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Testing takes a considerable amount of the time and resources that are spent on producing software. 
Testing accounts for approximately 50% of the cost of the development of a software system. Therefore, 
techniques to reduce the cost of testing would be useful. This paper presents an automatic test-data 
generation technique that uses a genetic algorithm (GA). This technique applies the concepts of 
dominance relations between nodes to reduce the cost of software testing. These concepts are used to 
define a new fitness function to evaluate the generated test data. Finally, the paper presents the results 
of the experiments that have been conducted to evaluate the effectiveness of the proposed GA technique 
compared to the random testing (RT) technique. These experiments are used to evaluate the 
effectiveness of the new fitness function and the technique used to reduce the cost of software testing.

Povzetek: Predstavljen je genstski algoritem za zmanjšanje števila testnih podatkov.

1 Introduction
Software testing is the main technique used to improve 
the quality and increase the reliability of software. 
Software testing is a complex, labor-intensive, and time 
consuming task that accounts for approximately 50% of 
the cost of a software system development [1]. Increasing 
the degree of automation and the efficiency of software 
testing can reduce the cost of software design, decrease 
the time required for software development, and increase 
the quality of software.

One critical task in the automation of software 
testing is the automation of the generation of test data to 
satisfy a given adequacy criterion. Test-data generation is 
the process of identifying a set of program input data that 
satisfies a given testing criterion. Test-data generation 
has two main aspects: test generation technique and 
application of a test-data adequacy criterion. A test 
generation technique is an algorithm that generates test 
data, whereas an adequacy criterion is a predicate that 
determines whether the testing process is finished.

There has been much previous work in automatically 
generating test data.  Perhaps the most commonly 
encountered are random test-data generation, symbolic 
test-data generation, dynamic test-data generation, and 
recently, test-data generation based on GA.

Random test-data generation consists of generating 
inputs at random until useful inputs are found (e.g., [2, 3,
4]). The problem with this approach is clear with 
complex programs or complex adequacy criteria, an 
adequate test input may have to satisfy very specific 

requirements. In such cases, the number of adequate 
inputs may be quite small compared to the total of inputs, 
so the probability of selecting an adequate input by 
chance may be low.

Symbolic test-data generation consists of assigning 
symbolic values to variables to create an abstract, 
mathematical characterization of the program’s 
functionality. With this approach, test-data generation 
can be reduced to a problem of solving an algebraic 
expression. Many test-data generation methods that use 
symbolic execution to find inputs that satisfy a test 
requirement have been proposed (e.g., [5, 6, 7, 8, 9, 10]). 
A number of problems are encountered in practice when 
symbolic execution is used. One of such problems arises 
in indefinite loops, where the number of iterations 
depends on a non-constant expression, and the index of 
array, where data is referenced indirectly. Pointer 
references also present a problem because of the 
potential for aliasing.

Dynamic test-data generation is based on the idea 
that if some desired test requirement is not satisfied, data 
collected during execution can be used to determine 
which tests come closest to satisfying the requirement 
[11] and [12]. With the help of this feedback, test inputs 
are incrementally modified until one of them satisfies the 
requirement. Two limitations are commonly found in 
dynamic test-data generation systems. First many 
systems make it difficult to generate tests for large 
programs because they work only on simplified 
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programming languages. Second, many systems use 
gradient descent techniques to perform function 
minimization and, therefore, they can stall when they 
encounter local minima.

Several search based test-data generation techniques 
have been developed (e.g., [13, 14, 15, 16, 17, 18, 19, 
20]). These techniques had focused on finding test data 
to satisfy a number of control-flow and data-flow testing 
criteria. Genetic algorithms have been the most widely 
employed search-based optimization technique in 
software testing [21]. The new features of GAs make 
them capable of finding the nearly global optimum 
solution. Test-data generation methods based on genetic 
algorithms have many problems due to the use of fitness 
functions that depend on control dependences or branch-
distance in its calculations. The fitness function that takes 
control dependencies into account faces a problem to
find an input to traverse a target node within loops. A 
further problem is the assignment of approximation 
levels for some classes of program with unstructured 
control flow. A branch-distance-related problem can 
occur with nested branch predicates. Once input data is 
found for one or more of the predicates, the chances of 
finding input data that also fits subsequent predicates 
decreases, because a solution for subsequent conditions 
must be found without violating any of the earlier 
conditions [22, 23, 24]).

To solve the problem of reducing the cost of 
software testing, we have developed a new GA-based 
technique with a new fitness function that reduces the 
test requirements and overcomes the problems of the 
previous GA-based test-data generation methods.

