora et al. claimed that the verification of
emergent behaviour of multi-agent system (MAS) is a very
complex task, due to the fact that emergent behaviour
must be detected and identified before starting its verifi-
cation process. Unfortunately this identification is not an
easy thing that requires the combining of formal and in-
formal methods in order to verify MAS. They took an ex-
ample of the aggressor defender game and proposed a re-
search framework starting by formal modelling of agents
which distinguish between spatial behaviour and other be-
haviours. Firstly, spatial behaviour leads to visual anima-
tion which can help to observe potential emergent proper-
ties. Then, spatial behaviour together with other behaviours
can lead towards simulation and saving time series data.
These can be used to identify patterns of behaviours com-
bined with visual animation that produces desired proper-
ties. The desired properties, including emergence, can be
verified in the original spatial agent model by model check-
ing. They presented a superficial framework without de-
tails as well as a definition of spXMachine and a tool for
automatic transformation to Net Lego (only results of an-
imation were shown). They proposed future steps for this
framework using some tools like spXM, FLAME [30] and
DAIKON [31].

In [5], Polack and Stepney said that there is a discon-
tinuity between global and local system descriptions for
emergent systems which presents a challenge in terms of
demonstrably-correct development (refinement) from an
abstract specification. They gave a short review of refine-
ment, which is a relationship between an abstract program
and an equivalent concrete one. Such a refinement is dis-
charged by simulation. The refinement proof must demon-
strate that functional properties in the abstract model pre-
served in the concrete model. They took the example of
cellular automata producing gliders. They argue that the
behaviour rather than the movement of the glider cannot
be refined to the rules of the game of life. They justi-
fied their argument by the disparate of languages in which
specification and implementation are expressed. Finally,
they gave tentative design guidelines for emergent systems.
The first two guidelines are to identify the three key ele-
ments of the emergent system: required system specifica-
tion, functional component specification and specification
of the integration representation and to identify elements
with common vocabulary and then identifying intermedi-
ate elements. They proposed a guideline to establish how
the emergence is detected.

In [6], Sanders and Smith provided an approach for
refining emergent properties. They said that during the
modelling of an existing system, unknown discontinuities
in behaviour may not be modelled. Consequently, proof
techniques cannot be successful in detecting emergent be-



466 Informatica 45 (2021) 463–475 K. Boumaza et al.

haviour. In addition, they noticed that when engineering
new systems, we are not trying to prove the existence of
emergent behaviour, we merely commence with the re-
quired emergent behaviour, which can be undesired be-
haviour that we must avoid, and then develop a design
which gives rise to these new systems. The emergent be-
haviour must be a consequence of the component interac-
tions within the design.

In [6], Sanders and Smith are only interested in systems
with weak emergence. Their challenging effort was an an-
swer for the question: Are standard formal methods and in
particular refinement applicable to the engineering of sys-
tems with weak emergence? This question had been nega-
tively answered in [5]. They took the same example of the
glider to show how a positive answer for the above question
can be made.

They started by specifying a simple game of life in
one dimension and gave a specification of one-dimensional
glider with its suitable implementation. Then they proved
that such an implementation was a refinement of the speci-
fication. They demonstrated three examples (glider, floater
and k-glider) in one-dimensional game of life that can be
refined. The second step was a two-dimensional game of
life. They took the same example of a glider specified
in two dimensions using some helpful geometric results:
They defined a rectangle in the plane as a Cartesian prod-
uct of two finite intervals. A subset of the plane is said to
be bounded iff it is contained in some rectangle, basing on
this, they gave conditions for which a bounded sub set has
a heading. According to this, they were able to prove that
the two-dimensional implementation of the glider was the
refinement of its specification, which is a positive challeng-
ing answer to what many researchers thought negatively.
Hence, they argued that standard refinement is widely ap-
plicable for systems with weak emergent behaviours.

4 Refining emergent properties

In this section, in addition to Sanders’ approach[6] to which
we will add the time concept, we will take two different
examples of weak emergent properties in the game of life
in order to verify them using refinement techniques.

4.1 Game of life

The game of life [24], developed by the British mathemati-
cian J. H. Conway from the university of Cambridge in
1970, is a zero player game, its evolution is determined
only by its initial configuration (initial state). Starting with
the initial configuration we can see the game evolving dur-
ing time.

4.1.1 Rules of the game

To update the state of the cell in the game, four rules are
used:

1. Any live cell with fewer than two live neighbours die
by isolation (solitude) or under-population.

2. Any live cell with more than three live neighbours die
by overcrowding or over population

3. Any live cell with two or three live neighbours lives
on to the next generation (survives).

4. Any dead cell with exactly three neighbours becomes
a live cell as if by reproduction.

4.1.2 Game model

We model Conway’s game of life using cellular automata
in a two-dimensional infinite space. A cell has a state: a
live cell is represented by true or 1, and a dead cell is rep-
resented by false or 0. For any cell, we use the Moore
neighbourhood which is defined to consist of the current
(central) cell and the eight cells surround it, as it is pictured
in the figure 1.

