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Parallel processing of algorithms is an effective way to achieve higher performance on multiprocessor
systems rather. During parallelization, it is critical to minimize the difference between the processing
time for threads. It is necessary to choose a method that can efficiently distribute the workload evenly
across the threads. This paper deals with a special kind of nested loops where the internal loop iterator
depends on the outer loop iterator. In such cases, the process can be represented as an upper (or lower)
triangular matrix. This paper introduces a method for partitioning the outer loop according to the indices
in an almost optimal manner, so that the partial loops in each thread will take nearly the same number of
steps. In addition, we examine the potential of a perfect partition and try to determine the maximum (but
still meaningful) partition size.

Povzetek: Predstavljena je metoda paralelizma za posebno vrsto vgnezdenih zank.

1 Introduction
There are multiple ways to find duplicated elements of a
dataset, but in the cases where the size of the set drastically
increases, simple sequential solutions have serious runtime
limitations. In such cases, it is advisable to parallelize this
process for faster execution.

The most common way to find duplicates is the brute
force method, which compares each element to every other
element in the dataset. This solution has the time complex-
ity of O(n2) and is rarely used in the real world. [17] An
advanced version of this method considers that an element
will always be self-consistent (reflexivity) and assumes that
if an element is identical to the other, the inverse of the con-
dition is also satisfied (symmetricity), or necessarily (for a
more general solution) transitivity is not allowed. Given
these rules, we got a non empty S 6= ∅ set and a reflexive
symmetric non-transitive R relation:

∀a ∈ S : (aRa)

∀a, b ∈ S : (aRb⇔ bRa)

∃a, b, c ∈ S : (aRb ∧ bRc) ; aRc

Suppose that we want to construct equivalence classes
between the elements of the dataset so that the matching
elements (duplicates) are considered as one class. If the
dataset element pairs are represented as a matrix where the
rows and columns represent the i-th element of the set, and

each cell indicates whether a comparison is needed, then
the matrices are shown in Figure 1. If the R relation is
ignored, that is, the brute force algorithm is used in the
processing, then for a set of 20 elements 400 comparisons
(Figure 1.b.) are needed. If we consider the reflexivity at-
tribute of the relation, we can reduce the number of com-
parisons by 380 (Figure 1.c.), since the elements of the
main diagonal can be omitted. If the symmetric property is
included along with reflexivity, the number of comparisons
will be reduced to 190 (Figure 1.d.), since the property
guarantees that the order of two elements is interchange-
able. Because of non-transitivity, it will be necessary to
traverse this upper triangle to find all duplication for each
element.

In this case at best options (N2−N)
2 comparisons are re-

quired (where N is the number of elements in the dataset),
which cannot be further reduced (or more precisely, cannot
be further reduced without additional information about the
dataset). For example, if the dataset contains 10,000 ele-
ments, then 4,999,500 comparisons are required.

Although transitivity exists as an attribute during the
testing for equality of elements in a dataset, non-transitivity
may be unavoidable for other tasks satisfying the R rela-
tion. Examples of such cases include:

– In the first example, the elements of the dataset rep-
resent the countries, where the R relation represents
the neighborhoods. It is said that country A borders B



494 Informatica 45 (2021) 493–506 Á. Pintér et al.

Figure 1: Dataset element pairs as a matrix marked with the different type of comparison requirement.

country, as well as B and C are neighbours, but that
does not mean that countries A and C are also neigh-
bours.

– In the second example, the S dataset contains a set
of one-dimensional points where the relation R de-
scribes the distance between elements. It is also true
that if there is γ distance between the A and the B and
γ distance between B and C, it does not follow that
there is also γ distance between A and C. In this case,
non-transitivity will be met for all elements.

– Our last example concerns the topic of graphs, where
S dataset contains the nodes of the graph and the re-
lation R describes the edges between them. Here, to
give an example, if a vertex C can be reached from
A through B, it does not follow that there is an edge
between A and C: A −→ B −→ C.