This paper presents an automatic test-data generation 
technique that uses a GA for white-box testing. This 
technique applies the concepts of dominance relations 
between nodes to reduce the cost of software testing. 
These concepts are used to define a new fitness function 
to evaluate the generated test data. 

The paper is organized as follows: Section 2 gives 
some important definitions. Section 3 describes the 
proposed technique, which is used to reduce the cost of 
software testing. Section 4 describes the proposed GA 
technique for automatic test-data generation, and the 
results of applying this algorithm to an example program. 
Section 5 presents the results of the experiments that are 
conducted to evaluate the effectiveness of the proposed 
GA compared to the random testing technique, to 
evaluate the effectiveness of the new fitness function and 
the technique used to reduce the cost of software testing. 
Section 6 presents the conclusions and future work.

2 Background
We introduce here some basic concepts that will be used 
through this work.

2.1 The principles of genetic algorithms
The basic concepts of GAs were developed by Holland 
[25]. GAs are commonly applied to a variety of problems 

involving search and optimization. GAs search methods 
are rooted in the mechanisms of evolution and natural 
genetics. GAs draw inspiration from the natural search 
and selection processes leading to the survival of the 
fittest individuals. GAs generate a sequence of 
populations by using a selection mechanism, and use 
crossover and mutation as search mechanisms [26]. 

The principle behind GAs is that they create and 
maintain a population of individuals represented by 
chromosomes (essentially a character string analogous to 
the chromosomes appearing in DNA). These 
chromosomes are typically encoded solutions to a 
problem. The chromosomes then undergo a process of 
evolution according to rules of selection, mutation and 
reproduction. Each individual in the environment 
(represented by a chromosome) receives a measure of its 
fitness in the environment. Reproduction selects 
individuals with high fitness values in the population, 
and through crossover and mutation of such individuals, 
a new population is derived in which individuals may be 
even better fitted to their environment. The process of 
crossover involves two chromosomes swapping chunks 
of data (genetic information) and is analogous to the 
process of sexual reproduction. Mutation introduces 
slight changes into a small proportion of the population 
and is representative of an evolutionary step. The 
structure of a simple GA is given below.

Simple Genetic Algorithm ()
{
    initialize population;
    evaluate population;
    while termination criterion not reached {
      select solutions for next population;
        perform crossover and mutation;
       evaluate population; }
     }

The algorithm will iterate until the population has 
evolved to form a solution to the problem, or until a 
maximum number of iterations have occurred 
(suggesting that a solution is not going to be found given 
the resources available).

2.2 The control flow graph
A program’s structure is conveniently analyzed by means 
of a directed graph, called control flow graph that gives a 
graphical representation of the program’s control flow. A 
directed graph or digraph G = (V, E) consists of a set V of 
nodes or vertices, where each node represents a 
statement, and a set E of directed edges or arcs, where a 
directed edge e =(n, m) is an ordered pair of adjacent 
nodes, called Tail and Head of e, respectively. For a node 
n in V, indegree(n) is the number of arcs entering and 
outdegree(n) the number of arcs leaving it. Figure 1.b 
shows the control flow graph G of the example program, 
which is shown in Figure 1.a. We are augmented the 
control flow graph by the unique entry node (-1) and the 
unique exit node (0).
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Figure 1: (a) Example program, (b) its Control Flow Graph G, (c) its Dominator Tree DT(G)

(a) (b) (c)

1. #include <iostream.h>
2. void main ( )
3. {
4.    int x, y, z;
5.    int mid;
6.    cin>>x>>y>>z;
7.    mid = z;
8.    if(y<z)
9.    {
10.       if(x<y)
11.       {
12.           mid = y;
13.       }
14.       else
15.       {
16.         if(x<z)
17.         {
18.           mid = x;
19.         }
20.       }
21.    }
22.    else
23.    {
24.      if(x>=y)
25.     {
26.        mid = y;
27.      }
28.      else
29.      {
30.        if(x>z)
31.        {
32.           mid = x;
33.         }
34.       }
35.    }
36.    cout<<"Middle value="<<mid;
37. }
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2.3 Dominance
Let G = (V, E) be a digraph with two distinguished nodes
n0 and nk. A node n dominates a node m if every path P
from the entry node n0 to m contains n.

Several algorithms are given in the literature to find 
the dominator nodes in a digraph (e.g., [27] and [28]). 