Figure 1: Moore neighbourhood cells with coordinates
(x, y) on the plane

To describe shapes or patterns, consider a system whose
state is a Boolean function on Z2×N. At any discrete time
t : N, the state of the cell (n,m, t) in Z2 ×N is either true
or false. We write

s[n,m, t] : B

The state s can be updated according to the rules of the
game, let s′ : B be the updated state or the state after a
transition of the state s.

Since states are updated synchronously in the game, we
can write

s′ = s[n,m, t+ 1]

A cell has eight neighbours as defined previously in Fig-
ure 1. Let the central cell be the one whose coordinates in
the two-dimensional infinite space are (l, c). (l for line and
c for column). In order to explain behaviours in the game,
we add time. Let t : N be the variable which represents
discrete time. For a cell (l, c, t) we can write the Moore
neighbours as follows:

N(l, c, t) = {(i, j, t) : Z2 × N |
(| i− l | < 2) ∧ (| c− j |< 2)}



Formal Verification of Emergent Properties Informatica 45 (2021) 463–475 467

that means a set of nine cells, the central one and the
eight others surrounding it. In such a set, states are not
taken into consideration.

In order to update a cell state at time t, the key operation
is to calculate the number of live adjacent cells of this one
at time t. Let Ω(l, c, t) be the function that calculates this
number.

Ω(l, c, t) : Z2 × N→ N

Ω(l, c, t) =
∑

l− 1 ≤ i ≤ l + 1
c− 1 ≤ j ≤ c+ 1

i 6= j

s[i, j, t]

That can be specified in CSP as follows, [22, 23].

Ω(l, c, t) := #{(i, j, t) ∈ N(l, c, t) | (i, j) 6= (l, c)∧s[l, c, t]}

Let Ω be the complement of Ω in 3 × 3 array which de-
notes the number of the dead adjacent cells of the central
cell at time t.

Ω(l, c, t) = 8− Ω(l, c, t)

In order to update cells, first, we specify the four game
rules in a formal manner.

Rule one: Any live cell with fewer than two live neigh-
bours dies, that means:

∀ (l, c) ∈ Z2, t ∈ N · s[l, c, t] ∧ Ω(l, c, t) < 2

⇒ ¬ s[l, c, t+ 1] (1)

Rule two: Any live cell with more than three live neigh-
bours dies

∀ (l, c) ∈ Z2, t ∈ N · s[l, c, t] ∧ Ω(l, c, t) > 3

⇒ ¬ s[l, c, t+ 1] (2)

Rule three: Any live cell with two or three live neighbours
lives on to the next generation

∀ (l, c) ∈ Z2, t ∈ N · s[l, c, t] ∧ (Ω(l, c, t) = 2

∨Ω(l, c, t) = 3) ⇒ s[l, c, t+ 1] (3)

Rule four: Any dead cell with exactly three neighbours be-
comes a live cell

∀ (l, c) ∈ Z2, t ∈ N · ¬s[l, c, t] ∧ Ω(l, c, t) = 3

⇒ s[l, c, t+ 1] (4)

To update cells, one of the four rules must be satisfied
thus:

(1) ∨ (2) ∨ (3) ∨ (4) must be satisfied. From (1) ∨ (2)
we write:

∀ (l, c) ∈ Z2, t ∈ N · s[l, c, t] ∧ (Ω(l, c, t) < 2

∨ Ω(l, c, t) > 3)⇒ ¬ s[l, c, t+ 1] (5)

From (3) ∨ (4) we can write:

∀ (l, c) ∈ Z2, t ∈ N ·
Ω(l, c, t) = 3⇒ s[l, c, t+ 1] (6)

From (5) ∨ (6) we can write:

s[l, c, t+ 1] := s[l, c, t] ∧ Ω(l, c, t) = 2

∨ Ω(l, c, t) = 3 (7)

The later formula (7) means that the cell at time t, on the
line l and column cwill be a live cell for the next generation
at time t+ 1 for two cases:

– If it was a live cell at time t and has two live neigh-
bours (it survives)

– It has three live neighbours(it survives if it was a live
cell, or it gets born if it was a dead one).

Otherwise, this cell will be or will remain dead for the next
generation.

4.1.3 Game state and initialization

The state of the game consists of the whole states of cells,
which is an infinite set since the space is infinite.

Let I be the state which represents the initial configura-
tion of the game and which assumed to be well-defined at
the initial time t0.

At the initial time, we assume that I is consisted of two
sets; let I0 be the one contains all live cells and I0 be the
complement of I0 in Z2 × N that contains all dead cells,
Thus, we write

I0 := {(i, j, t0) ∈ Z2 × N | s[i, j, t0]}

I0 := {(i, j, t0) ∈ Z2 × N | ¬s[i, j, t0]}
Assuming that I0 is known, we can define the initial state

of the game. The initialization is not easy to undertake
because it depends on the purpose of the implementation
and of the example to deal with; we have assumed that I0
will be known in order to facilitate the treatment and the
refinement of the following case studies.