The third relation is the non-transitivity which cannot
simplify the algorithm further. This case must check ev-
ery potential pairs in the S set to determine the equivalence
classes.

1.1 Sequential approach
To process the S dataset it is necessary to implement nested
loops where the loops iterate through twice the whole set of
data in case of brute force algorithm. (Algorithm 1) shows
the pseudo code of the algorithm, called Naive Sequential
Approach. In this case the main problem is the number
of steps of the algorithm. For example, if the set size is
N = 20 the number of iterations (incrementation of one of
the loop variables) is FN = N2 = 400 and the number of
comparisons is CN = N2 = 400.

Number of iterations and comparisons can be highly re-
duced if the elements meet the reflexivity and symmetricity
requirements. In this case, it is enough to start the inner
loop from the i + 1-th element due to symmetry. (Algo-
rithm 2) shows the modification, where the main advantage
is to link both objects in the same iteration due to reflexiv-
ity; this algorithm is called Improved Sequential Approach.
Due to the change, the number of iterations is reduced to
FN = N∗(N+1)

2 = 210 and the number of comparisons is

Algorithm 1 Naive Sequential Approach
Require: S: series of data
Require: N : number of elements in the series
Ensure: S: series of processed data

1: function NAIVESEQUENTIALAPPROACH(S, N )
2: for i← 1 to N do
3: for j ← 1 to N do
4: if (S[i].P1 R A[j].P1) then . R is the

relation between elements
5: S[i].P2 = S[i].P2 ∪ {A[j]}
6: end if
7: end for
8: end for
9: return S

10: end function
In the pseudo code the dataset contains objects having P1

and P2 properties. Where the P1 properties match, it links
the target object to the P2 property of the source object.

reduced to CN = N2−N
2 = 190 for the same number of

elements.
The algorithm presented in this article is generic and can

handle all kinds of datasets (including ones without tran-
sitivity), such as string arrays or even object lists (as long
as the R relation can be interpreted). The rest of this pa-
per is organized as follows. In the next Section, an ex-
ample of a triangular loop nest parallelization - which is
distributed efficiently - using our technique is used to show
the motivation of the paper and the already existing related
results. Section 4 explains the mathematical aspects of the
proposed technique and discusses its limitations. Experi-
ments are presented in Section 5, highlighting the signifi-
cant time improvements provided by the index-based dis-
tribution. And finally, we present our conclusion in the last
section.

2 Related work

The parallelization of index dependent nested loops has
been considered and developed by several authors to min-
imize execution time and optimize processor core utiliza-
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Algorithm 2 Improved Sequential Approach
Require: S: series of data
Require: N : number of element in the series
Ensure: S: series of processed data

1: function IMPROVEDSEQUENTIALAPPROACH(S, N )
2: for i = 1 to N do
3: for j = i+ 1 to N do . Due to the reflexivity.
4: if (S[i].P1 R A[j].P1) then . R is the

relation between elements
5: S[i].P2 = S[i].P2 ∪ {A[j]}
6: S[j].P2 = S[j].P2 ∪ {A[i]}
7: end if
8: end for
9: end for

10: return S
11: end function

tion. [11, 3, 15, 10, 6, 4, 9, 1, 12]
The collapsing of perfectly nested loops with constant

loop bounds was originally introduced by Polychronopou-
los [14] as loop coalescing, and Philippe Clauss et. al.
[13] was further developed to work with non-rectangular
loops. The problem of the original implementation - which
only operates with loops that define constant loop bound-
aries - has been solved by defining non-rectangular itera-
tion spaces whose bounds are linear functions of the loop
iterators.

In [8], Nedal Kafri and Jawad Abu Sbeih found a solu-
tion to how to partition the triangular iteration space nearly
optimal. In their case, the iteration space is defined as a
lower triangle matrix and presents a method for calculating
the lower and upper bound index of the outer loop of each
partition. They have been able to achieve near-optimal load
balancing and minimize load imbalance in parallel process-
ing of a perfect triangular loop nest.