By applying the dominance relations between the 
nodes of a digraph G, we can obtain a tree (whose nodes 
represent the digraph nodes) rooted at n0. This tree is 
called the dominator tree; we denote it by DT(G). A 
(rooted) tree DT(G) = (V, E) is a digraph in which one 
distinguished node n0, called the root, is the Head of no 
arcs; every node n except the root n0 is a Head of just one 
arc and there exists a (unique) path (dominance path) 
from the root n0 to each node n; we denote this path by 
dom(n). Tree nodes of outdegree zero are called leaves.

For example, Figure1.c shows the dominator tree of 
the flow graph G (Figure 1.b) of the example program 
(Figure 1.a). The dominance path of node 21 in DT(G) is 
dom(21) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21.

3 Reducing the cost of testing
This section describes our proposed technique for 
reducing the cost of software testing that fulfils the all-
statements coverage criterion. The proposed technique is 
based on the concepts of the dominance relations 
between nodes of the program’s control flow graph. This 
technique aims to cover a subset of statements (nodes of 
the program’s control flow graph) that guarantees the 
coverage of all statements of the tested program. 

The set of leaves of the dominator tree is an essential 
set (i.e., every set of paths that covers it, covers all nodes 
in the tree). To illustrate the effectiveness of this 
technique,  we apply it to the example program given in 
Figure 1. The set of leaves of the example program is L = 
{0, 13, 19, 20, 21, 27, 33, 34, 35}. The dominance paths 
of the elements of this set are:

dom(0) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 36, 37, 0.
dom(13) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13.
dom(19) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 17, 
18, 19.
dom(20) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 15, 16, 20.
dom(21) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 21.
dom(27) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 22, 23, 24, 25, 26.
dom(33) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 22, 23, 24, 28, 29, 30, 
31, 32, 33.
dom(34) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 22, 23, 24, 28, 29, 30, 
34.
dom(35) = -1, 1, 2, 3, 4, 5, 6, 7, 8, 22, 23, 24, 35.

Covering an element of the set L guarantees the 
coverage of its dominance path. It is clear that, the union 
of nodes of this set of dominance paths is the set of all 
nodes of the program’s control flow graph (i.e., all 
statements of the tested program).

So, our goal of covering all nodes of the program’s 
control flow graph can be reduced to covering only the 
set of leaves of the dominator tree. Thus, by applying the 
proposed technique the cost of testing of the example 
program is reduced by 75.5%.
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4 GA-based test-data generation
This section describes the proposed GA for automatic 
test-data generation, which uses a new fitness function to 
evaluate the generated test data. This new fitness 
function depends on the concepts of the dominance 
relations between nodes of the program’s control flow 
graph. The algorithm searches for test cases that satisfy 
the all-statements criterion. The major components of 
this GA are discussed below.

4.1 Representation
The proposed GA uses a binary vector as a chromosome 
to represent values of the program input variables. The 
length of the vector depends on the required precision 
and the domain length for each input variable.

Suppose we wish to generate test cases for a program 
of k input variables x1,…, xk where each variable xi can 
take values from a domain Di = [ai, bi]. Suppose further 
that di decimal places are desirable for the values of each 
variable xi. To achieve such precision, each domain Di

should be divided into   id
ii ab 10 equal size ranges. 

Let us denote by mi the smallest integer such that 

  1210  ii md
ii ab . Then, a representation 

having each variable xi coded as a binary string stringi of 
length mi clearly satisfies the precision requirement. The 
mapping from the binary string stringi to a real number xi

from the range [ai, bi] is performed by the following 
formula:

12 



im

ii
iii

ab
xax (4.1)

Where ix represents the decimal value of the binary 

string stringi [Michalewicz, 1999].
It should be noted that the above method can be 

applied for representing values of integer input variables 
by setting di to 0, and using the following formula instead 
of formula (4.1):

)
12

int(




im

ii
iii

ab
xax (4.2)

Now, each chromosome (as a test case) is represented 

by a binary string of length 



k

i
imm

1

; the first m1 bits 

map into a value from the range [a1, b1] of variable x1, 
the next group of m2 bits map into a value from the range 
[a2, b2] of variable x2, and so on; the last group of mk bits 
map into a value from the range [ak, bk] of variable xk.