4.2 Case study one: Blinker of period two
In this subsection, we will study a benchmark case known
as a blinker of period two. Blinker is the smallest and most
common oscillator, found by John Conway. The blinker
pattern (behaviour) is like an oscillation of two line seg-
ments of period two. Only one line segment appears at
time (line segments appear alternatively). To explain its
behaviour, let us assume –as cited previously– that I0 is
known, which contains three consecutive live cells on the
same line l at time t0; and let the central cell be on column
c

I0 := {(i, j, t0) ∈ Z2 × N | s[i, j, t0]}
I0 = {(l, c− 1, t0), (l, c, t0), (l, c+ 1, t0)}



468 Informatica 45 (2021) 463–475 K. Boumaza et al.

I0 := {(i, j, t0) ∈ Z2 × N | (i, j, t0) /∈ I0}
Using the transition rules, and by simulation, we can see

the behaviour of the blinker at consecutive discrete times.
Let I1 be the set of all live cells after the first transition at
time t1 = t0 + 1. According to the game rules (7) and to
the simulation,

I1 = {(l − 1, c, t1), (l, c, t1), (l + 1, c, t1)}
Blinker behaviour is described as a switch between I0

and I1 during time t : N; in addition, we can observe from
simulation that I0 consists of cells that constitute a horizon-
tal line segment, whereas I1 consists of cells that compose
a vertical one; in other words, blinker behaviour will be
described by the alternative appearance (emergence) of the
horizontal line segment at even times and the vertical one
at odd times.

Let In be the set of all live cells after n : N transitions at
time tn = t0 + n. According to the game rules (7) and to
the simulation, we can write

∀ t : N · t mod 2 = 0 ⇒ It = I0

∀ t : N · t mod 2 = 1 ⇒ It = I1

Figure 2 shows the blinker behaviour during discrete time.
If It, for t : N, is a set of all live cells at time t, then ΘIt

will be the set of all live cells at the next generation (after
one transition) at time t+ 1.
From figure 2, on the one hand we can write

ΘI0 = I1

ΘI1 = I2

ΘI2 = I3
...

ΘIn−1 = In

and on the other hand, we can write 1

∀ t : N · It = I0 � even(t) � I1

∀ t : N · ΘtI0 = I0 � even(t) � I1

∀ t : N · ΘtI0 = It mod 2

∀ n, t : N · ΘnIt = I(n+t) mod 2

Informally, the behaviour of the blinker is represented by a
horizontal line segment at even times and by a vertical one
at odd times.

∀ (l, c, t), (l1, c1, t) ∈ Z2 × N·
(l, c, t) ∈ I0 ∧ (l1, c1, t) ∈ I0 ⇒ (l = l1)

∀ (l, c, t), (l1, c1, t) ∈ Z2 × N·
(l, c, t) ∈ I1 ∧ (l1, c1, t) ∈ I1 ⇒ (c = c1)

So far, we have explained the behaviour of the blinker of
period two, now we specify it as follows

1Note that in CSP, (a� b� c) means if b then a else c.

Blinker := ∃ (l, c) ∈ Z2, ∀ (x, y) ∈ Z2, t ∈ N ·
s[x, y, t] = |x− c| < 2 ∧ y = l
�even(t) � |y − l| < 2 ∧ x = c

4.2.1 Initialization

To implement the blinker, we first initialize the game as
expressed previously, so, at time t = 0, we put three con-
secutive live cells in the same line l, in such a way that the
middle one assumed to be on the column c, 2,thus,

I0 = {(l, c− 1, t), (l, c, t), (l, c+ 1, t)}

represents all live cells at the initial time; all other cells
are dead (infinite set represented by I0 as it is expressed
above).
Since at the initial time, (t = 0) is even we simply write

init1 := ∀ (x, y) ∈ Z2 ·

s[x, y, 0] = |x− c| < 2 ∧ y = l

4.2.2 Implementation

Previously we have seen that s′ is the state of s after one
transition (update). According to the game rules, we can
update cells as follows:

s[l, c, t+ 1] := s[l, c, t] ∧ Ω(l, c, t) = 2 ∨ Ω(l, c, t) = 3

An easier choice of design expressed by a conditional tran-
sition knowing the positions of the central cell (line l and
column c) is

s[x, y, t+ 1] = (y = l) ∧ | x− c| < 2

�even(t) � (x = c) ∧ |y − l| < 2

Thus, the implementation of the blinker of period two is as
follows:

Bl1 := init1 ; do true→ ∀ (x, y) ∈ Z2,

t ∈ N · s′[x, y, t] := s[x, y, t+ 1] od

4.2.3 Refinement

So far, we have specified and implemented the blinker of
period two as it is expressed previously. Thus, Blinker v
Bl1 is a required refinement.
At the initial time (t = 0) we have

∀ (x, y) ∈ Z2 · s[x, y, 0] = |x− c| < 2 ∧ y = l

which is assumed to be satisfied by the initialization for
the condition at even time t, thus,

init1 = blinker[0/t].

2Note that it is possible that one can also initialize the blinker by
putting three consecutive live cells on the same column c at time t = 0,
in such a way that the middle one assumed to be on line l.