In [16], Rizos Sakellariou introduced a compile-time
scheme that can efficiently partition non-rectangular loops
whose indexes of internal loops depend on those of outer-
most loop. The technology presented is based on symbolic
cost estimates, which minimize the imbalance of the load
while avoiding other additional sources.

Adrian Jackson and Orestis Agathokleous [7] presented
a developed system that allows a code to dynamically se-
lect which parallelization method to use at runtime. During
the operation of their system, the programmer only has to
specify the loop to be parallelized, after which the applied
parallel technique will be selected by their dynamic library
during the execution of the code.

3 Naive parallel approach

Considering the nested loops, the iterators i and j doesn’t
carrying any dependency, so they can be parallelized. [18]
However, it is worth noting that the number of j iterations is
not constant, it depends on the current value of i. If paral-

lelization is performed according to the external cycle, the
result is an imbalanced runtime for the threads. Therefore,
it is necessary to choose another parallelization strategy (if
we keep the original approach) to improve the runtime of
the algorithm.

For example, if we keep the outer loop parallelization
and create threads based on the number of outer loop iter-
ations, the problem will be the difference in the runtime of
the threads. The last thread will be completed much sooner
than the first, whose internal loop will iterate through the
entire dataset. In this case, the total runtime of the parallel
algorithm will be determined by thread 1, as illustrated by
Figure 2 and pseudo code called Naive Parallel Algorithm
shown in Algorithm 3.

Therefore, if we simply halve the outer loop executions,
the total iterations of the loops are 155 in the first part and
55 in the second part. So, the second part is only one third
of the first one and finishes much earlier. It would better to
use equal 105-105 iterations in both threads.

In our solution, we present a method that implements
outer loop parallelization for the purpose of obtaining a
nearly equal iteration of each threads, thereby eliminating
differences in thread runtime.

3.1 Nested loop parallelization

Numerous fields (numerical calculations, big data, etc.) use
nested loops to either compute mathematical formulas or
process large amounts of data, which typically stored in
(often multidimensional) arrays. In the case of arrays, data
is accessed through nested loops, their dependency relies
on the data type and the processing method. When par-
allelizing such cases, it is first necessary to determine at
which level of the cycles we want to parallelize, the strate-
gies of which are illustrated in Table 1. [4, 7, 5, 19]

Table 1: Most common nested loops parallelization strate-
gies

Type Description

Outermost Parallelization of the outermost loop.
Inner Parallelization of one of the inner loop.
Nested Parallelize multiple nested loops.
Collapsing Nested loops collapse into a single loop.

3.1.1 Outermost

This is the most common approach for parallelizing nested
loops. In this strategy, the outermost cycle will be par-
allelized, with iterations distributed between the threads,
thereby running the threads in parallel and performing the
tasks assigned to them. In this case, the internal cycles are
executed sequentially.

This strategy is generally a good choice (especially for
high iteration counts) as it minimizes the cost of par-
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Figure 2: Unbalance of the runtime of the threads based on a uniform distribution of iterations.

allelization (for example, initializing threads, scheduling
loop iterations on threads, thread synchronization).

Despite the advantages, the disadvantage is the limit on
the maximum level of parallelization, which must not ex-
ceed the number of iterations of the loop to be parallelized.
For example, a cycle that goes from i : 1 → N can be
divided into a maximum of N parts. This can limit the
number of threads, which may prevent taking advantage of
using all processors and cores of the system.

3.1.2 Inner

A variant of outermost parallelization, with the difference
that one of the internal cycles is parallelized (as opposed to
the external) while the outermost loop is executed sequen-
tially. This strategy is necessary or useful if the external
loop does not have a sufficient number of iterations for ef-
ficient parallelization, but it has the disadvantage that ini-
tializing, managing, and synchronizing threads can lead to
performance problems.

3.1.3 Nested

This strategy takes advantage of the opportunity to execute
multiple loops in parallel. Unlike the previous ones, which
can use up to maximum as many threads as the number of
iteration loops, this strategy also provides additional paral-
lelization, which can give good results on systems with a
large number of processors.