For example, suppose a program has 2 input variables 
x and y, where –3.0 x 12.1 and 4.1 y 5.8, and the 
required precision is four decimal places for each 
variable. The domain of variable x has length 15.1; the 
precision requirement implies that the range [-3.0, 12.1] 
should be divided into at least 15.110000 equal size 
ranges. This means that 18 bits are required as the first 
part of the chromosome: 217< 151000 218. The domain 
of variable y has length 1.7; the precision requirement 

implies that the range [4.1, 5.8] should be divided into at 
least 1.710000 equal size ranges. This means that 15 
bits are required as the second part of the chromosome: 
214< 17000 215. The total length of a chromosome (test 
case) is then m = 18+15=33 bits; the first 18 bits code x
and remaining 15 bits code y. Let us consider an example 
chromosome:

010001001011010000111110010100010.
By using formula (4.1), the first 18 bits, 

010001001011010000, represents x = 1.0524, and the 
next 15 bits, 111110010100010, represents y = 5.7553. 
So the given chromosome corresponds to the data values 
1.0524 and 5.7553 for the variables x and y, respectively 
[19].

4.2 Initial population
As mentioned above, each chromosome (as a test case) is 
represented by a binary string of length m. We randomly 
generate pop_size m-bit strings to represent the initial 
population, where pop_size is the population size. The 
appropriate value of pop_size is experimentally 
determined. Each chromosome is converted to k decimal 
numbers representing values of k input variables x1,…, xk

(i.e. a test case) by using formula (4.1) or (4.2).

4.3 Evaluation function
The algorithm uses a new evaluation (fitness) function to 
evaluate the generated test data. This new fitness 
function depends on the concepts of the dominance 
relations between nodes of the program’s control flow 
graph. The algorithm uses this new fitness function to 
evaluate each test case by executing the program with it 
as input, and recording the traversed nodes in the 
program that are covered by this test case. We denote to 
the set of traversed nodes by exePath. Also, it finds the 
dominance path dom(n) of the target node n. The fitness 
function is the ratio of the number of covered nodes of 
the dominance path of the target node to the total number 
of nodes of the dominance path of the target node. The 
fitness value ft(vi) for each chromosome vi (i = 1, …, 
pop_size) is calculated as follows:

1. Find exePath: the set of the traversed nodes in the 
program that are covered by a test case.

2. Find dom(n): dominance path of the target node n
(the set of dominator nodes from the entry of the 
dominator tree to n).

3. Determine  exePathndom )( : uncovered 

nodes of the dominance path (the difference
between the dominance path and the traversed 
nodes).

4. Determine   exePathndom )( : covered 

nodes of the dominance path (the complement set 
of the difference set between the dominance path 
and the traversed nodes).

5. Calculate   exePathndom )( : number of 

covered nodes of the dominance path (cardinality 
of the complement set).
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6. Calculate )(ndom : number of nodes of the 

dominance path of the target node n (cardinality 
of the dominance set).

Then,
 

)(

)(
)(

ndom

exePathndom
vft i




The fitness value is the only feedback from the 
problem for the GA. A test case that is represented by the 
chromosome vi is optimal if its fitness value ft(vi) = 1.

4.4 Selection
After computing the fitness of each test case in the 
current population, the algorithm selects test cases from 
all the members of the current population that will be 
parents of the new population. In the selection process, 
the GA uses the roulette wheel method [29]. This method 
is described below.

For the selection of a new population with respect to
the probability distribution based on fitness values, a 
roulette wheel with slots sized according to fitness is 
used. Such roulette wheel is constructed as follows:

 Calculate the fitness value ft(vi) for each 
chromosome vi (i = 1,…,pop_size).

 Find the total fitness of the 

population 


sizepop

i ivftF
_

1
)( .

 Calculate the relative fitness value rft for each 

chromosome 
F

vft
vrft i

i

)(
)(  .

 Calculate the cumulative fitness value cft for each 
chromosome

     1i                       )(
pop_size2,...,i      )()( 1

)( 


 i

ii

vrft
vrftvcftivcft .

The selection process is based on spinning the 
roulette wheel pop_size times; each time we select a 
single chromosome for a new population in the following 
way:

 Generate a random (float) number r from the 
range [0..1].

 If r < cft(v1) then select the first chromosome v1; 
otherwise select the i-th chromosome vi (2 i 
pop_size) such that )()( 1 ii vcftrvcft .

Obviously, some chromosomes would be selected 
more than once.

4.5 Recombination
In the recombination phase, we use two operators, 
crossover and mutation, which are the key to the power 
of GAs. These operators create new individuals from the 
selected parents to form a new population.

Crossover: It operates at the individual level. During 
crossover, two parents (chromosomes) exchange 
substring information (genetic material) at a random 
position in the chromosome to produce two new strings 
(offspring). The objective here is to create better 
population over time by combining material from pairs 
of (fitter) members from the parent population.
Crossover occurs according to a crossover probability. 