Formal Verification of Emergent Properties Informatica 45 (2021) 463–475 469

Figure 2: Blinker behaviour in the plane (x, y) during time t

Starting from the initial set at time t0 = 0 we have

I0 = {(l, c− 1, t0), (l, c, t0), (l, c+ 1, t0)}

At the initial state, all the live cells are located on the line
l. According to the game rule specified previously by the
formula(7) we have:
∀ (l, c) ∈ Z2 | (t = 0) ∧ ((l > 1) ∨ (l < −1))∧
((c > 1) ∨ (c < −1)) · Ω(l, c, t0) < 2
⇒ ∀ (l, c), (x, y) ∈ Z2 | (t = 1) ∧ |y − l| > 1 ∨ |x− c| >
1 · ¬s[l, c, t0 + 1]

It means that all the cells located outside the (3× 3) box
whose central cell is (l, c, t0 + 1) are dead.
Now, if we look inside this box, at time t0 we have only
three live cells; according to the preceding definition of Ω
and by using the rule(7) we can write
Ω(l, c, t0) = 2 ∧ s[l, c, t0] ⇒ s[l, c, t0 + 1]
Ω(l − 1, c, t0) = 3⇒ s[l − 1, c, t0 + 1]
Ω(l + 1, c, t0) = 3⇒ s[l + 1, c, t0 + 1]
Ω(l, c− 1, t0) = 1 ⇒ ¬s[l, c− 1, t0 + 1]
Ω(l, c+ 1, t0) = 1⇒ ¬s[l, c+ 1, t0 + 1]
∀ (l, c) ∈ Z2 | (t = 0)∧ (|l| = |c| = 1)⇒ ¬s[l, c, t0 + 1]

Let I1 be the set of all live cells at time t1 = t0 + 1, thus

I1 = {(l − 1, c, t1), (l, c, t1), (l + 1, c, t1)}
⇔ ∃(l, c) ∈ Z2,∀ (x, y) ∈ Z2, ∃ (t1 = t0 + 1) ∈ N · |y −
l| < 2 ∧ x = c

Now, starting from I1 and by the same approach, we can
write
∀ (l, c), (x, y) ∈ Z2 | (t = 2) ∧ |y − l| > 1 ∨ |x − c| >
1 · ¬s[l, c, t1 + 1]
Ω(l − 1, c, t1) = 1 ⇒ ¬s[l − 1, c, t1 + 1]
Ω(l + 1, c, t1) = 1⇒ ¬s[l + 1, c, t1 + 1]
∀ (l, c) ∈ Z2 | (t = 1) ∧ |l| = |c| = 1⇒ ¬s[l, c, t1 + 1]
Ω(l, c, t1) = 2 ∧ s[l, c, t1] ⇒ s[l, c, t1 + 1]
Ω(l, c− 1, t1) = 3⇒ s[l, c− 1, t1 + 1]
Ω(l, c+ 1, t1) = 3⇒ s[l, c+ 1, t1 + 1]

Let I2 be the set of all live cells at time t2 = t1 + 1, thus
I2 = {(l, c− 1, t2), (l, c, t2), (l, c+ 1, t2)}
⇔ ∃ (l, c) ∈ Z2,∀ (x, y) ∈ Z2, ∃ (t2 = t1 + 1) ∈ N · |x−
c| < 2 ∧ y = l

If we look to the sets in which the time is even (I0 and
I2), we can observe that both contain the same live cells,
consequently, it will be the same for odd times for I1 and
I3. Generalizing time over N, we simply infer the blinker
specification.

Now, we assume that the blinker condition is satisfied at
time t, and we prove that it will hold at time t+ 1, thus, we
assume that

s[x, y, t+ 1] = |x− c| < 2 ∧ y = l
� even(t) � |y − l| < 2 ∧ x = c

is satisfied. At time t+ 1 we have

s[x, y, (t+ 1) + 1] = |x− c| < 2 ∧ y = l
� even(t+ 1) � |y − l| < 2 ∧ x = c

Obviously, if t is even then t+1 is odd and hence the second
conditional expression holds, and when t is odd, the first
expression of the condition holds as well. Replacing t by
t + 1 we generalize over N to infer the blinker period-two
specification.

4.2.4 Another implementation

Another choice of implementation is that one may think
that the behaviour of blinker during time is like a compo-
sition of two functions (see Figure 2). The first one takes
the set of live cells and translates each cell (location) in the
plane by one unit of time, the second takes the result of the
first and rotates each cell (except the central one) by an an-
gle θ equals ninety degrees in counter-clockwise direction
(this direction is chosen for simplicity) 3.
Preserving the cell state and taking the same initialization
expressed previously in section (4.2.1), the blinker can be
implemented as follows

Bl2 := init1 ; do true→ ∀ x, y : Z,
t : N · s[−y, x, t+ 1] := s[x, y, t]od

4.2.5 Refinement

The required refinement is blinker v Bl2

3Note that the clockwise direction is possible for design, in addition,
alternative directions are also possible



470 Informatica 45 (2021) 463–475 K. Boumaza et al.

At the initial time, it is the same as (4.2.3)

init1 = blinker[0/t].