3.1.4 Collapsing

The basis for loop collapsing is that it transforms nested
loops into a single loop, and then the newly created loop
will be parallelized. The advantage of the transformation is
that the ratio of parallelization is increased by the fact that
the newly created loop will have a greater number of itera-
tions. The method produces better runtime results than in-

ner and nested strategies, since reduces the amount of loop
overhead (although this is not always possible as not all
compilers provide this functionality).

4 Methodology

4.1 Index based equal distribution
To balance the number of iterations in every threads, it is
necessary to determine the optimal number (O) of iteration
in one partition based on the size of dataset (N ) and the tar-
get number of partitions (P ) and calculate lower (inclusive)
and upper (exclusive) indices for all partitions. It is impor-
tant to note that partitioning happens according to the outer
loop, so perfect resolution occurs only in exceptional cases.
In all other cases, it is sufficient to achieve approximately
the same number of iterations.

The optimal number of iterations for a partition is ob-
tained by determining the number of all iterations (for a
dataset of N elements): FN = N(N+1)

2 which is divided
by P to get the optimal number of iterations of a partition:

O =
N(N+1)

2

P = N(N+1)
2P .

Using the previous example, the optimal distribution of
iterations can be determined as follows:

– N = 20 −→ FN = N(N+1)
2 = 20∗(20+1)

2 = 210
- total number of iterations,

– P = 2 −→ O = N(N+1)
2P = FN

P = 210
2 = 105

- iteration within 1 partition.

Our goal is to achieve this O iteration count for each
thread. We know that the first thread will start processing
the elements from I0 = 0 (inclusive) index and the last
thread index is I2 = 20 (exclusive). The question is how to
determine internal indices. In the example where we want
to split the set into two threads, we only need to define an
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Algorithm 3 Naive Parallel Approach
Require: S: series of data
Require: N : number of element in the series
Ensure: S: series of processed data

1: function NAIVEPARALLELAPPROACH(S, N )
2: P = NumberOfProcessors() . Determine the optimal level of parallelism.
3: T = CreateThreads(P) . Create P number of working thread.
4: for p = 0 to P − 1 do
5: lower =

⌈
p∗N
P

⌉
. Calculate the lower (inclusive) index in thread.

6: upper =
⌈
(p+1)∗N

P

⌉
. Calculate the upper (exclusive) index in thread.

7: T[p] = ThreadProcess(lower, upper, S)
8: end for
9: WaitAll(T )

10: return S
11: end function

12: function THREADPROCESS(lower, upper, S, N )
13: for i = lower to upper do
14: for j = lower + 1 to N do
15: if (S[i].P1 R A[j].P1) then . R is the relation between elements
16: S[i].P2 = S[i].P2 ∪ {A[j]}
17: S[j].P2 = S[j].P2 ∪ {A[i]}
18: end if
19: end for
20: end for
21: return S
22: end function

internal index (will be: I1 = 6), which will be an exclusive
on the first, and an inclusive one on the second thread.

4.2 Steps of individual indices calculation

1. Determine the total number of iterations (FN ) based
on dataset size (N ): FN = N(N+1)

2

2. Define the target number of partitions (P ), than calcu-
late the optimal number of one partition’s iterations:
O = FN

P

3. Knowing the first index (I0 = K0 = 0), determine the
following index approximation (K1) for the partition
using the following equations:

– Number of steps from K0 to the end of the set
(K0 is known):

(N −K0)(N −K0 + 1)

2
(1)

– Number of steps from K1 to end of the set (K1
is unknown):

(N −K1)(N −K1 + 1)

2
(2)

– Equation (3) is obtained by combining and ex-
plaining (1) and (2).