The probability of crossover PXOVER gives us the 
expected number PXOVERpop_size of chromosomes, 
which undergo the crossover operation. We proceed in 
the following way:

For each chromosome in the parent population:
 Generate a random (float) number r from the 

range [0..1];
 If r < PXOVER then select given chromosome for 

crossover.
Now we mate selected chromosomes randomly: For 

each pair of coupled chromosomes we generate a random 
integer number pos from the range [1..m-1] (m is the 
number of bits in a chromosome). The number pos
indicates the position of the crossing point. Two 
chromosomes (b1…bposbpos+1…bm) and 
(c1…cposcpos+1…cm) are replaced by a pair of their 
offspring (b1…bposcpos+1…cm) and (c1…cposbpos+1…bm). 

Mutation: It is performed on a bit-by-bit basis. 
Mutation always operates after the crossover operator, 
and flips each bit with the pre-determined probability. 
The probability of mutation PMUTATION, gives us the 
expected number of mutated bits 
PMUTATIONmpop_size. Every bit (in all 
chromosomes in the whole population) has an equal 
chance to undergo mutation (i.e., change from 0 to 1 or 
vice versa). So we proceed in the following way:

For each chromosome in the current (i.e., after 
crossover) population and for each bit within the 
chromosome:

 Generate a random (float) number r from the 
range [0..1];

 If r < PMUTATION then mutate the bit.
In the traditional GA approach the population would 

evolve until one individual from the whole set which 
represents the solution is found. In our case, this 
condition would correspond to finding groups of data 
items achieving the test requirements (i.e., covering the 
set of leaves of the dominator tree) of the tested program. 
We let the population evolves until a combined subset of 
the population achieves the desired test requirement. The 
evolution stops when a set of individuals has traversed 
the dominance path of the test requirement and its fitness 
value ft(vi) = 1. The solution is this set.

4.6 Elitist
The elitist function enhances the current population by 
storing the best member of the previous population. If the 
best member of the current population is worse than the 
best member of the previous population it exchanges
them, and the best member of the current population 
would replace the worst member of the current 
population. After that, it stores the best member of the 
current population.

4.7 Example
To illustrate the operations of the above genetic 
algorithm, a part of the result of applying the system, 
which implements it, to the example program, is 
presented below. The final report (Figure 2) of the result 
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contains a table that shows the run number and the test 
requirement to be covered in this run and the number of 
the generation in which the test requirement is covered 
and the status whether it is covered or not. The final 
statistics shows that we needed 36 generations to obtain 
100% coverage of the nine test requirements.

Appendix A shows the part of the result of applying 
the system to test requirement number 5 (statement 27). 
This part of the result shows the execution of the steps of 
the genetic algorithm and operations of our proposed 
technique.

4.8 Overall algorithm
The proposed GA-based technique accepts as input the 
program to be tested, the number of input variables, and 
the domain and precision of each input variable. Also, it 
accepts the GA parameters: population size, maximum 
number of generations, and probabilities of the crossover 
and mutation operators. The algorithm produces a set of 
test cases, the set of nodes covered by these test cases, 
and the list of uncovered nodes, if any. 

The algorithm selects, one at a time, an uncovered 
node of the set of leaves nodes of the dominator tree and 
evolves the initial test data until the required test data are 
obtained or the maximum number of generations is 
exceeded. Whenever a node is covered, the test case that 
caused this coverage is stored in a score board. The 
technique checks the coverage of remaining uncovered 
nodes by the generated test data that cover the current 
node. The overall algorithm is presented in Figure 3.

5 Empirical evaluation
This section presents the results of the experiments that 
have been carried out to evaluate the effectiveness of the 
proposed GA compared to the random testing (RT) 

technique, and to evaluate the effectiveness of the 
proposed fitness function. A set of nine C++ programs is 
used in the experiments. To achieve a fair comparison, 
the random test-data generator was designed to randomly 
generate sets of pop_size test cases in each iteration. The 
used GA parameters were as follows: Maximum Number 
of Generations MAXGENS = 100, PXOVER = 0.8 and 
PMUTATION = 0.15.

Table 1 shows the reduction percentage of the test 
requirements. Column#2 shows the total number of test 
requirements which are demanded by the all-statements 
criterion and column#4 gives the number of the reduced 
test requirements. The reduction percentage is 83.3% for 
prog# 6 and prog# 9 and 75.6% for prog#2. It is clear 
that the reduction percentage isn’t less than 75%. These 
results show the effectiveness of the proposed technique 
to reduce the cost of all-statements testing by reducing 
the number of the test requirements.