Using the same approach as the preceding refinement,
based on the formula(7), we can obtain sets I0, I1 which
consist of cells representing a perpendicular line segments
sharing the same cell centre in successive times.
At time t+ 1, we have

s′[x, y, t] = s[x, y, t+ 1] = s[−y, x, t+ 1]

In order to make an easier proof, we assume that l = c = 0.
Assume that τ be the function translating the cell location
by one time unit, and let ρ be the function that rotates the
cell by 90 degrees; thus

ρ := Z2 × N→ Z2 × N

ρ (x, y, t) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 xy
t


τ : Z2 × N→ Z2 × N

τ(x, y, t) =

0
0
1

 +

xy
t

 =

 x
y

t+ 1


The composition of these functions is commutative.

ρ ◦ τ : Z2 × N→ Z2 × N

ρ ◦ τ(x, y, t) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

  x
y

t+ 1


Since the angle θ equals 90◦, then we have

ρ ◦ τ(x, y, t) =

0 −1 0
1 0 0
0 0 1

  x
y

t+ 1



=

 −yx
t+ 1


s′[x, y, t] = s [−y, x, t+ 1] = s[x, y, t+ 1]

We can see that at successive times, line segments are
always perpendicular, which satisfies the blinker specifi-
cation (y = l) when t is even and (x = c) for the other
case; whereas the bounded conditions (|y − l| < 2) and
(|x − c| < 2) are satisfied at the moment of the initializa-
tion.

4.3 Case study two: traffic light
The traffic light is a well known example in the game of
life. It is an oscillator formed by four synchronous blink-
ers of period two that do not encounter each other. The
four blinkers of different directions (East, West, North and
South) are bounded by a box of 9×9 cells. More precisely,
they surround a box of 3 × 3 dead cells. If we consider
d = (l, c), (l for line and c for column) to be the central

cell of these boxes, then the central cells of both blinkers
(East and West) are on the same line l and symmetrical with
respect to the cell d, the other blinkers (North and South)
have central cells on the same column c and symmetrical
with respect to d, as illustrated in Figure 3.

4.3.1 Specification

First, we need to specify the four blinkers, each in isolation
from the others. Let (le, ce), (lw, cw), (ln, cn), (ls, cs) be
the central cells for the east, west, north and south blinkers
respectively.

Since the central cells of the east blinker Eblinker, and
the west blinker Wblinker, are located on line le = lw = l
and column ce = c + 3 and cw = c − 3 respectively, we
have

Eblinker := ∃ l, c : Z, ∀ x, y : Z, t : N ·
s[x, y, t] = (|x− ce| < 2) ∧ (y = l)
�even(t) � (|y − l| < 2) ∧ (x = ce)

Wblinker := ∃ l, c : Z, ∀ x, y : Z, t : N ·
s[x, y, t] = (|x− cw)| < 2) ∧ (y = l)
�even(t) � (|y − l| < 2) ∧ (x = cw)

Since the central cells of the north blinker Nblinker and
the south blinker Sblinker are located on the column cn =
cs = c and the line ln = l + 3 and ls = l − 3 respectively,
we have

Nblinker := ∃ l, c : Z, ∀ x, y : Z, t : N ·
s[x, y, t] = (|y − ln| < 2) ∧ (x = c)
�even(t) � (|x− c| < 2) ∧ (y = ln)

Sblinker := ∃ l, c : Z, ∀ x, y : Z, t : N ·
s[x, y, t] = (|y − ls| < 2) ∧ (x = c)
�even(t) � (|x− c| < 2) ∧ (y = ls)

So far, each blinker is specified in isolation. A traffic light
T light is a synchronous composition of the four blinkers
specified previously.

T light := Eblinker∧Wblinker∧Nblinker∧Sblinker
T light := ∃ l, c : Z, ∀ x, y : Z, t : N ·
(|x − ce| < 2) ∧ (y = l)

∧
(|x − cw| < 2)

∧
(|y − ln| <

2) ∧ (x = c)
∧

(|y − ls| < 2)

� even(t) �

(|y− l| < 2)∧ (x = ce)
∧

(x = cw)
∧

(|x− c| < 2)∧ (y =
ln)
∧

(y = ls)

Replacing ce by (c+ 3) , cw by (c− 3) , ln by (l+ 3), and
ls by (l − 3) we obtain

T light := ∃ l, c : Z, ∀ x, y : Z, t : N ·
(|x−c−3| < 2)∧(y = l)

∧
(|x−c+3| < 2)

∧
(|y−l−3| <

2) ∧ (x = c)
∧

(|y − l + 3| < 2)

� even(t) �



Formal Verification of Emergent Properties Informatica 45 (2021) 463–475 471

Figure 3: Traffic light behaviour: from the left to the right : behaviour at even and odd times respectively

(|y − l| < 2) ∧ (x = c + 3)
∧

(x = c − 3)
∧

(|x − c| <
2) ∧ (y = l + 3)

∧
(y = l − 3)

4.3.2 Initialization, implementation and refinement

The initialization, the implementation as well as the re-
quired refinement could be inferred easily from the preced-
ing Blinker period-two example.