– Roots of (3) are:
a = −1
b = 2N + 1

c =
P (N −K0)(N −K0 + 1)−N(N + 1)

P
−N2 −N

(4)

– where b2 − 4ac > 0, − b
a , ca > 0 and a < 0 so

X1 ≤ X2 therefore: [2]

X1 =
−b+

√
b2 − 4ac

2a
(5)

– from above we can calculate the (next) approxi-
mation to the index, K1:

K1 = X1 =

−(2N + 1) +
√

(2N + 1)2 − 4
P (N−K0)(N−K0+1)−N(N+1)

P

−2
(6)

– To get the real index (exclusive) need to round
the K1 (but to calculate the next Kx index, we
use the unrounded K value):

I1 = dK1e (7)

4. The index is calculated P times, and then Kp = N is
obtained.

This methods is the Improved Parallel Approach (IPA),
and its algorithm is illustrated by Algorithm 4.
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(N −K0)(N −K0 + 1)

2
−

(N −K1)(N −K1 + 1)

2
=

N(N + 1)

2P

P (N −K0)(N −K0 + 1)− P (N −K1)(N −K1 + 1) = N(N + 1)

P (N −K0)(N −K0 + 1)−N(N + 1) = P (N −K1)(N −K1 + 1)

P (N −K0)(N −K0 + 1)−N(N + 1)

P
= (N −K1)(N −K1 + 1)

P (N −K0)(N −K0 + 1)−N(N + 1)

P
= N2 −NK1 +N −NK1 +K2

1 −K1

P (N −K0)(N −K0 + 1)−N(N + 1)

P
= N2 − 2NK1 +N +K2

1 −K1

P (N −K0)(N −K0 + 1)−N(N + 1)

P
= N2 +N +K2

1 −K1(2N + 1)

P (N −K0)(N −K0 + 1)−N(N + 1)

P
−N2 −N = K2

1 −K1(2N + 1)

−K2
1 +K1(2N + 1) +

P (N −K0)(N −K0 + 1)−N(N + 1)

P
−N2 −N = 0

(3)

4.3 Example of intermediate indices
calculation

In this example the length of the set is N = 8, which we
would like to distribute into P = 4 parts. The total number
of iterations are FN = N∗(N+1)

2 = 8∗(8+1)
2 = 36. One

part optimally iterations are O = FN

P = 36
4 = 9. From

Equation 4 the a = −1 is constant, b = 2 ∗ N + 1 =
2 ∗ 8 + 1 = 17 is depends by the N , and c need to calculate
in every iteration. The outer loop first index is also known:
K0 = 0. The intermediate indices’ calculations are the
following:

– Step 1 - calculate K1 and I1:

c1 =
4 ∗ 8 ∗ 9− 8 ∗ 9

4
− 82 − 8 = −18

K1 =
−17 +

√
172 − 4 ∗ −1 ∗ −18

−2
= 1, 135

I1 = 1

(8)

For the first thread, the outer loop will iterate
from 0 to 1, resulting in a total of 8 iterations.

– Step 2 - calculate K2 and I2:

c2 = −36 K2 = 2, 479 I2 = 2 (9)

For the second thread, the outer loop will iterate
from 1 to 2, resulting in a total of 7 iterations.

– Step 3 - calculate K3 and I3:

c2 = −54 K2 = 4, 227 I2 = 4 (10)

For the third thread, the outer loop will iterate
from 2 to 4, resulting in a total of 11 iterations.

– Step 4 - calculate K4 and I4:

c2 = −72 K2 = 8, 000 I2 = 8 (11)

For the fourth thread, the outer loop will iterate
from 4 to 8, resulting in a total of 10 iterations.

As visible, we cannot reach the equal distribution, but we
get close to it. The optimal iteration count for one thread is
O = 9. The differences to this are as follows: −1 (−11%),
−2 (−22%), +2 (22%), +1 (11%), with a cumulative error
of 0.

To compare these results to the Naive Distribution, it
generates the following indices: 0− 2, 2− 4, 4− 6, 6− 8,
with iteration counts as follows: 15 (44%), 11 (22%), 7
(−22%), 3 (−44%). It is clearly visible that the first thread
will run approximately five times longer than the last one.
In contrast, the threads of the improved version will finish
at about the same time as is visible in Figure 3.