** --------------------------------------------- Final Report -----------------------------------
*********************************************************************
** ------------------ GA completed successfully -------------------- **
** Final Statistics:-
** ------------------
** Total number of Req.------------------:  9
** No. of Covered Req.-------------------:  9
** The Covered Req. are------------------: 13, 19, 20, 21, 27, 33, 34, 35, 0
** No. of Uncovered Req.-----------------:  0
** The Uncovered Req. are----------------:
** Coverage Ratio------------------------: 100.0%
** No. of Runs---------------------------: 9
** -------------------------------------------------------------------------------
** | Run No. |     Test Req to be Covered    |     Generation No. |   Covered  |
** -------------------------------------------------------------------------------
** |    1         |                   13                        |              1               |        Y       |
** |    2         |                   19                        |              1               |        Y       |
** |    3         |                   20                        |              6               |        Y       |
** |    4         |                   21                        |              1               |        Y       |
** |    5         |                   27                        |              2               |        Y       |
** |    6         |                   33                        |             22              |        Y       |
** |    7         |                   34                        |             1                |        Y       |
** |    8         |                   35                        |             1                |        Y       |
** |    9         |                   0                          |             1                |        Y       |
** -----------------------------------------------------------------------------
** Total no. of Generations--------------: 36
** Total no. of Test Cases---------------:144
** No. of Successful Test Cases----------: 16
** No. of Distinct Successful Test Cases-: 13
** The Distinct Successful Test Cases are:
**   1)[  2 ,  3 ,  4 ]   2)[  1 ,  2 ,  3 ]
**   3)[  2 ,  1 ,  4 ]   4)[  3 ,  0 ,  3 ]
**   5)[  2 ,  2 ,  2 ]   6)[  2 ,  3 ,  1 ]
**   7)[  3 ,  4 ,  1 ]   8)[  4 ,  2 ,  1 ]
**   9)[  4 ,  2 ,  2 ] 10)[  2 ,  4 ,  3 ]
** 11)[  4 ,  3 ,  4 ] 12)[  4 ,  2 ,  3 ]
** 13)[  1 ,  2 ,  4 ]
** No. of Covering Test Cases------------:  9
** The Covering Test Cases are-----------:
**   1)[  2 ,  3 ,  4 ]   2)[  3 ,  2 ,  1 ]
**   3)[  3 ,  0 ,  3 ]   4)[  1 ,  2 ,  1 ]
**   5)[  2 ,  2 ,  2 ]   6)[  2 ,  3 ,  1 ]
**   7)[  4 ,  1 ,  1 ]   8)[  4 ,  2 ,  1 ]
**   9)[  2 ,  4 ,  3 ]
** -------------------------------------------- The end of Report ----------------------- **
*******************************************************************

Figure 2: The Final Report.

/* A GA algorithm to automatically generate test cases for a given program */
Input:

The program to be tested P;
Number of program input variables;
Domain and precision of input data;
Population size;
Maximum no. of generations (Max_Gen);
Probability of crossover;
Probability of mutation;

Output:
Set of test cases for P, and the set of nodes covered by each test case;
List of uncovered nodes, if any;

Begin
Step 0: Setup (Analysis P to find prerequisites)

1. Classify the program’s statements.
2. Build the program’s control flow graph CFG.
3. Build the program’s dominator tree DT.
4. Find the set of leaves L of the dominator tree.
5. Instrument P to obtain P'.

Step 1: Initialization
Initialize the score board to zero;
nRun ← 0; 
Set of test cases for P ← φ;
nCases ← 0;

Step 2: Generate test cases
For each uncovered node and not selected before in the set of nodes to be tested (L)

Begin
nRun ← nRun + 1; 
Create Initial_Population;
Current_population ← Initial_Population;
No_Of_Generations ← 0;
For each member of current population do

Begin
Convert the current chromosome to the corresponding set of decimal values;
Execute P' with this data set as input;
Evaluate the current test case;
If (the current node is covered) then

Mark the current node as covered;
End If

End For;
Keep the best member of the current population;
While (current node is not covered and No_Of_Generations ≤ Max_Gen) do

Begin
Select set of parents of new population from members of 
current population using roulette wheel method;
Create New_Population using crossover and mutation operators;
Current_Population ← New_Population;
For each member of Current_Population do
Begin

Convert current chromosome to the corresponding set of decimal values;
Execute P' with this data set as input;
Evaluate the current test case;
If (the current node is covered) then

Mark the current node as covered;
End If

End For;
Elitist function: If the best member of the current population is worse than the
best member of the previous population then exchange them, and the best member
of the current population would replace the worst member of the current 
population.
Increment No_Of_Generations;

End While;
If (the current node is covered) then

nCases ← nCases + 1;
Add this test cases to set of test cases for P;
Update the score board;
Check all uncovered nodes by this test case.