5 Verification of emergent property
using model checking

A well known example of weak emergence is the Boids
model, which captures the motion of flocking birds. Boids
is an artificial life program, developed by Craig Reynolds
in 1986, which simulates the flocking behaviour of birds
[32]. In our case study, we propose a number of ducks that
can swim together in a lake. Each duck can be anywhere in
the lake moving in different directions with various speeds.
The global behaviour (at the macro level) is a movement
(swimming) of ducks together forming a flock. At the mi-
cro level (local behaviour), each duck swims according to
three rules:

1. Alignment: swim towards the average heading of lo-
cal flock-mates

2. Separation: swim to avoid crowding neighbours

3. Cohesion: swim to move towards the average position
(centre of mass) of local flock-mates.

5.1 System model
To demonstrate our method, we have taken the Boids model
as in [2]. We have taken a set of similar ducks swimming
in a large lake (represented by an infinite two-dimensional
space of cells). In order to capture the behaviour of the

set of ducks, we modelled the system as a set of processes
behaving in concurrency. Each process is modelled by a
timed automaton. The calculation of the distance between
ducks as well as speeds and directions is done by another
process, called a “controller", which gets information from
all ducks then informs them about its state (Close, Far or
Collision). The controller is used just for some calculations
needed by ducks.

Initially all ducks have random positions on the lake. A
duck may take from an initial state and according to the
distance between other ducks, another state that can be in
the state Collision when it runs into at least another duck
(distance is nil or smaller than a minimal value); it may
approach the flock and go to the state Close when it is in the
flock (distance is between a minimal and maximal value);
and it can go to a Far state when it is far from the flock
(distance is greater than a maximal value).

In order to make an easier model, we have assumed that
a duck can move with only two speeds, (one or two cells
per time unit). It can slow down when it approaches the
flock in order to keep the average speed of the flock. It
may speed up to reach the flock when it is far from it. In
addition to the eight directions implemented in [2], we have
modelled all possible directions to move from a current cell
to a neighbour one, hence, sixteen directions are allowed.

A cell cij is considered a neighbour to a cell cmn if and
only if
|i−m| < 3∧|j−n| < 3. Hence, a cell has 24 neighbours.

Figure 4 shows the general duck process represented by
timed automata in UPPAAL.

At the Initial state, a ducki has a position in the lake,
waiting for an event from the controler in one of the three
channels (far, close, collision). Depending on which chan-
nel the duck receives an event, it changes the state updating
the speed (speed up, slow down). The state “Collision" is
disliked, it will make the duck in hazard, consequently it
deadlocks the system. In the other two states, the duck is
always waiting for an event from the controller in the three
channels cited above.



472 Informatica 45 (2021) 463–475 K. Boumaza et al.

Figure 4: Timed automata modelling the general process of duck

Figure 5: Timed automata modelling the controller process

The process controller (see Figure 5), has two states. At
the initial state, it chooses a duck and determines its neigh-
bours and calculates the distance separating it from the
other ducks. After that, it goes to an urgent location[19].
Depending on the value of that distance, it informs the duck
in question about its state via channels. These operations
are repeated for all ducks.

After finishing the calculation for the whole set of ducks,
the controller informs them to fly in a synchronous manner,
updating their positions and directions and consequently
updating their velocities. The process controller will be
executed infinitely.

A duck’s position is calculated taking in account the
duck’s speed and direction, whereas the direction (align-
ment) is deduced from the sum of all direction vectors of
neighbours of the duck if it is in a Close state. When the
duck is in a Far state, it will take the direction of the vec-
tor that starts from the current position toward the centre of
the flock. Since the duck has an internal separation rule, it
can change the direction as well as the speed one or many
times, in order to forbid collision with other ducks when-
ever there is a free neighbour position.

5.2 Simulation and verification

We have implemented the system model based on timed
automata using the UPPAAL model checker. Running the

processes in concurrency and starting simulation with UP-
PAAL, we see that ducks starting from different initial posi-
tions (that can be a known configuration of ducks by the de-
signer at initial time) can be all at the Close state. This rep-
resents a property of a whole (global property at the macro
level), meaning that ducks will swim together, which rep-
resents an emergent property that we would like to verify.

Using the UPPAAL verifier, we have checked for some
safety and emergent properties. For the safety property, we
have checked the system deadlock A[]not deadlock, and
executed the query that all ducks never reach a collision
state. A[]forall(i : id_B) !Bird_body(i).Collision.

For the emergent property, we checked that all ducks
swim one close to each other or ducks form a flock. In
this paper we are only interested in this property; we
have executed the query that eventually all ducks can
reach simultaneously the state Close, E <> forall(i :
id_B) Bird_body(i).Close. We changed the number of
ducks in the model using a laptop of dual processors with
2.2 G. Hertz each and 4 G. Bytes of RAM. The results are
summarized in Table 1.