Figure 3: Difference between the two type of outer loop
distribution.

4.4 Error in indices calculation

There are some cases where the last index will never be
reached due to computational inaccuracy. Since rounding
is an important step in defining indices, this problem will
appear when the error "goes beyond" the decimal point, af-
ter that, rounding operation will not be able to correct the
deviation. This error will only occur when calculating the
last index, because in the case of intermediate indices, this
difference is negligible as it causes minimal differences in
iterations.



Index Dependent Nested Loops Parallelization with an. . . Informatica 45 (2021) 493–506 499

Algorithm 4 Improved Parallel Approach
Require: S: series of data
Require: N : number of element in the series
Ensure: S: series of processed data

1: function IMPROVEDPARALLELAPPROACH(S, N )
2: P = NumberOfProcessors() . Determine the optimal level of parallelizm.
3: T = CreateThreads(P) . Create P number of working threads.
4: a = -1
5: b = 2N + 1
6: Klower = 0
7: Ilower = 0
8: for p = 1 to P do
9: c = P (N−Kprevious)(N−Kprevious+1)−N(N+1)

P −N2 −N
10: Kupper = −b+

√
b2−4ac
2a

11: Iupper = dKnexte . The upper (exclusive) index in thread.
12: T[p] = ThreadProcess(Ilower, Iupper, S, N )
13: Klower = Kupper

14: Ilower = Iupper
15: end for
16: WaitAll(T )
17: return S
18: end function

19: function THREADPROCESS(lower, upper, S, N )
20: for i = lower to upper do
21: for j = lower + 1 to N do
22: if (S[i].P1 R A[j].P1) then . R is the relation between elements
23: S[i].P2 = S[i].P2 ∪ {A[j]}
24: S[j].P2 = S[j].P2 ∪ {A[i]}
25: end if
26: end for
27: end for
28: return S
29: end function

As an example, suppose that the size of the set is N =
350, 000, 000 and the partition is P = 8, where the optimal
iteration within a thread is O = 7, 656, 250, 021, 875, 000.
In this case, after the calculation, the indices are shown in
Table 2.

At the last calculation, the index is below the expected
value; therefore, it is necessary to correct it. To overcome
this, it may be a solution to calculate the indices for P − 1
partitions instead, and then take the N as the last index of
an additional partition.

4.5 Perfect partition
A perfect division is when every thread takes the same
number of iterations, which matches the optimal number of
calculated iterations. We have done practical experiences
with all set sizes between 1 and 2147483647. It can be said
that certain sets can be divided into two equal parts by it-
erations (Table 3). It is not possible to do the same with
larger number of partitions (where the number of partitions
is a power of two).

4.6 Maximum meaningful size of the
partition

Maximum meaningful partition stands for the P value,
where at least one iteration of the external loop is executed
for each partition (the Ilower < Iupper condition is met).
This condition prevents us from creating threads that will
not contain iterations. This condition is usually violated
when either the set we want to process is too small, or when
the level of parallelization is too high.

For example, take the previous example where N = 8
and the value of P should be 6. In this case, the computed
indices will be: 0−1, 1−2, 2− 2, 2−4, 4−5, 5−8, where
the third thread indices violate the condition: because it has
a Ilower and Iupper indices value of 2, this thread will do
nothing.

The maximum value of P has not yet been determined
but can be restricted between a lower limit and an upper
limit. The lower limit is obtained by taking N+1

2 , because
we can create partitions at least half of the element number.
This equation can be derived from the following relation-
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Table 2: Index distribution and deviation when N = 350, 000, 000 and P = 8

Index lower value Index upper value Number of iterations Deviation

0 22 604 979 7 656 250 123 507 270 0,0000013274%
22 604 979 46 891 109 7 656 249 998 313 340 -0,0000003077%
46 891 109 73 300 705 7 656 249 988 081 220 -0,0000004414%
73 300 705 102 512 627 7 656 250 044 133 910 0,0000002907%