End If
End For;

Step 3: Produce output
Return set of test cases for P, and set of nodes covered by each test case;
Report on uncovered nodes, if any;

End.

Figure 3: The overall algorithm.
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Table 1: The reduction percentage of the cost of 
software testing

Prog#
Program

Size ProgSize)

No. Of 

Variable

No. of Test

Requirements 

(nTestReq)

Reduction 

percentage= 100*(1 -

nTestReq/ProgSize)%

1 42 3 8 80.9%

2 37 3 9 75.6%

3 27 2 5 81.4%

4 41 2 9 78%

5 38 2 7 81.5%

6 36 2 6 83.3%

7 33 2 7 78.7%

8 19 1 4 78.9%

9 18 2 3 83.3%

Table 2 shows the results of applying the proposed 
GA technique and the RT technique to nine C++ 
programs. These results show the effectiveness of the 
proposed GA technique over the random testing 
technique where the GA covers 100% of the set of test 
requirements in 8 programs while random testing covers 
100% of the set of test requirements in 2 programs. In 
program 3, the GA needed only 9 generations and 90 test 
cases to reach 100% coverage while RT needed 203 
generations and 2030 test cases to reach 60% coverage. 
In program 4, the GA needed 231 generations and 2310 
test cases to reach 77.8% coverage while RT needed 504 
generations and 5040 test cases to reach 44.4% coverage.

6 Conclusions and future work
This paper presented an automatic test-data generation 
technique that uses a genetic algorithm. This technique 
applies the concepts of dominance relations between 
nodes to reduce the cost of software testing. These 
concepts used to define a new fitness function to evaluate 
the generated test data.

Experiments have been carried out to evaluate the 
effectiveness of the proposed GA technique compared to 
the RT technique, and to evaluate the effectiveness of the 
new fitness function and the technique used to reduce the 
cost of software testing. The results of these experiments 
showed that the proposed GA technique outperformed 
the RT technique in 7 out of the 9 programs used in the 
experiments. In the other two programs, the proposed 
GA reached the same coverage percentage as the RT 
technique. The experiments also showed that the 
proposed technique reduced the cost of software testing 
by more than 75%. Also, the results of the experiments 
showed that the new fitness function is quite suitable to 
evaluate the generated test-data and showed the 
usefulness of the concepts of dominance relations 
between nodes of the program’s control flow graph in 
reducing the number of test requirements.

This technique is being modified to generate test data 
for data flow testing. The concepts of dominance 
relations between nodes of the program’s control flow 
graph will be used to define a new fitness function to 
evaluate the generated test data for data flow testing.

Table 2: A comparison between the proposed GA technique and the RT technique.

Prog#
Pop. 

Size
Method

Total no. of 

Generations

Total no. of Test 

Cases

No. of successful Test 

Cases

Total no. of test 

Req.

No. of Covered 

Req.

Coverage Ratio 

%

1 9
GA 19 171 34 8 8 100%

RT 109 981 35 8 7 87.5%

2 10
GA 9 90 36 9 9 100%

RT 9 90 36 9 9 100%

3 10
GA 9 90 32 5 5 100%

RT 203 2030 30 5 3 60%

4 10
GA 231 2310 34 9 7 77.8%

RT 504 5040 40 9 4 44.4%

5 10
GA 9 90 56 7 7 100%

RT 106 1060 54 7 6 85.7%

6 9
GA 26 234 37 6 6 100%

RT 105 945 36 6 5 83.3%

7 10
GA 35 350 48 7 7 100%

RT 106 1060 47 7 6 85.7%

8 10
GA 10 100 27 4 4 100%

RT 103 1030 26 4 3 75%

9 10
GA 3 30 25 3 3 100%

RT 3 30 25 3 3 100%
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Appendix A
A part of the result of applying the system to test 
requirement number 5 (statement 27).