6 Conclusion
The use of formal methods, in particular formal verifica-
tion, becomes very important for engineering complex sys-
tems and SoS. Simulation is very useful for detecting emer-



Formal Verification of Emergent Properties Informatica 45 (2021) 463–475 473

Number
of ducks

Property Verification Kernel Elapsed
time
used

2
Deadlock 0.14 0.031 0.234
Collision 0.062 0.031 0.134
Emergence 0.0 0.0 0.016

3
Deadlock 0.25 0.031 0.312
Collision 0.187 0.0 0.234
Emergence 0.0 0.0 0.015

4
Deadlock 0.749 0.062 0.826
Collision 0.374 0.031 0.405
Emergence 0.0 0.0 0.016

5
Deadlock 2.137 0.016 2.153
Collision 1.108 0.078 1.263
Emergence 0.0 0.0 0.0

10
Deadlock 4.118 0.093 4.29
Collision 1.748 0.078 1.841
Emergence 0.0 0.0 0.0

20
deadlock 112.414 0.297 113.568
Collision 48.329 0.343 48.894
emergence 0.0 0.0 0.0

40
Deadlock explosion / /
Collision explosion / /
Emergence 0.016 0.0 0.015

50
Deadlock explosion / /
Collision explosion / /
Emergence 0.016 0.0 0.02

60
Deadlock explosion / /
Collision explosion / /
Emergence 0.031 0.0 0.022

70
Deadlock explosion / /
Collision explosion / /
Emergence 0.032 0.0 0.024

90
Deadlock explosion / /
Collision explosion / /
Emergence 0.032 0.0 0.033

100
Deadlock explosion / /
Collision explosion / /
Emergence 0.047 0.0 0.056

Table 1: Verification time (in seconds) for properties per
number of ducks: 0 means smaller than a millisecond or
neglected time.

gent behaviours but is not sufficient for ensuring system
correctness, especially for critical systems, when emergent
properties are detrimental. Unfortunately, verifying such
systems is not straightforward, not only because of the
large number of components or sub-systems that are highly
interconnected which leads to state explosion during the
model checking, but also due to unknown and unexpected
behaviours that can be beneficial or harmful leading to a
fault in the system. The technique of refinement based on
mathematical theory is very powerful, but, on the one hand,
it is still undesirable for designers because of their difficul-
ties of understanding, and on the other hand, it is not ob-
vious for complex examples. The use of model checking
techniques which needs some experiences and knowledge
of the model in question ensures the correctness of the sys-
tem design. Unfortunately, model checking suffers from
state explosion when the system is composed of a big num-
ber of constituents or sub-systems. The method developed
in this paper based on the Uppaal model checker shows
very good results for verifying emergent properties. Unfor-

tunately it has limitations for the verification of deadlock
properties when the number of sub-systems becomes im-
portant.

Acknowledgement
The authors would like to thank the ministry of higher ed-
ucation and scientific research of Algeria, as well as the in-
stitute of research in computer science IRIT, Paul Sabatier
University, Toulouse, France, for supporting this research
work.

Our sincere thanks also goes to Dr. Rudolf Schlatte from
the university of Oslo, for his insightful remarks after read-
ing this paper.

References
[1] H. Kopetz, O. Höftberger, B. Frömel, F. Brancati,

F. Brancati (2015), Towards an understanding of
emergence in systems of systems, 10th System of
Systems Engineering Conference (SoSE), IEEE.
https://doi.org/10.1109/SYSTEMS.
2008.4518983

[2] Y. M. Teo, B. L. Luong and C. Szabo (2013),
Formalization of Emergence in Multi-agent Systems,
Conference on Principles of Advanced Discrete Sim-
ulation (PADS), ACM SIGSIM, Montreal, Canada.
https://doi.org/10.1145/2486092.
2486122

[3] C. Rouff, A. KCSVanderbilt, W. Truszkowski, J.
Rash, Mike Hinchey (2004), Verification of NASA
emergent system, International Conference on
Robotics and Automation, IEEE, 154, pp.231-238.
https://doi.org/10.1109/ICECCS.
2004.1310922

[4] I. Petreska, P. Kefalas, M. Gheorghie (2011), A
framework towards the verification of emergent
properties in spatial multi-agent systems, Proceeding
of the workshop on application of software agents,
ISBN 978-86-7031-188-6, pp. 37 -44.

[5] F. Polack and S. Stepney (2005), Emergent properties
do not refine, electronic notes in theoritical computer
science 137, pp. 163- 181.
https://doi.org/10.1016/j.entcs.
2005.04.030

[6] J.W. Sanders and G. Smith (2007), Refining emergent
properties, Electronic notes in theoretical computer
science, 259, pp. 207-223.
https://doi.org/10.1016/j.entcs.
2009.12.026

[7] J. Deguet, Y. Demazeau, L. Magnin (2006), Elements
about the Emergence Issue: A Survey of Emergence



474 Informatica 45 (2021) 463–475 K. Boumaza et al.

Definitions, ComPlexUs, 3, pp. 24-31.
https://doi.org/10.1159/000094185

[8] P. A. Teller (1992), Contemporary Look at Emer-
gence. in: Beckermann, A. et al. (editors) Essays
on the Prospects of Nonreductive Physicalism, De
Gruyter .
https://doi.org/10.1515/
9783110870084.139

[9] J. J. Johnson IV, A. Tolk, A. Sousa-Poza (2013), A
Theory of Emergence and Entropy in Systems of
Systems, Procedia Computer Science 20 , pp. 283 –
289.
https://doi.org/10.1016/j.procs.
2013.09.274