102 512 627 135 669 648 7 656 250 019 577 120 -0,0000000300%
135 669 648 175 000 000 7 656 249 913 887 130 -0,0000014105%
175 000 000 226 256 314 7 656 250 113 194 860 0,0000011927%
226 256 314 349 999 995 7 656 249 974 305 130 -0,0000006213%

Table 3: Size of datasets where the perfect partitioning with partition size of N = 2 is possible

3 20 119 696 4 059 23 660
137 903 803 760 4 684 659 27 304 196 159 140 519 213 748 912

236 368 449 290 976 842 345 585 235 477 421 558 532 029 951 554 649 488
609 257 881 663 866 274 741 094 204 863 561 208 882 299 846 904 919 383
927 538 920 950 158 457 959 527 776 982 147 313 1 004 766 850 1 059 375 243

1 081 994 780 1 091 364 099 1 100 733 418 1 127 233 854 1 136 603 173 1 145 972 492
1 155 341 811 1 191 211 566 1 200 580 885 1 245 819 959 1 255 189 278 1 268 439 496
1 300 428 352 1 332 417 208 1 345 667 426 1 400 275 819 1 422 895 356 1 432 264 675
1 454 884 212 1 477 503 749 1 518 861 924 1 522 742 823 1 528 231 243 1 541 481 461
1 564 100 998 1 596 089 854 1 618 709 391 1 631 959 609 1 637 448 029 1 650 698 247
1 673 317 784 1 682 687 103 1 718 556 858 1 741 176 395 1 769 284 352 1 795 784 788
1 818 404 325 1 850 393 181 1 859 762 500 1 869 131 819 1 882 382 037 1 886 262 936
1 891 751 356 1 927 621 111 1 946 359 749 1 959 609 967 1 968 979 286 1 982 229 504
2 000 968 142 2 014 218 360 2 036 837 897 2 059 457 434 2 068 826 753 2 078 196 072
2 091 446 290 2 104 696 508 2 132 804 465 2 146 054 683

ship:

N ≤ N(N + 1)

2P

1 ≤ N + 1

2P

P ≤ N + 1

2

(12)

The upper limit has not been proved yet, but we get the
following therorem about it after expanding the lower limit
as is shown in Equation 13.

P <
N + 1

2− 2√
N

− 1 (13)

Based on the lower and upper limit equations, the first
50 partition values are shown in Table 4 and Figure 4. As
visible, the upper limit follows the real maximum P value
(expect some special cases), until then the lower limit is
slowly getting further away.

In summary, if the P value is chosen less than or equal
to the lower limit, the partitioning will be certainly cor-
rect, and each thread will contain processable iterations. In
the case of higher values, the difference between the lower
limit and the optimal value increasing; therefore, it is ad-
visable to use the upper limit −1 to gain high level of par-
allelism.

5 Evaluation

This section presents the testing methods for the runtime of
the different versions of nested loops algorithms. The in-
puts were generated by the following parameters (resulting
in a total of 96 datasets).

1. Size of the dataset (N ) can be 10, 100, 1 000, 10 000,
20 000, 50 000, 100 000, 200 000.

2. Minimum and maximum size of the elements in the
dataset (El) can be 10-100, 1 000-5 000, 10 000-15
000.

3. Probability of duplicates in the dataset (β) can be 0,
0.33, 0.5, 0.8.

A C# application was developed for testing which runs
each measurement 10 times using each algorithm. During
the measurements, the best and worst results are discarded
and the final result was the average of the remaining values.

The following configuration was used for testing:

– CPU: Intel(R) Core(TM) i5-7300 (2 physical cores, 4
logical cores)

– RAM: 16 GB
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Figure 4: The evolution of limits and their differences, as a function of P

– HDD: Samsung MZVLB512HAJQ-000L7, 475,48
GB

– FileSystem: NTFS v3.1, cluster size: 4096 bytes

– Used level of parallelizm (P): 4

The results of the measurements show that the amount of
duplication of elements within the set (β) and the “length”
of the elements (El) do not effect the runtime significantly.
The runtime difference between the four algorithms pre-
sented is determined by the differences in the dataset sizes.
This observation is illustrated by the results of the measure-
ments in Figure 5.