Population Size:  4
Maximum Number of Generation:  100
Crossover Probability:  0.80
Mutation Probability:  0.15
Number of Input Variables:  3
Domain and Precession of Input Variables:
1..5, 0;1..5, 0; 1..5, 0
** GA Started **
  --------------------------------------------------------------
  Test Requirement No. 5 is Statement: 27
  Its Dominance Path is: -1 1 2 3 4 5 6 7 8 22 23 24 25 26 27 
  --------------------------------------------------------------
*** Generation 1
  * -------------
*** Initial Population
  * Individual   1 =   2,  2,  3 = 001000100011
  * Individual   2 =   1,  1,  3 = 000100010011
  * Individual   3 =   1,  1,  2 = 000100010010
  * Individual   4 =   1,  3,  4 = 000100110100
  *
*** Evaluation of the Population 
  *
  * Individual 1:
  * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 36 37 0 
  * Uncovered Dominator Nodes: 22 23 24 25 26 27 
  * Fitness Value: 0.600 
  * Individual 2:
  * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 36 37 0 
  * Uncovered Dominator Nodes: 22 23 24 25 26 27 
  * Fitness Value: 0.600 
  * Individual 3:
  * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 36 37 0 
  * Uncovered Dominator Nodes: 22 23 24 25 26 27 
  * Fitness Value: 0.600 
  * Individual 4:
  * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 11 12 13 21 36 37 0 
  * Uncovered Dominator Nodes: 22 23 24 25 26 27 
  * Fitness Value: 0.600 
  * -----------------------------------------------
*** Generation 2
  * -------------
*** 1- Selection
  *
  * The Selection Preformed using Roulette Wheel depended on Cumulative 
Fitness
  * The Selected Cases to be Parents of New Population are:
  * Parent   1 = Individual   1 =   2,  2,  3 = 001000100011
  * Parent   2 = Individual   3 =   1,  1,  2 = 000100010010
  * Parent   3 = Individual   2 =   1,  1,  3 = 000100010011
  * Parent   4 = Individual   3 =   1,  1,  2 = 000100010010
  *
*** 2- Recombination 
  *
  * 2.1- Crossover 
  * The Crossover Operation (Single Point Crossover) ***
  * Selected Parents Crossover Position Offsprings
  *    1 , 2    10      000100010011     001000100010
  *    3 , 4    10      000100010011     000100010010
  *
*** 2.2- Mutation 
  * The Mutation Operation (Simple Mutation) ***
  * Selected Chromosome  Mutation Position   Mutated Chromosome
  *         1                                      2         010100010011
  *
*** The New Population is: 
  * Individual   1 =   5,  1,  3 = 010100010011
  * Individual   2 =   2,  2,  2 = 001000100010
  * Individual   3 =   1,  1,  3 = 000100010011
  * Individual   4 =   1,  1,  2 = 000100010010
  *
*** Pre_Evaluation of the Population before adaptation to check is one of the out 
of range individuals
  * satisfies the test requirement or not, and keep the optimal
  *   2,  2,  2 is a test case covers the test requirement.
  *
*** Check Range
  * Is the generated data locate in the specified range?
  * Yes, all generated data locates in the specified range. 
  *
*** 3- Evaluation of the Population 
  *
  * Individual 1:
  * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 14 15 16 20 21 36 37 0 
  * Uncovered Dominator Nodes: 22 23 24 25 26 27 
  * Fitness Value: 0.600 
  * Individual 2:
  * Traversed Path: -1 1 2 3 4 5 6 7 8 22 23 24 25 26 27 35 36 37 0 
  * Uncovered Dominator Nodes: 

  * Fitness Value: 1.000 
  * Individual 3:
  * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 36 37 0 
  * Uncovered Dominator Nodes: 22 23 24 25 26 27 
  * Fitness Value: 0.600 
  * Individual 4:
  * Traversed Path: -1 1 2 3 4 5 6 7 8 9 10 14 15 16 17 18 19 20 21 36 37 0 
  * Uncovered Dominator Nodes: 22 23 24 25 26 27 
  * Fitness Value: 0.600 
  *
*** Elitist: If the best member of the current generation is worse than the best 
member of the previous generation we exchange them, and the best  
  * member of the current generation would replace the worst member of the 
current population.
  *
*** The New Population is: 
  * Individual   1 =   5,  1,  3 = 010100010011
  * Individual   2 =   2,  2,  2 = 001000100010
  * Individual   3 =   1,  1,  3 = 000100010011
  * Individual   4 =   1,  1,  2 = 000100010010
*******************************Report ***************************
** Best Fitness is:  1.000                           ** Average Fitness is:  0.700                     
** Standard deviation is:  0.200                  ** No. of Generations =   2                       
** The Test Requirement is satisfied and The Generated Test Case is:   2,  2,  2        
** see individual 2 and its evaluation.                                                                           
*************************************************************
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