[10] M. A. Bedau (1997), Weak Emergence, Philosoph-
ical Perspectives: Mind, Causation, and World, 11,
pp.375–399.
https://doi.org/10.1111/0029-4624.
31.s11.17

[11] M. A. Bedau (2003), Downward causation and auton-
omy in weak emergence. Principia, 6, pp. 5–50.
https://doi.org/10.5007/%25x

[12] C.Szabo, Y. Meng Teo, G. K. Chengleput (2014),
understanding complex systems: using interaction
as a mesure of emegence, Proceedings of the 2014
Winter Simulation Conference, IEEE.
https://doi.org/10.1109/WSC.2014.
7019889

[13] M. Jamshidi (2009), Systems of Systems Engineer-
ing, John Wiley and Sons.
https://doi.org/10.1002/
9780470403501

[14] J. Holland (1998), Emergence, from Chaos to Order,
Oxford University Press.

[15] V. Darley (1994), Emergent Phenomena and Com-
plexity, Artificial Life IV, pp. 411-416.

[16] Z. Li, C. H. Sim, and M. Y. H. Low (2006), A Sur-
vey of Emergent Behaviour and Its Impacts in Agent-
based Systems, Proc of IEEE International Confer-
ence on Industrial Informatics, pp. 1295-1300.

[17] A. Kubik (2003), Toward a Formalization of Emer-
gence, Artificial Life IX, 9(1), pp. 41-65.
https://doi.org/10.1162/
106454603321489518

[18] C. Szabo and Y. M. Teo (2012), An Integrated
Approach for the Validation of Emergence in
Component-based Simulation Models, Proc of Win-
ter Simulation Conference, pp.1-12.

[19] G. Behrmann, A. David, K. G. Larsen
(2004), A tutorial on Uppaal, Available at
http://www.uppaal.com.
https://doi.org/10.1007/
/978-3-540-30080-9_7

[20] R. Alur (1999), Timed automata, Proc. CAV’99,
Springer LNCS, 1633 pp.8-22.

[21] R.Alur and D. Dill (1994), A theory of timed
automata, Theoretical Computer Science, 126
pp.183-235.
https://doi.org/10.16/0304-3975(94)
90010-8

[22] A. W. Roscoe (1998), The Theory and Practice of
Concurrency, Prentice-Hall.

[23] C.A.R. Hoare (1978), Communicating Sequential
Processes, Communications of the ACM, ACM,
21(8)pp. 666-677.
https://doi.org/10.1145/359576.
359585

[24] E. R. Berlekamp, J. H. Conway, R. K. Guy (1982),
Winning Ways for your Mathematical Plays, volume
2, Games in Particular. Academic Press, London.

[25] E. Bonabeau, J-L. Desslles, A. Grumbach (1995),
Characterizing emergent phenomen(1) : A conceptual
framework, Revue Internationale de Systemique, Vol.
9, N. 3.

[26] E. Bonabeau, J-L. Desslles, A. Grumbach (1995),
Characterizing emergent phenomena(2) : A critical
review, Revue Internationale de Systemique, Vol. 9,
N. 3.

[27] C. Tofts (1991), Describing social insect behaviour
using process algebra, Transactions on Social Com-
puting Simulation, pp. 227-283.

[28] J. Bamard, J. Whitworth, M. Woodward (1996),
Communicating X-machines, Journal of Information
and Software Technology.
https://doi.org/10.1016/
0950-5849()9501066-1

[29] K. Chandy, J. Mism (1988), Parallel Program Design:
A Foundation, Addison-Wesley.

[30] M. Pogson, R. Smallwood, E. Qwarnstrom, M.
Holcombe (2006), Formal agent-based modelling of
intracellular chemical interactions, Biosystems 85
pp. 37-45.
https://doi.org/10.1016/j.
biosystems.2006.02.004

[31] D. E. Michael, G. G. William, K. Yoshio, D. Notkin
(2000), Dynamically discovering pointerbased pro-
gram invariants, Technical Report UW-CSE-99-11-
02, University of Washington Department of Com-
puter Science and Engineering, Seattle, WA



Formal Verification of Emergent Properties Informatica 45 (2021) 463–475 475

[32] Craig W. Reynolds (1987), Flocks, herds and schools:
A distributed behavioural model, SIGGRAPH ’87:
Proceedings of the 14th Annual Conference on Com-
puter Graphics and Interactive Techniques, Associa-
tion for Computing Machinery. pp. 25–34.
https://doi.org/10.1145/37401/37406

[33] M. Henshaw et al. (2013), The Systems of Sysems
Engineering Strategic Research Angenda, TAREA-
PU-WP5-R-LU-26, Loughborough University United
Kingdom.

[34] Serugendo G.D.M , M.P. Gleizes, A. Karageorgos
(2006), Self-Organisation and Emergence in MAS:
An Overview, Informatica 30(1),45-54.

[35] Serugendo G.D.M , M.P. Gleizes, A. Karageorgos
(2005), Self-Organisation in multi-agent systems,
The knowledge Engineering Review vol.20:2, 165–
189, Cambridge University Press.
https://doi.org/10.1017/
S0269888905000494



476 Informatica 45 (2021) 463–475 K. Boumaza et al.