The diagrams can be seen that the slopes of the func-
tions are nearly the same. For example, comparing the ex-
ecution time of the Naive Serial algorithm in the second
(El : 1000 − 5000) and the third (El : 10000 − 15000)
diagram, can be seen, that even though in the second case
the elements in the set are twice as long, runtime only in-
creased depending on the number of elements. For exam-
ple, for 50 000 elements, when the length of the elements
was increased, the difference was only 100 927 317 ticks
(≈ 0.010092732 seconds), while for doubling the size of
the set, the execution time increased by an average of 3
083 536 094 ticks (≈ 0.308353609 seconds). Of course,
this relationship also applies to other measurements.

It is also determined by the measurements (as visible in
Figure 6) that it is worth using the parallelization in the case
of more than 10,000 elements.

In cases where the size of the dataset does not reach
that number, serial processing will result in faster execu-
tion time, regardless of the length of the elements.

In Figure 7, the two versions of parallel algorithms are
compared and the differences between runtimes are high-
lighted.

As can be seen in cases where the dataset size exceeds
the minimum number of elements required for paralleliza-
tion (N ≥ 10 000), the improved version of the parallel

algorithm always results in faster execution time (between
15− 40 percentage) than the naive version.

6 Conclusion

To objective of this paper was to speed-up the calculation
of a given R operation using all possible pairs of a set as
operands. Several sequential and parallel procedures for
this purpose have been presented and analysed.

The main contribution of this paper is a novel nested loop
parallelization method based on the number of items. This
method is able to give an efficient partitioning of the prob-
lem based on the number of items and the number of avail-
able processors.

Some further analysis was also presented about the nu-
merical error of the method, perfect partitioning and the
maximum meaningful size of the partition.

The evaluation section shows that the presented method
is very effective and is able to give almost optimal results
is all cases.
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Table 4: The evolution of limits and their differences, as a function of P

N P
Lower limit Upper limit

N P
Lower limit Upper limit

V alue Diff. V alue Diff. V alue Diff. V alue Diff.

2 1 2 1 4 3 27 16 14 2 16 0
3 2 2 0 4 2 28 17 15 2 17 0
4 3 3 0 4 1 29 17 15 2 17 0
5 4 3 1 4 0 30 18 16 2 18 0
6 4 4 0 5 1 31 18 16 2 19 1
7 5 4 1 5 0 32 19 17 2 19 0
8 5 5 0 6 1 33 19 17 2 20 1
9 6 5 1 6 0 34 20 18 2 20 0

10 7 6 1 7 0 35 20 18 2 21 1
11 7 6 1 8 1 36 21 19 2 21 0
12 8 7 1 8 0 37 22 19 3 22 0
13 8 7 1 9 1 38 22 20 2 22 0
14 9 8 1 9 0 39 23 20 3 23 0
15 9 8 1 10 1 40 23 21 2 23 0
16 10 9 1 10 0 41 24 21 3 24 0
17 11 9 2 11 0 42 24 22 2 24 0
18 11 10 1 11 0 43 25 22 3 25 0
19 12 10 2 12 0 44 25 23 2 25 0
20 12 11 1 13 1 45 26 23 3 26 0
21 13 11 2 13 0 46 26 24 2 27 1
22 13 12 1 14 1 47 27 24 3 27 0
23 14 12 2 14 0 48 27 25 2 28 1
24 14 13 1 15 1 49 28 25 3 28 0
25 15 13 2 15 0 50 29 26 3 29 0
26 16 14 2 16 0 51 29 26 3 29 0
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Figure 5: Execution time difference
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Figure 6: Serial-Parallel intersection
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Figure 7: Comparison of Naive and Improved parallel algorithm execution runtime


